{"id":291,"date":"2020-01-25T12:07:59","date_gmt":"2020-01-25T12:07:59","guid":{"rendered":"https:\/\/seismicconsolidation.com\/?p=291"},"modified":"2020-01-26T10:59:21","modified_gmt":"2020-01-26T10:59:21","slug":"estimation-of-coefficient-of-weir-for-ogee-weir","status":"publish","type":"post","link":"https:\/\/seismicconsolidation.com\/estimation-of-coefficient-of-weir-for-ogee-weir\/","title":{"rendered":"Estimation of coefficient of weir for ogee weir"},"content":{"rendered":"<h2><a name=\"_Toc6300881\"><\/a>1.\u00a0\u00a0\u00a0\u00a0 Estimation of coefficient of weir for ogee weir<\/h2>\n<h3><a name=\"_Toc6300882\"><\/a><a name=\"_Toc506890352\"><\/a>1.1.\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Objectives:<\/h3>\n<ol>\n<li>To find coefficient of weir for ogee weir.<\/li>\n<li>To observe relationship between discharge and coefficient of weir.<\/li>\n<li>To observe relationship between discharge and head above crest of weir.<\/li>\n<\/ol>\n<h3><a name=\"_Toc6300883\"><\/a><a name=\"_Toc506890353\"><\/a>1.2.\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Apparatus:<\/h3>\n<ol>\n<li>Ogee weir<\/li>\n<li>Point gauge<\/li>\n<li>S6 tilting flume assembly<\/li>\n<\/ol>\n<h3><a name=\"_Toc6300884\"><\/a><a name=\"_Toc506890354\"><\/a>1.3.\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Related theory:<\/h3>\n<h4><a name=\"_Toc506890355\"><\/a>1.3.1.\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Weir:<a name=\"_Toc506890356\"><\/a><\/h4>\n<p>A\u00a0<strong>weir<\/strong>\u00a0or\u00a0<strong>low head dam<\/strong>\u00a0is a barrier across the horizontal width of a river that alters the flow characteristics of water and usually results in a change in the height of the river level. There are many designs of weir, but commonly water flows freely over the top of the weir crest before cascading down to a lower level.<\/p>\n<h4>1.3.2.\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Functions of weir:<\/h4>\n<p>Weirs are commonly used to prevent\u00a0<a href=\"https:\/\/en.wikipedia.org\/wiki\/Flooding\">flooding<\/a>, measure water discharge, and help render rivers more\u00a0<a href=\"https:\/\/en.wikipedia.org\/wiki\/Navigability\">navigable<\/a>\u00a0by boat. In some locations, the terms\u00a0<a href=\"https:\/\/en.wikipedia.org\/wiki\/Dam\">dam<\/a>\u00a0and weir are synonymous, but normally there is a clear distinction made between the structures. A dam is usually specifically designed to impound water behind a wall, whilst a weir is designed to alter the river flow characteristics.<\/p>\n<p>A common distinction between dams and weirs is that water flows over the top (crest) of a weir. Accordingly, the crest of an overflow\u00a0<a href=\"https:\/\/en.wikipedia.org\/wiki\/Spillway\">spillway<\/a>\u00a0on a large dam may therefore be referred to as a weir. Weirs can vary in size both horizontally and vertically, with the smallest being only a few inches in height whilst the largest may be hundreds of metres long and many metres tall<\/p>\n<h4>1.3.3.\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Flow measurement<\/h4>\n<p>Weirs allow\u00a0<a href=\"https:\/\/en.wikipedia.org\/wiki\/Hydrology\">hydrologists<\/a>\u00a0and engineers a simple method of measuring the\u00a0<a href=\"https:\/\/en.wikipedia.org\/wiki\/Volumetric_flow_rate\">volumetric flow rate<\/a>\u00a0in small to medium-sized streams\/rivers or in industrial discharge locations. Since the geometry of the top of the weir is known and all water flows over the weir, the depth of water behind the weir can be converted to a rate of flow. However, this can only be achieved in locations where all water flows over the top of the weir crest. If this condition is not met, it can make flow measurement complicated, inaccurate or even impossible.<\/p>\n<p>The discharge calculation can be summarized as:<\/p>\n<math xmlns=\"http:\/\/www.w3.org\/1998\/Math\/MathML\"><mi>Q<\/mi><mo>=<\/mo><mi>C<\/mi><mi>L<\/mi><msup><mi>H<\/mi><mi>n<\/mi><\/msup><\/math>\n<p>Where:<\/p>\n<p><em>Q<\/em>\u00a0is the\u00a0<a href=\"https:\/\/en.wikipedia.org\/wiki\/Volumetric_flow_rate\">volumetric flow rate<\/a>\u00a0of fluid (the\u00a0<a href=\"https:\/\/en.wikipedia.org\/wiki\/Discharge_(hydrology)\">discharge<\/a>)<\/p>\n<p><em>C<\/em>\u00a0is the\u00a0<a href=\"https:\/\/en.wikipedia.org\/wiki\/Flow_coefficient\">flow coefficient<\/a>\u00a0for the structure (on average a figure of 0.62)<\/p>\n<p><em>L<\/em>\u00a0is the width of the\u00a0<a href=\"https:\/\/en.wikipedia.org\/wiki\/Crest_(hydrology)\">crest<\/a><\/p>\n<p><em>H<\/em>\u00a0is the height of\u00a0<a href=\"https:\/\/en.wikipedia.org\/wiki\/Hydraulic_head\">head<\/a>\u00a0of water over the crest<\/p>\n<p><em>n<\/em>\u00a0varies with structure (e.g., 3\/2 for horizontal weir, 5\/2 for v-notch weir)<\/p>\n<p>However, this calculation is a generic relationship and specific calculations are available for the many different types of weir. Flow measurement weirs must be well maintained if they are to remain accurate.<\/p>\n<p><img loading=\"lazy\" class=\"aligncenter wp-image-295 size-full\" src=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.1.png\" alt=\"\" width=\"583\" height=\"437\" srcset=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.1.png 583w, https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.1-300x225.png 300w\" sizes=\"(max-width: 583px) 100vw, 583px\" \/><\/p>\n<p style=\"text-align: center;\"><a name=\"_Toc6300911\"><\/a>Figure 1.1: A weir on the Yass River, New South Wales, Australia directly upstream from a shared pedestrian-bicycle river crossing<\/p>\n<h4>1.3.4.\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Types of weirs:<\/h4>\n<p>Weirs are classified according to:<\/p>\n<ol>\n<li>Shape of opening<\/li>\n<li>Shape of crest<\/li>\n<\/ol>\n<h5><a name=\"_Toc506890357\"><\/a>1.3.4.1.\u00a0\u00a0\u00a0\u00a0\u00a0 Types of Weirs based on Shape of the Opening:<\/h5>\n<ol>\n<li>Rectangular weir<\/li>\n<\/ol>\n<p>It is a standard shape of weir. The top edge of weir may be sharp crested or narrow crested. It is generally suitable for larger flowing channels.<\/p>\n<p><img loading=\"lazy\" class=\"aligncenter wp-image-317 size-full\" src=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.2-1.png\" alt=\"\" width=\"703\" height=\"229\" srcset=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.2-1.png 703w, https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.2-1-300x98.png 300w\" sizes=\"(max-width: 703px) 100vw, 703px\" \/><\/p>\n<p style=\"text-align: center;\"><a name=\"_Toc6300912\"><\/a>Figure 1.2: Rectangular shaped weir<\/p>\n<ol>\n<li>Triangular weir<\/li>\n<\/ol>\n<p>The shape of the weir is actually reverse triangle like V. so, it is also called V-notch weir. This type of weirs are well suitable for measuring discharge over small flows with greater accuracy.<\/p>\n<p><img loading=\"lazy\" class=\"aligncenter wp-image-318 size-full\" src=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.3-1.png\" alt=\"\" width=\"720\" height=\"235\" srcset=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.3-1.png 720w, https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.3-1-300x98.png 300w\" sizes=\"(max-width: 720px) 100vw, 720px\" \/><\/p>\n<p style=\"text-align: center;\"><a name=\"_Toc6300913\"><\/a>Figure 1.3: Triangular shaped weir<\/p>\n<ul>\n<li>Trapezoidal weir<\/li>\n<\/ul>\n<p>Trapezoidal weir is also called as Cippoletti weir. This is trapezoidal in shape and is the modification of rectangular weir with slightly higher capacity for same crest strength. The sides are inclined outwards with a slope 1:4.<\/p>\n<p><img loading=\"lazy\" class=\"aligncenter wp-image-320 size-full\" src=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.4-1.png\" alt=\"\" width=\"620\" height=\"209\" srcset=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.4-1.png 620w, https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.4-1-300x101.png 300w\" sizes=\"(max-width: 620px) 100vw, 620px\" \/><\/p>\n<p><a name=\"_Toc6300914\"><\/a>Figure 1.4: Trapezoidal weir<\/p>\n<h5><a name=\"_Toc506890358\"><\/a>1.3.4.2.\u00a0\u00a0\u00a0\u00a0\u00a0 Types of Weirs based on Shape of the Crest:<\/h5>\n<ol>\n<li>Sharp-crested weir<\/li>\n<\/ol>\n<p>The crest of the weir is very sharp such that the water will springs clear of the crest. The weir plate is beveled at the crest edges to obtain necessary thickness. And weir plate should be made of smooth metal which is free from rust and nicks. Flow over sharp-crested weir is similar as rectangular weir.<\/p>\n<p><img loading=\"lazy\" class=\"aligncenter wp-image-321 size-full\" src=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.5-1.png\" alt=\"\" width=\"437\" height=\"249\" srcset=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.5-1.png 437w, https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.5-1-300x171.png 300w\" sizes=\"(max-width: 437px) 100vw, 437px\" \/><\/p>\n<p style=\"text-align: center;\"><a name=\"_Toc6300915\"><\/a>Figure 1.5: Sharp crested weir<\/p>\n<ol>\n<li>Broad- crested weir<\/li>\n<\/ol>\n<p>These are constructed only in rectangular shape and are suitable for the larger flows. Head loss will be small in case of broad crested weir. A weir having a wide crest is known as broad crested weir. If 2L>H, the weir is called broad crested weir.<\/p>\n<p><img loading=\"lazy\" class=\"aligncenter wp-image-322 size-full\" src=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.6-1.png\" alt=\"\" width=\"389\" height=\"246\" srcset=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.6-1.png 389w, https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.6-1-300x190.png 300w\" sizes=\"(max-width: 389px) 100vw, 389px\" \/><\/p>\n<p style=\"text-align: center;\"><a name=\"_Toc6300916\"><\/a>Figure 1.6: Broad crested weir<\/p>\n<ul>\n<li>Narrow-crested weir<\/li>\n<\/ul>\n<p>It is similar to rectangular weir with narrow shaped crest at the top. The discharge over narrow crested weir is similar to discharge over rectangular weir. If 2L<H, it is called narrow crested weir.<\/p>\n<p><img loading=\"lazy\" class=\"aligncenter wp-image-323 size-full\" src=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.7-1.png\" alt=\"\" width=\"258\" height=\"208\" \/><\/p>\n<p style=\"text-align: center;\"><a name=\"_Toc6300917\"><\/a>Figure 1.7: Narrow crested weir<\/p>\n<ol>\n<li>Ogee-shaped weir<\/li>\n<\/ol>\n<p>Generally, ogee shaped weirs are provided for the spillway of a storage dam. The crest of the ogee weir is slightly rises and falls into parabolic form. Flow over ogee weir is also similar to flow over rectangular weir.<\/p>\n<p><img loading=\"lazy\" class=\"aligncenter wp-image-324 size-full\" src=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.8-1.png\" alt=\"\" width=\"426\" height=\"242\" srcset=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.8-1.png 426w, https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.8-1-300x170.png 300w\" sizes=\"(max-width: 426px) 100vw, 426px\" \/><\/p>\n<p style=\"text-align: center;\"><a name=\"_Toc6300918\"><\/a>Figure 1.8: Ogee shaped weir<\/p>\n<h5><a name=\"_Toc506890359\"><\/a>1.3.4.3.\u00a0\u00a0\u00a0\u00a0\u00a0 Types of weirs based on Effect of the sides on the emerging nappe:<\/h5>\n<ol>\n<li>Weir with end contraction (contracted weir)<\/li>\n<\/ol>\n<p>The crest is cut in the form of notch and then it is similar to rectangular weir. Head loss will occur in this type.<\/p>\n<ol>\n<li>Weir without end contraction (suppressed weir)<\/li>\n<\/ol>\n<p>The crest is running all the way across the channel so head loss will be negligible.<\/p>\n<p><img loading=\"lazy\" class=\"aligncenter size-full wp-image-325\" src=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.9-1.png\" alt=\"\" width=\"469\" height=\"242\" srcset=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.9-1.png 469w, https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.9-1-300x155.png 300w\" sizes=\"(max-width: 469px) 100vw, 469px\" \/>\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 (a)\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 (b)<\/p>\n<p style=\"text-align: center;\"><a name=\"_Toc6300919\"><\/a>Figure 1.9: (a) Contracted rectangular weir (b) Suppressed rectangular weir<\/p>\n<h4><a name=\"_Toc506890360\"><\/a>1.3.5.\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Ogee weir:<\/h4>\n<p>The ogee spillway, also known as the <em>overflow spillway<\/em>, is a control weir having an ogee (S-shaped) overflow profile. It is probably the most extensively used spillway to safely pass the flood flow out of a reservoir. The crest profile of the spillway is so chosen as to provide a high discharge coefficient without causing dangerous cavitation conditions and vibrations.<\/p>\n<p><img loading=\"lazy\" class=\"aligncenter size-full wp-image-326\" src=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.10-1.png\" alt=\"\" width=\"562\" height=\"304\" srcset=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.10-1.png 562w, https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.10-1-300x162.png 300w\" sizes=\"(max-width: 562px) 100vw, 562px\" \/><\/p>\n<p style=\"text-align: center;\"><a name=\"_Toc6300920\"><\/a>Figure 1.10: Detailed diagram of ogee spillway<\/p>\n<p>Ogee weirs are usually designed in the shape of ogee curve. The crest of the ogee weir is slightly rising and falls into parabolic form.<\/p>\n<p>This ogee shaped structure is used as weir, ogee spillway in dam and ogee fall in irrigation canal. This type of ogee fall was constructed by Sir Proby Causley on the Ganga canal. Whether it is a weir or spillway or canal fall, the name ogee is given for the shape of crest. The crest has gradually convex and concave surfaces. This profile of crest provides smooth transition, just to eliminate disturbance and impact. The erosion downstream by falling is minimized.<\/p>\n<p>Generally, ogee shaped weirs are provided for the spillway of a storage dam.<\/p>\n<p>In ogee weir, crest of weir rises up to maximum height of 0.115H (where \u201cH\u201d is height of water above inlet of the weir) and then falls as shown in figure below.<\/p>\n<p><img loading=\"lazy\" class=\"aligncenter size-full wp-image-327\" src=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.11-1.png\" alt=\"\" width=\"283\" height=\"189\" \/><\/p>\n<p style=\"text-align: center;\"><a name=\"_Toc6300921\"><\/a>Figure 1.11: Ogee spillway<\/p>\n<h5>1.3.5.1.\u00a0\u00a0\u00a0\u00a0\u00a0 Flow over ogee weir<\/h5>\n<p>The flow over an ogee weir can be computed using following equation.<\/p>\n<p>Q=CLH <sup>3<\/sup><sup>\/<\/sup><sup>2<\/sup><\/p>\n<p>Where;<\/p>\n<p>Q = discharge over the weir<\/p>\n<p>L = effective weir length<\/p>\n<p>H = free-flow total head upstream of the weir measured relative to the crest elevation<\/p>\n<p>C = coefficient of discharge in free flow condition<\/p>\n<h5><a name=\"_Toc506890361\"><\/a>1.3.5.2.\u00a0\u00a0\u00a0\u00a0\u00a0 Discharge coefficient of ogee weir:<\/h5>\n<p>The discharge coefficient for an ogee weir can be calculated using following equation<\/p>\n<p>C = Q\/LH<sup>3\/2<\/sup><\/p>\n<h3><a name=\"_Toc6300885\"><\/a><a name=\"_Toc506890363\"><\/a>1.4.\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Procedure:<\/h3>\n<ol>\n<li>Set the slope of tilting flume equal to zero.<\/li>\n<li>Set ogee weir in the flume ensuring proper fitting by using plaster.<\/li>\n<\/ol>\n<ul>\n<li>Note down weir height and length \u201cL\u201d of weir crest.<\/li>\n<\/ul>\n<ol>\n<li>Allow the water to flow over weir by turning the pump on.<\/li>\n<li>From differential manometer, note down the differential head and see the value of discharge \u201cQ\u201d from calibrated table.<\/li>\n<li>Measure the head above crest \u201cH\u201d by measuring the depth of water above crest at upstream.<\/li>\n<\/ol>\n<ul>\n<li>Compute coefficient of discharge by C = Q\/LH<sup>3\/2<\/sup><\/li>\n<li>Repeat the procedure by increasing the discharge.<\/li>\n<\/ul>\n<ol>\n<li>Plot the graph between discharge and head above crest.<\/li>\n<li>Plot the graph between discharge and coefficient of weir.<\/li>\n<\/ol>\n<p><img loading=\"lazy\" class=\"aligncenter size-full wp-image-328\" src=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.12-1.png\" alt=\"\" width=\"539\" height=\"268\" srcset=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.12-1.png 539w, https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/1.12-1-300x149.png 300w\" sizes=\"(max-width: 539px) 100vw, 539px\" \/><\/p>\n<p><a name=\"_Toc6300922\"><\/a>Figure 1.12: Free flow over laboratory ogee weir<\/p>\n<p><strong>\u00a0<\/strong><\/p>\n<h3><a name=\"_Toc6300886\"><\/a>1.5.\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 observations and calculations<\/h3>\n<table style=\"width: 100%;\" width=\"100%\">\n<tbody>\n<tr>\n<td style=\"width: 35%;\" colspan=\"3\" width=\"36%\">Effective length of crest=L=<\/td>\n<td style=\"width: 10%;\" width=\"10%\">300<\/td>\n<td style=\"width: 17%;\" width=\"17%\">mm<\/td>\n<td style=\"width: 34%;\" colspan=\"2\" rowspan=\"2\" width=\"34%\"><\/td>\n<\/tr>\n<tr>\n<td style=\"width: 35%;\" colspan=\"3\" width=\"36%\">Crest height of weir=<\/td>\n<td style=\"width: 10%;\" width=\"10%\">232<\/td>\n<td style=\"width: 17%;\" width=\"17%\">mm<\/td>\n<\/tr>\n<tr>\n<td style=\"width: 9%;\" rowspan=\"2\" width=\"9%\"><strong>Sr. no.<\/strong><\/td>\n<td style=\"width: 13%;\" rowspan=\"2\" width=\"13%\"><strong>h<sub>1<\/sub><\/strong><\/td>\n<td style=\"width: 13%;\" rowspan=\"2\" width=\"13%\"><strong>h<sub>2<\/sub><\/strong><\/td>\n<td style=\"width: 10%;\" rowspan=\"2\" width=\"10%\"><strong>h<sub>1<\/sub>-h<sub>2<\/sub><\/strong><\/td>\n<td style=\"width: 17%;\" width=\"17%\"><strong>Discharge<\/strong><\/td>\n<td style=\"width: 14%;\" width=\"14%\"><strong>Head above crest<\/strong><\/td>\n<td style=\"width: 20%;\" width=\"20%\"><strong>Coefficient of discharge<\/strong><\/td>\n<\/tr>\n<tr>\n<td style=\"width: 17%;\" width=\"17%\"><strong>Q<\/strong><\/td>\n<td style=\"width: 14%;\" width=\"14%\"><strong>H<\/strong><\/td>\n<td style=\"width: 20%;\" width=\"20%\"><strong>C<\/strong><\/td>\n<\/tr>\n<tr>\n<td style=\"width: 9%;\" width=\"9%\"><strong>\u00a0<\/strong><\/td>\n<td style=\"width: 13%;\" width=\"13%\"><strong>mm<\/strong><\/td>\n<td style=\"width: 13%;\" width=\"13%\"><strong>mm<\/strong><\/td>\n<td style=\"width: 10%;\" width=\"10%\"><strong>mm<\/strong><\/td>\n<td style=\"width: 17%;\" width=\"17%\"><strong>m<sup>3<\/sup>\/s<\/strong><\/td>\n<td style=\"width: 14%;\" width=\"14%\"><strong>mm<\/strong><\/td>\n<td style=\"width: 20%;\" width=\"20%\"><strong>m<sup>0.5<\/sup>\/s<\/strong><\/td>\n<\/tr>\n<tr>\n<td style=\"width: 9%;\" width=\"9%\">1<\/td>\n<td style=\"width: 13%;\" width=\"13%\">845<\/td>\n<td style=\"width: 13%;\" width=\"13%\">835<\/td>\n<td style=\"width: 10%;\" width=\"10%\">10<\/td>\n<td style=\"width: 17%;\" width=\"17%\">0.003999<\/td>\n<td style=\"width: 14%;\" width=\"14%\">37.5<\/td>\n<td style=\"width: 20%;\" width=\"20%\">1.84<\/td>\n<\/tr>\n<tr>\n<td style=\"width: 9%;\" width=\"9%\">2<\/td>\n<td style=\"width: 13%;\" width=\"13%\">865<\/td>\n<td style=\"width: 13%;\" width=\"13%\">845<\/td>\n<td style=\"width: 10%;\" width=\"10%\">20<\/td>\n<td style=\"width: 17%;\" width=\"17%\">0.005655<\/td>\n<td style=\"width: 14%;\" width=\"14%\">41.9<\/td>\n<td style=\"width: 20%;\" width=\"20%\">2.20<\/td>\n<\/tr>\n<tr>\n<td style=\"width: 9%;\" width=\"9%\">3<\/td>\n<td style=\"width: 13%;\" width=\"13%\">885<\/td>\n<td style=\"width: 13%;\" width=\"13%\">855<\/td>\n<td style=\"width: 10%;\" width=\"10%\">30<\/td>\n<td style=\"width: 17%;\" width=\"17%\">0.006926<\/td>\n<td style=\"width: 14%;\" width=\"14%\">46.3<\/td>\n<td style=\"width: 20%;\" width=\"20%\">2.32<\/td>\n<\/tr>\n<tr>\n<td style=\"width: 9%;\" width=\"9%\">4<\/td>\n<td style=\"width: 13%;\" width=\"13%\">880<\/td>\n<td style=\"width: 13%;\" width=\"13%\">840<\/td>\n<td style=\"width: 10%;\" width=\"10%\">40<\/td>\n<td style=\"width: 17%;\" width=\"17%\">0.007998<\/td>\n<td style=\"width: 14%;\" width=\"14%\">48<\/td>\n<td style=\"width: 20%;\" width=\"20%\">2.54<\/td>\n<\/tr>\n<tr>\n<td style=\"width: 9%;\" width=\"9%\">5<\/td>\n<td style=\"width: 13%;\" width=\"13%\">890<\/td>\n<td style=\"width: 13%;\" width=\"13%\">835<\/td>\n<td style=\"width: 10%;\" width=\"10%\">55<\/td>\n<td style=\"width: 17%;\" width=\"17%\">0.009378<\/td>\n<td style=\"width: 14%;\" width=\"14%\">49<\/td>\n<td style=\"width: 20%;\" width=\"20%\">2.88<\/td>\n<\/tr>\n<tr>\n<td style=\"width: 9%;\" width=\"9%\">6<\/td>\n<td style=\"width: 13%;\" width=\"13%\">900<\/td>\n<td style=\"width: 13%;\" width=\"13%\">830<\/td>\n<td style=\"width: 10%;\" width=\"10%\">70<\/td>\n<td style=\"width: 17%;\" width=\"17%\">0.01068<\/td>\n<td style=\"width: 14%;\" width=\"14%\">53<\/td>\n<td style=\"width: 20%;\" width=\"20%\">2.92<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n<p><strong> <img loading=\"lazy\" class=\"aligncenter size-full wp-image-356\" src=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/G1.png\" alt=\"\" width=\"622\" height=\"344\" srcset=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/G1.png 622w, https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/G1-300x166.png 300w\" sizes=\"(max-width: 622px) 100vw, 622px\" \/> <img loading=\"lazy\" class=\"aligncenter size-full wp-image-357\" src=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/G2.png\" alt=\"\" width=\"621\" height=\"358\" srcset=\"https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/G2.png 621w, https:\/\/seismicconsolidation.com\/wp-content\/uploads\/2020\/01\/G2-300x173.png 300w\" sizes=\"(max-width: 621px) 100vw, 621px\" \/><\/strong><\/p>\n<h3><a name=\"_Toc6300887\"><\/a><a name=\"_Toc506890365\"><\/a>1.6.\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Results:<\/h3>\n<p>Average coefficient of discharge for laboratory ogee weir for free flow is 2.45.<\/p>\n<h3><a name=\"_Toc6300888\"><\/a><a name=\"_Toc506890366\"><\/a>1.7.\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Comments:<\/h3>\n<ol>\n<li>As discharge increases, head above crest of ogee spillway increases.<\/li>\n<li>As discharge increases, coefficient of discharge also increases.<\/li>\n<\/ol>\n<p> <\/p>\n<p> <\/p>\n","protected":false},"excerpt":{"rendered":"<p>1.\u00a0\u00a0\u00a0\u00a0 Estimation of coefficient of weir for ogee weir 1.1.\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Objectives: To find coefficient of weir for ogee weir. To observe relationship between discharge and coefficient of weir. To observe relationship between discharge and head above crest of weir. 1.2.\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Apparatus: Ogee weir Point gauge S6 tilting flume assembly 1.3.\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Related theory: 1.3.1.\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Weir: A\u00a0weir\u00a0or\u00a0low…<\/p>\n","protected":false},"author":1,"featured_media":328,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":[],"categories":[5,6],"tags":[17,15,7,11,10,9,18,19,8,12,16,14,13],"_links":{"self":[{"href":"https:\/\/seismicconsolidation.com\/wp-json\/wp\/v2\/posts\/291"}],"collection":[{"href":"https:\/\/seismicconsolidation.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/seismicconsolidation.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/seismicconsolidation.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/seismicconsolidation.com\/wp-json\/wp\/v2\/comments?post=291"}],"version-history":[{"count":6,"href":"https:\/\/seismicconsolidation.com\/wp-json\/wp\/v2\/posts\/291\/revisions"}],"predecessor-version":[{"id":358,"href":"https:\/\/seismicconsolidation.com\/wp-json\/wp\/v2\/posts\/291\/revisions\/358"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/seismicconsolidation.com\/wp-json\/wp\/v2\/media\/328"}],"wp:attachment":[{"href":"https:\/\/seismicconsolidation.com\/wp-json\/wp\/v2\/media?parent=291"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/seismicconsolidation.com\/wp-json\/wp\/v2\/categories?post=291"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/seismicconsolidation.com\/wp-json\/wp\/v2\/tags?post=291"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}