{"id":949,"date":"2020-02-15T14:22:23","date_gmt":"2020-02-15T14:22:23","guid":{"rendered":"https:\/\/seismicconsolidation.com\/?p=949"},"modified":"2020-02-15T14:22:23","modified_gmt":"2020-02-15T14:22:23","slug":"determination-of-tensile-strength-of-concrete-by-split-cylinder-test","status":"publish","type":"post","link":"https:\/\/seismicconsolidation.com\/determination-of-tensile-strength-of-concrete-by-split-cylinder-test\/","title":{"rendered":"Determination of tensile strength of concrete by Split cylinder test:"},"content":{"rendered":"
Job # 12:<\/strong><\/p>\n Determination of tensile strength of concrete by Split cylinder test:<\/strong><\/p>\n (ASTM C 496\/C 496 M-04) <\/strong><\/p>\n Significance: <\/u><\/strong><\/p>\n Apparatus:<\/u><\/strong><\/p>\n Related theory:<\/u><\/strong><\/p>\n Difficulties in measurement of tensile strength:<\/strong><\/p>\n There are considerable experimental difficulties in determining the true tensile strength of concrete. In direct tension test following are the difficulties:<\/p>\n Indirect methods for the determination of tensile strength of concrete:<\/strong><\/p>\n Split cylinder test:<\/u><\/strong><\/p>\n This test is performed by loading a standard 150mm\u0424 x 300mm cylinder by a line load perpendicular to its longitudinal axis with cylinder placed horizontally on the testing machine platen.<\/p>\n The tensile strength can be defined as<\/p>\n T = 2P \/ (\u03a0<\/em> DL)<\/strong><\/p>\n Where Mean split cylinder strength is approximately 0.53<\/strong>\u221afc\u2019<\/strong><\/p>\n <\/p>\n Rate of loading <\/strong><\/p>\n The rate of loading should be such that a stress of 0.7 \u2013 1.4 MPa\/min is produced.<\/p>\n Procedure: <\/u><\/strong><\/p>\n Observations and Calculations<\/u><\/strong><\/p>\n Age of cylinders = 28 days<\/p>\n Diameter of cylinder = 150 mm<\/p>\n Length of cylinder = 300 mm<\/p>\n 1 Ton = 2240 lb<\/p>\n 1 lb = 4.45 N<\/p>\n T = 2P \/ (\u03a0<\/em> DL)<\/strong><\/td>\n<\/tr>\n <\/p>\n Results: <\/u><\/strong><\/p>\n Splitting tensile strength = 2.19 MPa<\/p>\n Comments: <\/u><\/strong><\/p>\n Sample during test:<\/p>\n <\/p>\n","protected":false},"excerpt":{"rendered":" Job # 12: Determination of tensile strength of concrete by Split cylinder test: (ASTM C 496\/C 496 M-04) Significance: This test method is used for the determination of splitting tensile strength of cylindrical concrete specimen. Splitting tensile strength is generally greater than the direct tensile strength and lower than the flexural strength (modulus of rupture)….<\/p>\n","protected":false},"author":1,"featured_media":951,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":[],"categories":[5,113],"tags":[124],"_links":{"self":[{"href":"https:\/\/seismicconsolidation.com\/wp-json\/wp\/v2\/posts\/949"}],"collection":[{"href":"https:\/\/seismicconsolidation.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/seismicconsolidation.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/seismicconsolidation.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/seismicconsolidation.com\/wp-json\/wp\/v2\/comments?post=949"}],"version-history":[{"count":1,"href":"https:\/\/seismicconsolidation.com\/wp-json\/wp\/v2\/posts\/949\/revisions"}],"predecessor-version":[{"id":952,"href":"https:\/\/seismicconsolidation.com\/wp-json\/wp\/v2\/posts\/949\/revisions\/952"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/seismicconsolidation.com\/wp-json\/wp\/v2\/media\/951"}],"wp:attachment":[{"href":"https:\/\/seismicconsolidation.com\/wp-json\/wp\/v2\/media?parent=949"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/seismicconsolidation.com\/wp-json\/wp\/v2\/categories?post=949"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/seismicconsolidation.com\/wp-json\/wp\/v2\/tags?post=949"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}\n
\n
\n
\n
\nP =\u00a0 Total value of line load registered by machine
\nD =\u00a0 Diameter of concrete cylinder
\nL =\u00a0 Cylinder height<\/p>\n\n
\n\n
\n Specimen no.<\/strong><\/td>\n Length (L)<\/strong><\/td>\n Diameter (D)<\/strong><\/td>\n Maximum applied load (P)<\/strong><\/td>\n Split tensile strength<\/strong><\/p>\n \n <\/td>\n mm<\/td>\n mm<\/td>\n Ton<\/td>\n N<\/td>\n MPa<\/td>\n<\/tr>\n \n 1<\/td>\n 300<\/td>\n 150<\/td>\n 15.25<\/td>\n 152012<\/td>\n 2.15<\/td>\n<\/tr>\n \n 2<\/td>\n 300<\/td>\n 150<\/td>\n 15.75<\/td>\n 156996<\/td>\n 2.22<\/td>\n<\/tr>\n \n Mean strength<\/td>\n <\/td>\n <\/td>\n <\/td>\n <\/td>\n 2.19<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n \n