Indian Standard

RECOMMENDATION FOR ESTIMATION OF FLOW OF LIQUIDS IN CLOSED CONDUITS

PART II HEAD LOSS IN VALVES AND FITTINGS

(Fourth Reprint JULY 1983)

UDC $627 \cdot 133 \cdot 2: 532 \cdot 553$

(15)

(C) Copyright 1966

INDIAN STANDARDS INSTITUTION MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI 110002

RECOMMENDATION FOR
 ESTIMATION OF FLOW OF LIQUIDS IN CLOSED CONDUITS

PART II heAd LOSS IN VALVES AND FITTINGS

Fluid Flow Measurement Sectional Committee, BDC 17
Chairman
De A. N. Khosla
Vico-Chairmin
Smin N. D. Gulimyi

Members

Dr B. K. Aoarwala
Shri R. S. Agrawala Sker S. R. Chattrerjere (Altumate)
Shri P. R. AbuJa Ministry of Irrigation \& Power Smer V. N. Nagaraja (Alternate)

Smar Balieshwar Nath
Sirin K. L. Bhatia
Cbisp Enginele, Irricaation Projscts
Shri D. Doddiam (Alternate)
Sher R. D. Daiz
Shri R. C. Sienoy (Altemate)
Director
Dirzotor
Defuty Dienctor (Alternate)
Dirictor (Bridgis \& Floods), RDSO
Shri K. K. Fraify
Shai C. V. Golm
Shri S. V. Chitalee (Alternate)
prof N. S. Govinda Rao
Shei S. N. Gupta
Hydravlic Efointer
Shri V. D. Drgai Alternate)
Sher D. V. Jooleene
Shri Kanwar Satn
Shri K. N. Kathpalia

Representing

In personal capacity (Governer of Orissa, Bhabmasmer)

In perronal capacity (140 Sunder Nager, Now Dolhi)

National Phymical Laboratory (CSIR), New Delhi
The Scientific Instrument Co Ltd, Allahabad

Committer on Plan Projects, Planning Commiscion
Central Hoard of Irrigation \& Power
Public Works Department, Mysore

Central Water \& Power Commission
Andhra Pradesh Engineering Research Laboratories Hyderabad
River Research Institute, West Bengal, Calcutta
Railway Eoard (Ministry of Railways)
In personal capacity (11 Gymkhana Club, Now Delhi;
Central Water \& Power Research Station, Poona
Indian Institute of Science, Bangilore
Irrigation Department, UP
Bombay Municipal Corporation
Central Board of Irrigation \& Power
In personal capacity (c/o ECAFE, Dangkok)
In personal capacity (B-32, Kaiiash Colony
Newo Delhi)
(Combinual from page 1)

Mambers	Representing
Mmicren (Drejon \& Remearch)	Central Water \& Power Commission
SEmi M. P. Nacameneth	Roads Wing, Ministry of Transport
Sami A. N. Sma	National Instrument (Private) Letd, Calcutta
Suphantinding Eimeinifie (Demiona)	Public Works Depariment, Madras
Exicutive Emainest	
Reamamich) (Allormate)	
Da H. L. Urpal	Land Reclamation, Irrigation \& Power Research Institute, Punjab; and Institution of Engineers
	(India), Calcutta
Da H. C. Vieveavaraya, Deputy Director (Civil Eng)	Director, ISI (Ex-officio Member)

Secretary

Shit K. Raciavendean
Extra Assistant Director (Civil Eng), ISI

Fluid Flow Measurement in Closed Conduits Subcommittee, BDC 17:3

Convener

Pmoy N. S. Govinda Rao Imitum Inetitute of Science, Bangaiore

LAembers

Shmi K. Sicitharamiar (Altermate to Prof N. S. Govinda Rao
Additional Chinf Enginere P.W.D. Health, Rajasthan

Health

Shri P. S. Raivansiti (Allemate)

Dr B. K. Agarmala
Shri Balwant Singr
Sher K. K. Frayui
Hydrablic Enginimar Shri V. D. Disal (Altemate)
Dr Inder Jit Singh
Shri H. P. Aramana (Alternale)
Seri S. K. Kabasi
Suri A. N. Krishn_iswayy
Shri I. N. Merta
Shri D. R. Singal (Allemite)
Suri R. S. Merta
Shri J. S. Jain (Altemate)
Prot S. Nugaratnam
Sizri M. Panikear
Shei S. Rajagopalan
Shri T. Duratraj (Alternale)
De V. Ramakrishnan
Dr. S. Balakrishnan (Altemate)
Representative
Supirintending Enoinefre
(Designs)
Exrcutive Engineme
(Research) (Alternate)

Indian Standard

RECOMMENDATION FOR ESTIMATION OF FLOW OF LIQUIDS IN CLOSED CONDUITS

PART II HEAD LOSS IN VALVES AND FITTINGS

0. FOREWORD

0.1 This Indian Standard was adopted by the Indian Standards Institution on 24 March 1965, after the draft finalized by the Fluid Flow Measurement Sectional Committee had been approved by the Civil Engineering Division Council.
0.2 Fittings in a pipe line like valves, bends, tees, reducers, couplings, branches offer considerable resistance to flow of liquids. The loss of head caused by a fitting is partly due to the sinuous motion set up by the expansion of the stream to fill the pipe after its contraction in passing the valve and partly to the irregularities in the shape of the water-way through the valve. The head loss due to valves and other fittings is relatively more important particularly in smooth and short pipe lines and a knowledge of these losses is essential for proper designing of pipe line systems.
0.3 Losses due to fittings are sometimes expressed in terms of the length of straight pipe of a given diameter which gives an equivalent loss of head. This method is very approximate as the equivalent length is dependent upon pipe friction law and to some extent on diameter. Experiments have been conducted on several occasions on various kinds and sizes of fittings. For example, systematic study for the revision of pipe friction data has been done by the Hydraulic Institution at New York and their publication entitled 'Pipe friction manual' gives the result of their investigation. In the light of such studies this standard recommends the values of resistance coefficients for different types of fittings.
0.4 The Sectional Committee responsible for the preparation of this standard has taken into consideration the views of users and technologists and has related the standard to the practices followed in the country in this field. Due weightage has also been given to the need for international co-ordination among standards prevailing in different countries of the world. These considerations led the Sectional Committee to derive assistance from the following publications:

ISO Draft Recommendation No. 532 Measurement of fluid flow by means of orifice plates and nozzles.
Pipe friction manual. 1954. Hydraulic Institute, New York.
0.5 This standard is one of a series of Indian Standards covering fluid flow measurement in closed conduits. Other standards in the series are:

IS : 2951 (Part I)-1965 Recommendation for estimation of flow of liquids in closed conduits : Part I Head loss in straight pipes due to frictional resistance.
IS : 2952 (Part I)-1964 Measurement of fluid flow by means of orifice plates and nozzles : Part I Incompressible fluids.
0.6 For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS : 2-1960*. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

1. SCOPE

1.1 This standard recommends a method for estimating the loss of head during the flow of liquids through fully open, manually operated valves and fittings.

2. CALGULATION OF THE HEAD LOSS

2.1 Valves and Fittings - The head loss h_{f} caused by a fully open valve or fitting during the flow of a liquid may be computed from the formula:

$$
\begin{equation*}
h_{f}=K \frac{\bar{v}^{2}}{2 g} \tag{1}
\end{equation*}
$$

whete
$K=$ resistance coefficient for valve or fitting,
$\bar{v}=\begin{aligned} & \text { average } \\ & \text { in } \mathrm{m} / \mathrm{s} \text {, and }\end{aligned}$ $g=$ acceleration due to gravity in $\mathrm{m} / \mathrm{s}^{\mathbf{2}}$.
2.1.1 Values of resistance coefficient K for valves and fittings carrying turbulent flow are given in Table 1 and Fig. 1 to 4 . In valves carrying laminar flow, the head loss may be assumed to be negligibly small. Flanged valves and fittings should have lower resistance coefficients than screwed valves and fittings. The lower limits in Table 1 should be used with flanged valves and fittings, particularly with sizes above 10 cm nominal diameter.

[^0]
TABLE 1 REGETANGE COEFFIGIENTS POR VAEVES AND FITIINGE

(Clauses 2.1.1 and 2.2)

$\begin{gathered} \mathrm{SL}_{4} \\ \text { No. } \end{gathered}$	Degoriftion of Valvas and Fititings			
(1)	(2)	(3)		
i)	Inlets or Reducers 1) Bell mouth 2) Square edged	0.04 0.47	to	0.05 0.56
ii)	Elbows			
	1) Regular screwed 45° elbow	0.30	to	$0 \cdot 42$
	2) Regular screwed 90° elbow	$0 \cdot 55$	"	$0-90$
	3) Regular flanged 90° elbow	0.21	"	0.30
	4) Long radius flanged 45° elbow	$0 \cdot 18$	"	$0 \cdot 20$
	5) Long radius flanged 90° elbow	$0 \cdot 14$	"	0.23
	6) Long radius screwed 90° elbow	0.22	"	060
iii)	Bends 0.23 "			
	1) Screwed veturn bend, close-pattern 2). Flanged return bend composed of two 90° flanged elbows	0.75	to	$2 \cdot 2$
	a) Regular b) Long radius		0.38 0.25	
iv)	Inward Projecting Pipe	0.62	to	10
v)	Valves 1) Globe valves			
	a) Composition disc globe valve b) Bevel seat globe valve	0.23 6.2	te	$5 \cdot 2$ $7 \cdot 2$
	c) Plug disr globe valve	$7 \cdot 2$	"	$7 \cdot 2$ $10 \cdot 3$
	2) Gate valves			
	a) Wedge disc gate valve	0.05	co	0.19
	3) D) Double disc gate valve	0.08	"	0.13
	3) Check valves			
	a) Swing check valve	06	to	$2 \cdot 3$
	b) Horizontal (left) check valve	8	"	12
	c) Ball check, valve	65	"	70
	4) Angle valve	$2 \cdot 1$	to	$3 \cdot 1$
	5) Y or hlow off valve		$2 \cdot 9$	
	6) Foot valve		15	
vi)	Standard Screwed Tee			
	1) Branch blanked off		0.4	
	2) Line blanked off			
	a) Flow from line to branch	0.85	to	$1 \cdot 3$
vii) Long Radius Screwed Tee				
	a) Flow from line to branch	0.37	to	0.80
	b) Flow from branch to line	$0 \cdot 50$	"	0.52
viii)	Couplings and Unions	0.02	"	0.07
ix)	Reducing Bushing and Coupling Used as Reducer	0.05	to	20

Notz - Used as increaser loss is up to 40 percent more than that caumed hy a sudder enlargement (ser equation 3).
*K decreases with increasing wall thickness of pipe and rounding of edges.

1S : 2951 (Part II) - 1965

2.2 Pipe-Bends and Elbows - Values of the absolute roughness K, shall be obtained from Fig. 1 or Table 1 of IS:2951 (Part I).-1965t, and knowing the relative roughness K_{s} / D, the values of K for 90° bends may be taken from Fig. 1 for the given ratio of r / D, where r is radius of the bend and D the diameter of the pipe.
2.2.1 The resistance coefficient K for smooth bends with deflection angles less than 90° shall be obtained from Fig. 2
2.2.2 Where the pipes are not smooth, these coefficients may have to be increased from 30 to 50 percent or depending upon their roughness. The value of K given in Table 1 and in Fig. 1 and 2 applies only if the pipe has linear lengths upstream and downstream not less than those shown in the respective figures.
2.2.3 For $r \mid D$ values less than unity, use of Fig. 1 and 2 is not recommended.

Fig. 1 Resistange Coepficients for 90° Bends of Uniform Diameter
tRecommendation for estimation of fow of liquids in closed conduits: Part I Head loas in straight pipes due to frictional resistance.

*Minimum straight lengths.
Fio. 2 Resistance Corfficients for Bends of Uniform Diameter and Smooth Surfacr for Turbulent Flow

IS : 2031 (Part II) - 1965

2.2.4 For a circular arc smooth 90° bend for which the ratio of the radius of curvature of the bend to the diameter of the pipe exceeds a value of 6 , resistance coefficient K, shall be determined by using the formula:

$$
\begin{equation*}
K=\frac{0.187}{\left(\frac{\bar{v} D}{v}\right)^{0.176}}\left(\frac{2 r}{D}\right)^{0.102} \tag{2}
\end{equation*}
$$

where
$K=$ resistance coefficient for valve or fitting,
$r=$ radius of curvature,
$\bar{v}=$ average velocity in m / s,
$D=$ diameter of the pipe in m , and
$v=$ kinematic viscosity in $\mathrm{m}^{2} / \mathrm{s}$.
This equation is valid for long radius bends.
2.3 Mitre Bends - The resistance coefficients for mitre bends are shown in Fig. 3 for both smooth and rough pipes assuming the relative roughness to he 0.0022 . For mitre bends of any other intermediate relative roughness, the values may be suitably chosen between these values.
2.4 Sudden Enlargement - The loss of head h_{f} caused by a sudden enlargement shall be computed from the following equation:

$$
\begin{equation*}
h_{f}=K \frac{\left(\bar{v}_{1}-\bar{v}_{z}\right)^{2}}{2 g}=K\left[\left(\frac{D_{2}}{D_{1}}\right)^{2}-1\right] \frac{\bar{v}_{3}^{z}}{2 g} \tag{3}
\end{equation*}
$$

where
$K=$ resistance coefficient (usually taken as unity since the variation from unity is ± 3 percent only),
$\bar{\nu}_{1}=$ average velocity in m / s in the smaller pipe,
$\tilde{v}_{\mathbf{2}}=$ average velocity in m / s in the larger pipe,
$g=$ acceleration due to gravity in $\mathrm{m} / \mathrm{s}^{\mathbf{2}}$,
$D_{2}=$ diameter of larger pipe in m, and
$D_{1}=$ diameter of smaller pipe in m.
Equation (3) shall be used for computing the loss of head due to flow in conical diffusers with suitable modification of K value depending upon the total conical angle (α) of the diffusers in degrees.
$\$$ being in the range of 40° to 60°, the value of K is unity as in the case of sudden enlargement.
α being in the range of 7.5° to 35°, the accurate formula for \boldsymbol{K} value is given by:

$$
K=3.50\left(\tan \frac{\alpha}{2}\right)^{1.22}
$$

These values are shown in Fig. 4.
2.5 Reducers - Resistance coefficients for reducers are given in Fig. 5.
2.6 Dranched Connections - Details of head loss in branched connections are given in Tables 2 and 3.

$\boldsymbol{K}_{s m}=$ Reistance coefficient for smooth surface.
$K_{\text {ro }}=$ Resistance coefficient for rough surface, $\frac{K_{i}}{D} \simeq 0.0022$.
*Optimum value of a interpoiated.

As in the Original Standard, this Page is Intentionally Left Blank

Fig. 5 Resistance Coefpicients for Reducers

TABLE 2 HEAD LOSS IN BRANCFIED CONNEGTIONS (DIVIDED FLOW)

(Clanse 2.6)

Head loss at branching $\left(h_{f}\right)=K \frac{\bar{\nu}^{2}}{2 g}$
where
\boldsymbol{K} is resistance coefficient, and
q, \bar{D}, D and $g_{b}, \overline{\bar{D}}_{b}, D_{b}$ are discharge, average velocity and diameter of original and branch pipes respectively.

(1)
(2)
(3)
(4)
(5)
(6)
$90\left\{\begin{array}{llllll}D_{b}=D & D_{b}=D & D_{b}=D & D_{b}=D & D_{b}=D & D_{b}=D \\ \bar{v}_{b}=0.3 \bar{v} & \vec{v}_{b}=0.3 \bar{v} & \bar{v}_{b}=0.5 \bar{v} & \bar{v}_{b}=0.5 \bar{v} & \bar{v}_{b}=0.7 \bar{v} & \bar{v}_{b}=0.7 \bar{v} \\ K=0.85 & K=0.76 & K=0.87 & K=0.74 & K=1.60 & K=0.80\end{array}\right.$
$60\left\{\begin{array}{llllll}D_{b}=D & D_{b}=0.61 D & D_{b}=D & D_{b}=0.79 D & D_{b}=D & D_{b}=D \\ \bar{v}_{b}=0.3 \vec{v} & \bar{v}_{b}=0.8 \vec{v} & \bar{v}_{b}=0.5 \bar{v} & \bar{v}_{b}=0.8 \vec{v} & \bar{v}_{b}=0.7 \vec{v} & \vec{v}_{b}=0.7 \bar{v} \\ K=0.7 & K=0.59 & K=0.59 & K=0.54 & K=0.57 & K=0.52\end{array}\right.$
$45\left\{\begin{array}{cccccc}D_{b}=0.58 D & D_{b}=0.58 D & D_{b}=D & D_{b}=0.75 D & D_{b}=D & D_{b}=D \\ \bar{v}_{b}=0.9 \bar{p} & \vec{v}_{b}=0.9 \bar{v} & \vec{v}_{b}=0.5 \bar{v} & \bar{v}_{b}=0.9 \bar{v} & \bar{v}_{b}=0.7 \bar{v} & \bar{v}_{b}=0.7 \\ K=0.43 & K=0.35 & K=0.42 & K=0.32 & K=0.34 & K=0.3\end{array}\right.$

Note - These values are based on the experiments conducted at the Hydraulic Laboratory of the Technical University of Munich, Germany, for most efficient case.

TABLE 3 HEAD LOSS IN BRANGHED CONNEGTIONS (COMBENED FLOW)

(Clause 2.6)
Head loss at junction $\left(h_{f}\right)=K \frac{\bar{v}^{2}}{2 g}$

where
K is resistance coefficient, and
$q_{b}, \bar{v}_{b}, D_{b}$ and q, \bar{v}, D are discharge, average velocity and diameter of auxiliary and combined pipes respectively.

	Angle of Converaence	$q_{3} / q=0.3$		$q_{b} / q=0.5$		$q_{3} / q=0.7$		$q_{3} / 9=1 \cdot 0$	
\pm	β in Degrmin	Sharp Edged	Rounded						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)

Note - These values are based on the experiments conducted at the Hrdenulic Laboratory of the Technical University of Munich, Germany, for most efficient case.

AMENDMENT NO. 1 MARCH 1993 TO
IS 2951 (Part 2): 1965 RECOMMENDATION FOR ESTIMATION OF FLOW OF LIQUIDS IN CLOSED CONDUITS

PART 2 HEAD LOSS IN VALVES AND FITTINGS

[Fage 5, Table 1, Sl No. (v) (6), col 3] — Substitute '0.8' for '15'.

[^0]: *Rules for rounding off numerical values (revised).

