Isoparametric Elements

Introduction

In this chapter, we introduce the isoparametric formulation of
the element stiffness matrices.

After considering the linear-strain triangular element (LST) in
Chapter 8, we can see that the development of element

matrices and equations expressed in terms of a global
coordinate system becomes an enormously difficult task (if
even possible) except for the simplest of elements such as

the constant-strain triangle of Chapter 6.

Hence, the isoparametric formulation was developed.
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Introduction

The isoparametric method may appear somewhat tedious
(and confusing initially), but it will lead to a simple computer
program formulation, and it is generally applicable for two-
and three-dimensional stress analysis and for nonstructural
problems.

The isoparametric formulation allows elements to he created
that are nonrectangular and have curved sides.

Numerous commercial computer programs (as described in
Chapter 1) have adapted this formulation for their various
libraries of elements.
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Introduction

First, we will illustrate the isoparametric formulation to develop
the simple bar element stiffness matrix.

Use of the bar element makes it relatively easy to understand
the method because simple expressions result.

Then, we will consider the development of the isoparametric
formulation of the simple quadrilateral element stiffness
matrix.
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Introduction

Next, we will introduce numerical integration methods for
evaluating the quadrilateral element stiffness matrix.

Then, we will illustrate the adaptability of the isoparametric
formulation to common numerical integration methods.

Finally, we will consider some higher-order elements and their
associated shape functions.
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Isoparametric Formulation of the Bar Element

The term isoparametric is derived from the use of the same
shape functions (or interpolation functions) [N] to define the
element's geometric shape as are used to define the
displacements within the element.

Thus, when the interpolation function is u = a, + a,s for the
displacement, we use x = a, + a,s for the description of the
nodal coordinate of a point on the bar element and, hence, the
physical shape of the element.
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Isoparametric Formulation of the Bar Element

|Isoparametric element equations are formulated using a natural
(or intrinsic) coordinate system s that is defined by element
geometry and not by the element orientation in the global-
coordinate system.

In other words, axial coordinate s is attached to the bar and
remains directed along the axial length of the bar, regardless
of how the bar is oriented in space.

There is a relationship (called a transformation mapping)
between the natural coordinate systems and the global
coordinate system x for each element of a specific structure.



Isoparametric Elements

Isoparametric Formulation of the Bar Element

First, the natural coordinate s is attached to the element, with
the origin located at the center of the element.

The s axis need not be parallel to the x axis-this is only for
convenience.

Consider the bar element to have two degrees of freedom-axial
displacements u; and u, at each node associated with the
global x axis.

[




Isoparametric Elements

Isoparametric Formulation of the Bar Element

For the special case when the s and x axes are parallel to each
other, the s and x coordinates can be related by:

L
X=X, +—S
2

Using the global coordinates x, and x, with x_. =(x, + x,)/2, we
can express the natural coordinate s in terms of the global

coordinates as: ; |
S_|:X—{X1+X2f]:| 2
2 (X3 =X)

-
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Isoparametric Formulation of the Bar Element

The shape functions used to define a position within the bar are
found in a manner similar to that used in Chapter 3 to define

displacement within a bar (Section 3.1).

We begin by relating the natural coordinate to the global
coordinate by:
X=a,+a,s

Note that -1 =s= 1.

==
-
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Isoparametric Formulation of the Bar Element

Solving for the a’s in terms of x, and x,, we obtain:

X =[:%][{1—s]x1 +(1+5)x, |

In matrix form:

X 1-s 1+s
(xj =[N, Nz]{le} N, =5 N, =5
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Isoparametric Formulation of the Bar Element

The linear shape functions map the s coordinate of any point in
the element to the x coordinate.

For instance, when s = -1, then x = x, and
when s =1, then x = x,

R R o N S
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Isoparametric Formulation of the Bar Element

b N $ N,
| | |- —— — ==
\\Q; m}_lg“)//
~ 0 C =1 0 .

X 1-s 1+s
x'=[N, N, ]I N, =—> N, =—=

Aol SRR

s=0

X X g = ~ | I—"" g = |

| [ 2 | L 5

12



Isoparametric Elements

Isoparametric Formulation of the Bar Element
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Isoparametric Formulation of the Bar Element

When a particular coordinate s is substituted into [N] yields the
displacement of a point on the bar in terms of the nodal
degrees of freedom u, and u-.

Since U and x are defined by the same shape functions at the
same nodes, the element is called isoparametric.

X, 1- 1
{x} =[N, N;_.]{x'} N, =— N, =22
2

14



Isoparametric Elements

Isoparametric Formulation of the Bar Element
Step 3 - Strain-Displacement and Stress-Strain Relationships
We now want to formulate element matrix [B] to evaluate [k].

We use the isoparametric formulation to illustrate its
manipulations.

For a simple bar element, no real advantage may appear
evident.

However, for higher-order elements, the advantage will become
clear because relatively simple computer program
formulations will result.

15
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Isoparametric Formulation of the Bar Element
Step 3 - Strain-Displacement and Stress-Strain Relationships

To construct the element stiffness matrix, determine the strain,
which is defined in terms of the derivative of the displacement
with respect to x.

The displacement u, however, is now a function of s so we must
apply the chain rule of differentiation to the function u as
follows:

du du dx du du du " dx
= g = — _ £ =
ds dx ds * dx “ dx ds ds

16
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Isoparametric Formulation of the Bar Element

Step 3 - Strain-Displacement and Stress-Strain Relationships

The derivative of u with respect to s is: du e B
ds 2
The derivative of x with respect to s is: jx = xﬁ; 1 _
S

o | 1 17y
Therefore the strain is: {Ex.}: _E I 1” [
2,

Since {g} = [Bl{d}, the strain-displacement matrix [B] is:

o[

L
2

17



Isoparametric Elements

Isoparametric Formulation of the Bar Element
Step 3 - Strain-Displacement and Stress-Strain Relationships

Recall that use of linear shape functions results in a constant [B]
matrix, and hence, in a constant strain within the element.

For higher-order elements, such as the quadratic bar with three
nodes, [B] becomes a function of natural coordinates s.

The stress matrix is again given by Hooke's law as:

(o) =E{s} =E[B]{d]

18
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Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

L
The stiffness matrix is: [k]= J[B]T E|(B] Adx
0

However, in general, we must transform the coordinate x to s
because [B] is, in general, a function of s.

) fy, [~

f(x)dx = jf{s)\[J]\ds
1

where [J] is called the Jacobian matrix.

In the one-dimensional case, we have |[J]| = J.

19
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Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

. dx L

For the simple bar element: ‘[J]‘ = s = >
S

The Jacobian determinant relates an element length (dx) in the
global-coordinate system to an element length (ds) in the
natural-coordinate system.

In general, |[J]| is a function of s and depends on the numerical
values of the nodal coordinates.

This can be seen by looking at for the equations for a
quadrilateral element.

20
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Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

The stiffness matrix in natural coordinates is:
1
[k] = %J[E]T E[B]Ads
~1

For the one-dimensional case, we have used the modulus of
elasticity £ = [D].

Performing the simple integration, we obtain:

-3
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Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

Determine the body-force matrix using the natural coordinate
system s. The body-force matrix is:

= [INI"{X,} dV j [NT" {X,} Adx
V

Substituting for N, and N, and using dx = (L/2)ds

-
1 N
2 L ALX, 1)
_A (X 1=ds = b
_J 1+ s { h}z S 2 |1
2

22



Isoparametric Elements

Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

The physical interpretation of the results for {f.} is that since AL
represents the volume of the element and X, the body force
per unit volume, then ALX, is the total body force acting on the
element.

The factor %z indicates that this body force is equally distributed
to the two nodes of the element.

_3-

%
—

—

+ N
—_—
>
ot
|
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|
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5|
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Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

Determine the surface-force matrix using the natural coordinate
system s. The surface-force matrix is:

(.} =[INI{T,} dS

Assuming the cross section is constant and the traction is
uniform over the perimeter and along the length of the
element, we obtain:

L
(f.) =J[NS]T (T, dx
0

where we now assume {Tx} is in units of force per unit length.
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Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

Substituting for N, and N, and using dx = (L/2)ds

—S.

‘

+ N

-iS.}:JE-I SF{TI}E

2

1
ds :{Tx}%J }

|1

Since {T,} is in force-per-unit-length {T,}L is now the total force.

The "z indicates that the uniform surface traction is equally
distributed to the two nodes of the element.
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Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

Substituting for N, and N, and using dx = (L/2)ds

s
i — -
(ev_[) 2 L _ L)1
'tfs_} _:[I 1+ s F{TxJEdS _{Tx1511
2 -

Since {T,} is in force-per-unit-length {7 }L is now the total force.

The 7z indicates that the uniform surface traction is equally
distributed to the two nodes of the element.
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Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

Substituting for N, and N, and using dx = (L/2)ds

s
1 | — -

. 2 L L1
{fs_}:;[e 1+ f{Tx}EdS :{Tx}511}
2 R

Note that if {T,} were a function of x (or s), then the amounts of
force allocated to each node would generally not be equal and

would be found through integration.
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Isoparametric Formulation of the Quadrilateral Element

Recall that the term isoparametric is derived from the use of the
same interpolation functions to define the element shape as
are used to define the displacements within the element.

The approximation for displacement is:

u=a,+a,s+a,t+a,st
The description of a coordinate point in the plane element is:
X=a,+a,s+a,t +a,st

The natural-coordinate systems s-t defined by element
geometry and not by the element orientation in the global-
coordinate system x-y.
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Much as in the bar element example, there is a transformation
mapping between the two coordinate systems for each
element of a specific structure, and this relationship must be
used in the element formulation.

We will now formulate the isoparametric formulation of the
simple linear plane quadrilateral element stiffness matrix.

This formulation is general enough to be applied to more
complicated (higher-order) elements such as a quadratic
plane element with three nodes along an edge, which can
have straight or quadratic curved sides.

29
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Isoparametric Formulation of the Quadrilateral Element

Higher-order elements have additional nodes and use different
shape functions as compared to the linear element, but the
steps in the development of the stiffness matrices are the
same.

We will briefly discuss these elements after examining the linear
plane element formulation.
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Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

Consider the quadrilateral to have eight degrees of freedom u,,
vy, ..., Uy, and v, associated with the global x and y directions.
The element then has straight sides but is otherwise of
arbitrary shape.

Edger = |
. Al l
l--l"'I \ g = ; 1;
(X4 Vi) v | - r {-11_“;-'33
Smws|=F =" " 2
|
Edge ___J___H'r'y}: -
[ = __“"1““'“"'|"'“-—:—----‘_[“:dg¢" = |
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Edger = — |
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Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

The natural s-t coordinates are attached to the element, with
the origin at the center of the element.

!
(-1, 1 f ] (L1)

4

3

I

[k

(-1,-1)

(1,-1)

The s and t axes need not be
orthogonal, and neither has to be
parallel to the x or y axis.

The orientation of s-tf coordinates is
such that the four corner nodes and
the edges of the quadrilateral are
bounded by +1 or -1
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Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

Assuming global coordinates x and y are related to the natural
coordinates s and t as follows:

X=a,+a,S+a,t+a,st Yy =ag+a,s+a,l+a,st

Solving for the a’'s in terms of Xy, Xo, Xa, X4, Y1, Vo, Va. V4, WE
obtain

:%[(1_5}(14)1 +(1+8)(1=t) X, + (1+8)(1+ 1) %, + (1-8)(1+ 1) X, ]

%[[1 S)(1-t)y,+(1+s)(1-t)y, +(1+5)(1+ 1)y, +(1-5)(1+ 1)y, |
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Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type X,
In matrix form: y,
XE
j'x' N, O N, O N, O N, 0]y,
| _ J720
ly 0O N O N, O N, O N,||x,
h Ys
where: | | X,
v - 1=8)(1-1) _(xs)(1-t) |y,
| = ) = ;
1+8)(1+1 1—8)(1+t
N3 _ [ + ]{ + ] Nd _ { }[ + }
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Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

35
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Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

These shape functions are seen to map the s and t coordinates
of any point in the square element to those x and y
coordinates in the quadrilateral element.

(-1,~-1)

- X.Hl
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Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

Consider square element node 1 coordinates, where s =-1 and
t=-1thenx=x,andy=y,.

- 5

5 b
(-1,1) 1 | v t - I:.l',.,}'ﬂ
- K _ri-=- I='1'

=— Edge s = |

2 {.'l.'z, }-';]

(—-1,-1)

- X, U
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Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

Other local nodal coordinates at nodes 2, 3, and 4 on the
square element in s-t isoparametric coordinates are mapped
into a quadrilateral element in global coordinates x;, y, through

X4, .
4 yﬂf kdger = |

()
Al 1 s 3
(-1,1) 1 | L : - (X3, ¥3)
|
sl .‘—L: - 5
— Edge s = |
2 (X3, ¥3)

(-1,~-1)

- X, U
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Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

Also observe the property that N, + N, + Ny + N, = 1 for all
values of s and t.

(=150 1 (1,1 : : (X3, Y1)

(-1,-1) (1,=1)

= .U
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Isoparametric Formulation of the Quadrilateral Element

Step 2 Select of Displacement Functions

The displacement functions within an element are now similarly
defined by the same shape functions as are used to define the

element geometric shape:

ul] [N, O N, O Ny O N, 01y,
v |0 N O N, O N, O N,||uf
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Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships
We now want to formulate element matrix [B] to evaluate [K].
However, because it becomes tedious and difficult (if not

Impossible) to write the shape functions in terms of the x and
y coordinates, as seen in Chapter 8, we will carry out the

formulation in terms of the isoparametric coordinates s and t.

This may appear tedious, but it is easier to use the s- and t-
coordinate expressions.

This approach also leads to a simple computer program
formulation.

41
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Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships
The usual relationship between strains and displacements given
in matrix form as:

ou a( ) 9
- = cX
Ex oX ) } )
v c u
teb=y¢, =9 =~ =7 0 { {
oy ey | |V
-JIX}-' - - ; \ ; -h
J ou  ov 3 2
ULl o() o()
ay ox, oy ox

Where the rectangular matrix on the right side is an operator
matrix; that is, &( )/cx and &( )/¢y represent the partial
derivatives of any variable we put inside the parentheses.
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Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

To construct an element stiffness matrix, we must determine the
strains, which are defined in terms of the derivatives of the
displacements with respect to the x and y coordinates.

The displacements, however, are now functions of the s and ¢
coordinates.

The derivatives cu/éx and év/cy are now expressed in terms of
sandt

Therefore, we need to apply the chain rule of differentiation.
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Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

The chain rule yields:

&f &
L of oy
dy és

cf B cf ox

3
¢S OXOSs

[
)
o
1)
—_
o

<
o
[

c

The strains can then be found; for example, g, = cu/cx
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Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Using Cramer’s rule, which involves the determinants of
matrices, we can obtain:

ef oy ex of
as s as s
of oy cx of
of _lat_at of _lat ot
éx |ox oy oy |6x Yy
s os oS  os
cX ¢y cx cay
ot ot ot ot
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Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

The determinant in the denominator is the determinant of the
Jacobian matrix [J].

oX  dy
g-| e
&x oy
ct ot
We now want to express the element strains as: {¢} =|B]{d

Where [B] must now be expressed as a function of s and t.
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Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships
Evaluating the determinant in the numerators, we have

o() 1]eye() eya()
s ot

Where |[J]| is the determinant of [J].
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Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

We can obtain the strains expressed in terms of the natural
coordinates (s-f) as:

aye() eyel() 0
. ot s s ot .
1 ) ox0( ) ox ol J,{”}
] os ot ot as ||v
s oxo( ) exo( ) ayeé() ayol()

os at ot és ot os  as at
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Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

We can express the previous equation in terms of the shape
functions and global coordinates in compact matrix form as:

te) =[D][N]{d]

ay o oy | 0
ot @ o8s o
[D']:ie 53{5{ }_5}{'5( J
V] os ot ot és
exo( ) exe() eyel) eyel
os ot ot 8s ot ds  8s o
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Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships
The shape function matrix [N] is the 2 x 8 {d} is the column

matrix. :
8] = [D'] [N]
3x8 3x2 2x8
The matrix multiplications yield

[sw:ﬁ[m 8] [8] [B]]

_a[:Nr,s)_b[:N!.f) 0
1B]= 0 ¢(N;s)=d(N,;)
C(N:‘,t)_d(wr,s] a{:Nfﬁ]_b(Nfi)
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Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships
Here i is a dummy variable equal to 1, 2, 3, and 4, and

=%[}’1(5—1}+}"'g(—5_1}_}'3(1—5)—}"’4“—5)]
b=%[.v1(f—1}+h[1—f)—3f3(1+f}+}f4(—1—f)]
r:——[x t—1)+x,(1-1)+ X, (1+1)+ x, (-1-1) ]

d =%[x1 (s—1)+X, (-5 —1)+ X, (1+5)+ X, (1—5)]
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Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships
Using the shape functions, we have

1 1
N,. _Z[r—ﬂ N,, _1(5—1}
where the comma followed by the variable s or t indicates

differentiation with respect to that variable; that is,
N, ¢ = &N,/és and so on.
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Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

The determinant |[J]| is a polynomial in s and tand is tedious to

evaluate even for the simplest case of the linear plane
guadrilateral element.

However, we can evaluate |[J]| as

-0 1—-t t-s s-—-1]

t—1 0 s+1 —s-—t
J=Lix V7 :
‘[ ]‘ s st —s—1 0 t+1 el
1-8s s+t —t-1 0

{Xa}Tz[x‘ Xy, X xnf] {Ya}Tz[F1 Y. Vs J”'rnf]
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Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

We observe that |[J]| is a function of s and t and the known
global coordinates x4, Xo, ..., Ya.

Hence, [B] is a function of s and t in both the numerator and the
denominator and of the known global coordinates x,; through

Yj-

The stress-strain relationship is a function of s and t.

to} =[D][B]{d;
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 4 Derive the Element Stiffness Matrix and Equations

We now want to express the stiffness matrix in terms of s-t
coordinates.

For an element with a constant thickness h, we have

[k1= [ [[BI[D][B]hdxdy
A

However, [B] is now a function of s and t, we must integrate with
respectto s and t.
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 4 Derive the Element Stiffness Matrix and Equations

Once again, to transform the variables and the region from x
and y to s and t, we must have a standard procedure that
iInvolves the determinant of [J].

Hf(x,y}dx dy :Hf{s_r)\[J]\dsdt
A A

where the inclusion of |[J]] in the integrand on the right side of
equation results from a theorem of integral calculus.
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 4 Derive the Element Stiffness Matrix and Equations

We also observe that the Jacobian (the determinant of the

Jacobian matrix) relates an element area (dx dy) in the global
coordinate system to an elemental area (ds df) in the natural
coordinate system.

For rectangles and parallelograms, J is the constant value J =
A/4, where A represents the physical surface area of the
element.

11
[k] = j j [B]" [D][B]A|[J]|ds dt

-1-1
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 4 Derive the Element Stiffness Matrix and Equations

The |[J]| and [B] are complicated expressions within the integral.

Integration to determine the element stiffness matrix is usually
done numerically.

The stiffness matrix is of the order 8 x 8.

11
[k1= [ [[BI'[D1IBA|[J]dsdt

-1-1

58



Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 4 Derive the Element Stiffness Matrix and Equations

Body Forces - The element body-force matrix will now be
determined from

11

(£} = H INT {_Xb}h‘[J]‘dsdt
—1-1

{8}::1} {8}::2} (2x1)

Like the stiffness matrix, the body-force matrix has to be
evaluated by numerical integration.
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Isoparametric Elements

Gaussian Quadrature

Generalization of the formula leads to:
: )
[ = J‘yd:sr::zlf'.ﬂy{’xj)
-1 =1

That is, to approximate the integral, we evaluate the function at
several sampling points n, multiply each value y; by the
appropriate weight W., and add the terms.

Gauss's method chooses the sampling points so that for a given
number of points, the best possible accuracy is obtained.

Sampling points are located symmetrically with respect to the
center of the interval.
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Table 10-1 Table for Gauss points for integration from minus one to

1 n
one, [ y(x) dx = Z Wiyi
L i=1

Number _ Associated
of Points Locations, x; Weights, W,
1 xp = 0.000... 2.000
2 xp,x2 = +0.57735026918962 1.000
3 x1,x3 = +0.77459666924 148 3=10.555...

x = 0.000... £=0.888...
4 x1.xs = +0.8611363116 0.3478548451
x2,x3 = +0.3399810436 0.6521451549
Ay
I
| X, = +0.5773 ...
I = —
1 Y Vo X 0.5773 . ..
| I
- I l -
-1 X3 n |

Figure 10-9 Gaussian quadrature using two sampling points
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Isoparametric Elements

Gaussian Quadrature

In two dimensions, we obtain the quadrature formula by
integrating first with respect to one coordinate and then with
respect to the other as

1 1

Izj jf(sr}dsdr HZ f{'sf,t_}}dt

-1 -1 -1
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Isoparametric Elements

Gaussian Quadrature

For example, a four-point Gauss rule (often described asa 2 x 2
rule) is shown below withi=1, 2and j=1, 2 yields

2 2
[= ZZW: Wi f(.sf’tf ) = WIW, f(st)+ W W, T (s,t,)
i=1 j=1 _
+Wo Wi (s,,t) + W, W, f(s,,t,)
= =05773...0i= 1) LR 5=05713...(i = 2)

\R i

(o) | _H_.lﬂ_L__ =0T (=2 The four sampling points are
12 & ats, and t; =+0.5773... and
} ! . W.=1.0
| |

fyl

!_I_{:T?I____E:__I]T:J.___.:= 0.5773 j=1)

| |
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Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature

We have shown that [Kk] for a quadrilateral element can be
evaluated in terms of a local set of coordinates s-t, with limits
from -1 to 1within the element.

11
[k]= [ [ B [DIIBA|[J] ds dt
~1-1

Each coefficient of the integrand [B]” [D] [B] |[J]| evaluated by
numerical integration in the same manner as f(s, f) was
Integrated.
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Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature

The explicit form for four-point Gaussian quadrature (now using
the single summation notation withi =1, 2, 3, 4), we have

11
[k] = j j [B]T[D][B]h\[J]\ds dt

-1-1

:[E(S.I_t.l :]]T [D:[E{'S-l.f-| ]]‘[J{Swf*l ]] Wi W,

_|_

_|_

_|_

:B (8515 ]:

B(syt;)|

B(sy.ty)

T

T

T

D
D
D

:B{'s;_,,tz]:

B(s;.t;)

B(syty) |

[J{Squ]

J(s,t)) ]

J (85t ]:

W, W,
W; W,

VA%

where s,=t,= -0.5773, s5,=-0.5773, 1,=0.5773, 5,=0.5773,
t.=-0.5773, and s,=t,=0.5773 and W,=W,=Wa=W,=1.0

65





