Plane Stress and Plane Strain Equations

Line elements are connected only at common nodes, forming
framed or articulated structures such as trusses, frames, and
grids.

Line elements have geometric properties such as cross-
sectional area and moment of inertia associated with their
cross sections.

However, only one local coordinate along the length of the
element is required to describe a position along the element
(hence, they are called line elements).

Nodal compatibility is then enforced during the formulation of
the nodal equilibrium equations for a line element.



Two-dimensional (planar) elements are thin-plate elements
such that two coordinates define a position on the element
surface.

The elements are connected at common nodes and/or along
common edges to form continuous structures.
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Plane Stress

Plane stress is defined to be a state of stress in which the
normal stress and the shear stresses directed
perpendicular to the plane are assumed to be zero.

That is, the normal stress o, and the shear stresses 7,, and 7,
are assumed to be zero.

Generally, members that are thin (those with a small z

dimension compared to the in-plane x and y dimensions) and
whose loads act only in the x-y plane can be considered to be
under plane stress.
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Plane Stress Problems



Plane Strain

Plane strain is defined to be a state of strain in which the
strain normal to the x-y plane g, and the shear strains
and z,, are assumed to be zero.

TXZ

The assumptions of plane strain are realistic for long bodies
(say, in the z direction) with constant cross-sectional area
subjected to loads that act only in the x and/or y directions and
do not vary in the z direction.
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Plane Strain Problems



Plane Stress:
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Plane stress:

For plane stress, the stresses o,
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is called the stress-strain matrix (or the constitutive matrix),
E is the modulus of elasticity, and vis Poisson’s ratio.




Plane strain:
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For plane strain, the strains ¢,, 7,,, and 7, are assumed to be
zero. The stress-strain relationship is:
o £ (1-v v 0 |leg
<ﬂ'},=-=(1 )(1 2) v  1-v 0 K&t
+V ==
e | O 0 0.5-7] e
o, £, . 1-v v B
<D'},>=[D]-= E, ( [D]=(1 )(1 5 ) v  1-v 0
+V — £V
T ) | E 0 0 05-v]

is called the stress-strain matrix (or the constitutive matrix),

E is the modulus of elasticity, and vis Poisson’s ratio.




Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Consider the problem of a thin plate subjected to a tensile load
as shown in the figure below: »4
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Step 1 - Discretize and Select Element Types

Discretize the thin plate into a set of triangular elements. Each

element is define by nodes /, j, and m.
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We use triangular elements because boundaries of irregularly shaped bodies can
be closely approximated, and because the expressions related to the triangular
element are comparatively simple. This discretization is called a coarse-mesh
generation if few large elements are used. Each node has two degrees of free-
dom: displacements in the x and y directions. We will let u; and v; represent the
node / displacement components in the x and y directions, respectively.

The nodal displacements for an element with nodes /, j, and m are:
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Basic triangular element showing
degrees of freedom
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The nodal displacements for an element with nodes i, j, and m
are: L P
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where the nodes are ordered counterclockwise around the
element, and

c

The nodal displacements for an element with nodes /, j, and m .
are: v,
L1,

d . / -
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Step 2 - Select Displacement Functions

We will select a linear displacement function for each triangular

element, defined as:

u
Linear representation of u(x, y) 7]
\ (¥} =
\ Hm
y .
X

”u(x,y)}
v(x,y)

(a, +a,x +33y}
a, +a,x +agy

A linear function ensures that the displacements along each
edge of the element and the nodes shared by adjacent

elements are eaual.

() = a+ax+ay| |1 x y 0 00
1 levexeay] |00 0
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To obtain the values for the a’s substitute the coordinated of the
nodal points into the above equations:

U =a +a,Xx +ay, V. =a, +a.Xx, +a,y,
U, =a, +a,Xx; +a,y, V,=a,+a,X, +agy,
U, =a,+a,x, +ay, V,, =8, +85X,, +8;Y,,

Solving for the a's and writing the results in matrix forms gives:

1 x5y l[a
u =11 % ¥y, hap = {a}=[x]_1{u}
_1 Xm ym_ haﬂ
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The inverse of the [x] matrix is:

1 Pf:x,- a; a'mq
Xt =2l B By B
| Y Tl
where A is the area of the triangle
2A=j| :: ;i 2A=x,.(yj—ym)+xf.(ym—yf)+xm(y;—yj)
T X0 Vo Determinant of triangleis 2A

af=xjym_ijm ﬁf'=yj_ym :/:'=xm_xj
& =XYm—Yixn ﬁj=ym_yr‘ V=X — X,
A, = XY = YiX; Ba=Yi—Y, Ym =X, — X
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The values of a may be written matrix form as:

<0 r= = 16) ’3 ﬁ < L. &
2 2A i fi m yi
a, | 95 ¥ T
a, o |4 % |1

’. 35 S ﬂ }3} ﬁ} ﬁm “ V} W
a % e )

We Know that

=l x yla,

Substituting the values for a into the above equation gives:

o o a,lly

1
{u}=ﬂ[1 o }f] B B Bn|\Y
_}/;' ;Vj ;Vm_ um
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We will now derive the u displacement function in terms of the
coordinates x and y.

1 _a:,.uj +au; + amum_
{U} = ﬂ“ X }’] pu; +ﬁ;”; B
yild +yU; + Yy, |

Multiplying the matrices in the above equations gives:

1
u(x,y)= ﬂ{(ﬂ"; +Bx+yy)u +(a,+Bx+y,y)uy,

+(Qp + B X+ V¥ W, }
Similarly

1 v, + aVv, +a,Vv,
{V} = ﬂﬁ X }"] BV, + BV, + BV,
}’a’vi +ijj +j’mvm

Multiplying the matrices in the above equations gives:

1
V(X-J-")=ﬂ{(a;‘ "'ﬁfx"'}’fy)vf +(aj' +ﬁfx+yjy)vf

+(ay, + B X+ VY Vo }
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The displacements can be written in a more convenience form

as.: U(X,j/) — Nﬁu}, + Njuj + Nmum

vix,y)=Nyv,+Nv,+N_v_

where: ’
N; =ﬂ(a;' +ﬁ;x+?"d")
1
N, = ﬂ(“ﬁ +Bx+7,y)
N_ =%(afm + B X+ V)

The elemental displacements can be summarized as:

{‘P } N u(x,y) L Nu,+Nu,+N_u,
Y vixy)] [NV, +Nyv, +Nv,

In another form the above equations are: (u.
Vi
N O N 0 N_ O0||u,
(¥} = ‘ T [
0O N O N 0 N, v,
um
Vv

{**}=[N}{d} N

16



In another form the equations are:

INI=1'g N, 0 N,

{

N, O N 0 N,
0

NId}

¥} =
0 -
Nm

The linear triangular shape functions are illustrated below:

N 4

> Y

Nm,
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Step 3 - Define the Strain-Displacement and
Stress-Strain Relationships

Elemental Strains: The strains over a two-dimensional
element are: -

ou
= ~y
g OX
oV
{E} =4 & =5 E— >
¥ ay
¥
5 ou ov
oy Ox|

Substituting our approximation for the displacement gives:

6_”=ux=ﬂ(Niu;+N.u.+Nmum)
ox ¥ ox ol

u, = Nuuf - Nmu}. -+ lexum

where the comma indicates differentiation with respect to that
variable.



The derivatives of the interpolation functions are:

1 & B
N. o AL + L
=5 4 B AR )= 5
o H _—
e A = A
Therefore:
ou 1
a = —A(ﬁ"u" + ﬁj.uj + ﬁmum)

In a similar manner, the remaining strain terms are
approximated as:

ov 1
oy T 2A

( ViV + YV + YV m)

8u+ov_ 1
oy ox 2A

(ﬁ{.u{. +y Vv, +puU YV, + U, + gfmvm)
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We can write the strains in matrix form as:

{e} =

or

{s=[B B B,}

where

B]-

These equations can be written in matrix form as:
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Step 3 - Define the Strain-Displacement and
Stress-Strain Relationships

Stress-Strain Relationship: The in-plane stress-strain

relationship is: . _
o £

1o, =Dl ¢, ¢ {o} =[D][B{d}
hrxyé »yx?'.;
For plane stress [D] is: For plane strain [D] is:
£ 1 v 0 E 1-v v 0
[D] = =|v 1 0 [D] = = v 1=y 0
=10 0o 0.5(1-v) )I=291 0 0 05-v

Step 4 - Derive the Element Stiffness Matrix and Equations
The stiffness matrix can be defined as:

[k] = J[B]T [D][BlaV

For an element of constant thickness, t, the above integral
becomes: "
[k]=t[B] [D][B] ] dx dy

[K]=t l [BI" [D][B] dx dy [k] = tA [B]" [D][B]
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Expanding the stiffness relationship gives:
k] K] K]
[kKl1=| [k;] [k;] [kl

K] [yl K]
where each [k;] is a 2 x 2 matrix define as:

[k;1=[B8][DI[B] A [k;1=[B,]' [DI[B;]tA

[k,,]=[B1[DI[B,]tA

Where
g B 8 "
[B.]=i 0 7 [Lﬂ:i 0 & [B.]=
1 2A : I1 oA £
| 7 }95_ 1. Xy :3;_




Step 5 - Assemble the Element Equations to Obtain the
Global Equations and Introduce the Boundary
Conditions

To relate the local to global displacements, force, and stiffness

matrices we will use: 4 - Td F_TF K= TTK'T

e sig olo @

B gia 00 C =cosé
o L R L S =sind

M. 0 0

0 00 0:.C S

0 0!0 0i=S C




Step 6 - Solve for the Nodal Displacements

Step 7 - Solve for Element Forces and Stress

Having solved for the nodal displacements, we can obtain
strains and stresses in x and y directions in the elements by
using:

{e} =[BN{d} {0} =[D][B{d}
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Example 6.1

Evaluate the stiffness matrix for the element shown in Figure 6-11. The coordinates
are shown in units of inches. Assume plane stress conditions. Let E = 30 x 10° psi,
v = 0.25, and thickness t = 1 in. Assume the element nodal displacements have been
determined to be u; = 0.0, v; = 0.0023 in., u» = 0.0012 in., v» = 0.0, ;3 = 0.0, and
vy = 0.0025 in. Determine the element stresses.

0, 1

Figure 6-11 Plane stress element for stiffness
matrix evaluation
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First, we calculate the element fs and ys as:

m=3

Ay

0, 1)

f= 0 =1)

Bi=Yi=Ymn=0-1=-1
B =Yn-y,=0-(-1)=2

Bn=Yi~y;=-1-0=—1

Therefore, the [B] matrix is:

1 g 0 B
[B] = 2A 0O » O
vi B Vi

R/ 18
X 0
ﬁj .}(m

(2,0
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For plane stress conditions, the [D] matrix is:

E

1-v

[D] =

2

30x10°

(1 ¥
¥ 1
0 0

[D]

" 1-(0.25)’

0.51-v)

b 3

0.25
0

equations for the stiffness matrix:

[k]=tA[B]'[D]B]

J[{_(2)3(',}:,{1{)'5 2
4(0.9375) | 2

N O O O

B
0.25

0

0
0

0.25
1
0

0.25

.1
0

0
0

0.375 |

Substitute the above expressions for [D] and [B] into the general

0
0

0.375 |

2(2)

o o M

N O O

N O

2/



Performing the matrix triple product gives:

FaE A6 —2 =15 08 025
125 4375 -1 -0.75 -0.25 -3.625
2 ] 4 P = 1
k =4x10° b,
““l-15 075 0 15 15 -075 A?
-05 -025 -2 15 25 -125
025 -3625 1 -0.75 -1.25 4.375 |

The in-plane stress can be related to displacements by:

{o} =[D][B{d}

o, T 1 025 0 1 -1 0 20 -1 0

gy=09>‘3?50.251 0 I3z 2000 2§

e ' 0 0 0.375 -2 -1 0 2 2 -1
The stresses are:

o, 19,200 psi

o, = 4,800 psi

z,,| |-15,000 psi

0.0
0.0025 in
0.0012 in
0.0
0.0

0.0025 in
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Example 6.2

For a thin plate subjected to the surface traction shown in Figure 6-16, determine the
nodal displacements and the element stresses. The plate thickness t =1 in., £ = 30 x
108 psi, and v = 0.30.

=
—
10 in. 4+—s T = 1000 psi
-
——t

Figure 6-16 Thin plate subjected to tensile stress
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Discretization

Let's discretize the plate into two elements as shown below:

for a longhand solution.

The tensile traction forces can be converted into nodal forces as

follows:

_ 1,000 psi(1in)10 in
N 2

[
-
o
—
.
O = O O O =

5000 1b

aj. = 5000 Ib
| X 4

This level of discretization will probably not yield practical result:
for displacement and stresses: however; it is useful example

O -~ O O O -

I

5,000 /b
0
0
0
5,000 /b

0
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The governing global matrix equations are: {F}=[K|{d}

Expanding the above matrices gives:

fElX W f Rhc rd1x 1 f D 1
F"F th d1y D
FEX REX d2x D

<F2Y - — - REF - :[}‘(]-:sz‘hIr = =[K]-¢ D 2
F..| 15,0001b d,. d,,
F;, 0 d;, d;,
F,.| |5,000/b d,, d,,

kF*Hf., 0 d‘lr, kdﬁih

Assemblage of the Stiffness Matrix

The global stiffness matrix is assembled by superposition of the
individual element stiffness matrices.

The element stiffness matrix is: [k] = tA[B] [D][B]



For element 1: the coordinates are x;= 0, y;= 0, x; = 20, y; = 10,
x.,=0,and y, = 10. The area of the triangle is:

m=12 j=1

@ A= o AR =100 in.?
2 2

Bi=Y¥;—Y»=10=10=0 ¥; = X, —X; =0-20=-20
B, =Y,-y,=10-0=10 y,=X-X,=0-0=0

Therefore, the [B] matrix is:

g 0 & 0O B. DO g © MW BV 10 D
1 01 {_],I' m 1

:“If }{; U },n:r

Y ﬁ i }i,r ﬁ f Ym ﬁm
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For plane stress conditions, the [D] matrix is:

1 v 0 J1 03 0
[{1:]:1"52 v 0 =3{:]fo 03 1 0 |psi
"o 0 05(1-v) ~* 10 o D35

Substitute the above expressions for [D] and [B] into the general
equations for the stiffness matrix:

[k]=tA[B]'[DIIB]

Simplifying the above expression gives:

140 0 0 -70 -140 70
0 -400 -60 0 60 -400
75,000 0 -60 100 0 -100 60
091 | -70 0 0 35 70 -35
-140 60 -100 70 240 -130
70 400 60 -35 -130 435

[k]=
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For element 2: the coordinates are x; =0, y;=0, x;= 20, y;= 0, x,, = 20, and y,, =

10. The area of the triangle is:

m=13

j=4

4 (20)(10)

=100 in?

We need to calculate the element B's and y's as:

B=Y -Yn=0-10=-10
Bi=Yn—y;=10-0=10

ﬁm=Yf"yj=0"‘0=0

Therefore, the [B] matrix is:

B0 B0
i Bi v B

Vi=X,—X;=20-20=0
y;=X—X,=0-20=-20

ym=x,.-=xj.=20-{]=2{]

ﬁ m U 1 “1 0 U ‘EG U U
0 .| [B]= = O 6 B =3 0
}’m ﬁ.ﬂrr U “1 U —20 1 U 2{]

0
2”%1
0
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For plane stress conditions, the [D] matrix is:

1 ¥ 0 J1 03 o0
[D]=1E2 v o1 0 =3[:]ng 03 1 0 |psi
" lo 0 05(1-v) "' lo 0 035

Substitute the above expressions for [D] and [B] into the general
equations for the stiffness matrix:

[k]=tA[B] [D][B]

Simplifying the above expression gives:

u, v, u, v, i, v,
(100 0 -100 60 0 -60
0 35 70 =35 -70 0
75,000/-100 70 240 -130 -140 60

091 | 60 -35 -130 435 70 -400
0 -70 -140 70 140 0
—60 0 60 400 O 400

[K®]=

35



Using the superposition, the total global stiffness matrix is:

u, v, u, v, u, v, u, v,

48 0 =28 14 0 -26 -20 12
0 87 12 -80 -26 O 14 -7
=28 12 48 -26 -20 14 0 0
375,000 14 80 -26 87 12 -7 0 0
k1= 0.91 0 -26 -20 12 48 0 -28 14
-26 0 14 7 0 87 12 -80
-20 14 0 0 -28 12 48 -26
12 -7 0 0 14 -80 -26 87

The governing global matrix equations are:

4 2)" *

5,000 /b 091 | 0 -26 -20 12 48 0O
0 26 0 14 ¥ O 8
500 /b 20 44 0 0 28 42
0 12 -7 0 0 14 -80

" R, ] (48 0 -28 14 0 -26
= 0 87 12 -80 -26 0O
R,, -28 12 48 -26 -20 14
R 375,000 14 80 -26 87 12 -7

E:*.,‘

-
E

b
-

;F:.Q.

=1

Pl
-

o

L}
B

=

e
=

=1

F
=

‘o

o
-



Applying the boundary conditions: d, =d,, =d,, =d,, =0

The governing equations are:

(5,000 /b 48 0 -28 14"0'“
0 |_375000/ 0 87 12 -80||d,
5000/ 091 |-28 12 48 -26 s
0 | 14 -80 -26 87 ||d,, |
Solving the equations gives:
d,, | 609.6
d 4.2
4 3y>=(10_ﬁ) in
d,, 663.7
d,, 104.1

The exact solution for the displacement at the free end of the
one-dimensional bar subjected to a tensile force is:

PL _ (10,000)20

T =~ =670x10" in
AE ~ 10(30x10°)
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Plane Stress Example 1

Element 1: {o} =[D][B){d} (d,,
d,
E LU 0 A 0 B 0 B 0 d
S — PV 0 0 0 0 gl
{J} 2A|:1—V2) L4 ?1 yﬂ. :'VE da_-r
0 0 0-5(1—") n Bora B ov2 P d
2%
Ldzr.
0.0
o, 1t 03 0]Jfo o 10 o0 -10 O -
30(10°)(10™) 609.6
o, p=————|03 1 0 6o 20 0o o0 o0 20|
0.96(200) 42
T 0 035|l-20 o o0 10 20 -10
= 0.0
L 0.0
Element 2: {o} =[D][B{d} d,,
d
g [ty o Ja o B 0B 0]
foy=——=dv 1 0 O o B e O wmins T
2A(1-v?) d.,
0 0 05(1-v)|lry, B 7s B 72 B d
ix
Hd-'iy_
0.0)
0.0
o, 1 0% o490 o 1@ 0 o 0
30(10%)(10™) 663.7
o, p=———03 1 0 ¢ 0 0 -20 0 20l4
0.96(200) 104.1
i 0 o0 o03l]lo 10 =20 10 2@ 0
609.6
42
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