Equations from
Elasticity Theory

Introduction

In this appendix, we will develop the basic equations of the theory of elasticity. These
equations should be referred to frequently throughout the structural mechanics por-
tions of this text.

There are three basic sets of equations included in theory of elasticity. These
equations must be satisfied if an exact solution to a structural mechanics problem is
to be obtained. These sets of equations are (1) the differential equations of equilibrium
formulated here in terms of the stresses acting on a body, (2) the strain/displacement
and compatibility differential equations, and (3) the stress/strain or material constitu-
tive laws.
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C.1 Differential Equations of Equilibrium

For simplicity, we initially consider the equilibrium of a plane element subjected to
normal stresses o and o), in-plane shear stress 7,, (in units of force per unit area),
and body forces X}, and Y (in units of force per unit volume), as shown in Figure C-1.
The stresses are assumed to be constant as they act on the width of each face. How-
ever, the stresses are assumed to vary from one face to the opposite. For example,
we have o, acting on the left vertical face, whereas o, + (doy/0x) dx acts on the
right vertical face. The element is assumed to have unit thickness.
Summing forces in the x direction, we have

ZFx =0= (ax —I—%dx) dy(1) — o, dy(1) + Xpdxdy(1)

+ <Tyx+5g—;~‘dy) dx(1) — e dx(1) = 0 (C.1.1)
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Figure C-1 Plane differential element subjected to stresses

After simplifying and canceling terms in Eq. (C.1.1), we obtain

0oy Oty
‘ -+ X, =0 C.12
ox  dy + 4 ( )
Similarly, summing forces in the y direction, we obtain
do, 0ty
—+Y,=0 1.3
3 + Ee + Y (C.1.3)

Because we are considering only the planar element, three equilibrium equations
must be satisfied. The third equation is equilibrium of moments about an axis normal
to the x-y plane; that is, taking moments about point C in Figure C-1, we have

d. 0Ty d.
ZMZ =0= rxydy(l)jx—k (‘L’x), +%dx> =

2
dy 0Ty dy
— Ty dx(1) 5 <ryx + 6)}/ dy) 5= 0 (C.1.4)
Simplifying Eq. (C.1.4) and neglecting higher-order terms yields
Ty = Ty (C.1.5)

We now consider the three-dimensional state of stress shown in Figure C-2,
which shows the additional stresses o-, 7., and 7,.. For clarity, we show only the
stresses on three mutually perpendicular planes. With a straightforward procedure,
we can extend the two-dimensional equations (C.1.2), (C.1.3), and (C.1.5) to three
dimensions. The resulting total set of equilibrium equations is

00y 0Ty 0Ty

X, =0
ax oy oz T
0Ty, 00y 01y
— Y,=0 C.1.6
ox 0Oy T 0z + ( )

0Ty.  0Ty: OO0
— +
0x dy 0z

+Zb=O
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Ay

Figure C-2 Three-dimensional stress element

and Tyy = Tyx Tz = Tox Ty = Tz (C.1.7)

C.2 Strain/Displacement and Compatibility
Equations

We first obtain the strain/displacement or kinematic differential relationships for
the two-dimensional case. We begin by considering the differential element shown in
Figure C-3, where the undeformed state is represented by the dashed lines and the
deformed shape (after straining takes place) is represented by the solid lines.
Considering line element 4B in the x direction, we can see that it becomes A’B’
after deformation, where u and v represent the displacements in the x and y directions.
By the definition of engineering normal strain (that is, the change in length divided by

B’ v

}-—dx——l e %dx

Figure C-3 Differential element before and after deformation
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the original length of a line), we have

A'B' — AB
b= (C.2.1)
Now AB = dx (C.2.2)
and (4'B')? = w+@w2+fim2 (C.2.3)
0x 0x o

Therefore, evaluating A’B’ using the binomial theorem and neglecting the higher-
order terms (du/0x)* and (dv/0x)* (an approach consistent with the assumption of
small strains), we have

0
A'B' = dx + L dx (C.2.4)
ox
Using Egs. (C.2.2) and (C.2.4) in Eq. (C.2.1), we obtain
Ju
Y = — C.25
& =5 (C25)
Similarly, considering line element 4D in the y direction, we have
ov

The shear strain y,, is ddfined to be the change in the angle between two lines,
such as AB and AD, that origjnally formed a right angle. Hence, from Figure C-3,
we can see that y,, is the sum of two angles and is given by

ou 0v
=—+— 2.7
yxy ay + ox \ (C )

Equations (C.2.5)—(C.2.7) represent the strain/displacement relationships for in-plane
behavior.

For three-dimensional situations, we have a displacement w in the z direction. It
then becomes straightforward to extend the two-dimensional derivations to the three-
dimensional case to obtain the additional strain/displacement equations as

ow
ou ow

Vxe = AT AT (C.2.9)
ov  ow

Along with the strain/displacement equations, we need compatibility equations
to ensure that the displacement components u, v, and w are single-valued continuous
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748 A C Equations from Elasticity Theory

functions so that tearing or overlap of elements does not occur. For the planar-elastic
case, we obtain the compatibility equation by differentiating y,, with respect to both x
and y and then using the definitions for ¢, and ¢, given by Egs. (C.2.5) and (C.2.6).
Hence,

A L L i
0x0y  0xdydy Oxdyox  0y? = 0x2

(C.2.11)

where the second equation in terms of the strains on the right side is obtained by not-
ing that single-valued continuity of displacements requires that the partial differentia-
tions with respect n be interchangeable in order. Therefore, we have
10°/0x0y = 0~ /dyox | Equation (C.2.11) is called the condition of compatibility, and it
must be satisfied by the strain components in order for us to obtain unique expressions
for u and v. Equations (C.2.5), (C.2.6), (C.2.7), and (C.2.11) together are then suffi-
cient to obtain unique single-valued functions for « and v.

In three dimensions, we obtain five additional compatibility equations by differ-
entiating y,. and y,, in a manner similar to that described above for y,,. We need not
list these equations here; details of their derivation can be found in Reference [1].

In addition to the compatibility conditions that ensure single-valued continuous
functions within the body, we must also satisfy Hisplacement or kinematic boundary
conditions. This simply means that the displacement functions must also satisfy pre-
scribed or given displacements on the surface of the body. These conditions often

occur as support conditions from rollers and/or pins. In general. we might have

| U= U v =1p W= wy | (C.2.12)

at specified surface locations on the body. We may also have conditions other than
displacements prescribed (for example, prescribed rotations).

C.3| Stress/Strain Relationships

We will now develop the three-dimensional stress/strain relationships for an isotropic
body only. This is done by considering the response of a body to imposed stresses.
We subject the body to the stresses o, 0,, and ¢ independently as shown in Figure
C-4.

We first consider the change in length of the element in the x direction due to the
independent stresses o, gy, and g.. We assume the principle of superposition to hold;
that is, we assume that the resultant strain in a system due to several forces is the
algebraic sum of their individual effects.

Considering Figure C—4(b), the stress in the x direction produces a positive
strain

g == (C.3.1)

where Hooke’s law, o = Ee¢, has been used in writing Eq. (C.3.1), and E is defined as
the modulus of elasticity. Considering Figure C—4(c), the positive stress in the
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C.3 Stress/Strain Relationships A 749

(c) d

Figure C-4 Element subjected to normal stress acting in three mutually
perpendicular directions

y direction produces a negative strain in the x direction as a result of Poisson’s effect
given by

" VG'y
=— C32
o == (€32)

where v is Poisson’s ratio. Similarly, considering Figure C—4(d), the stress in the z
direction produces a negative strain in the x direction given by

Vo,
& = “F (C.3.3)
Using superposition of Egs. (C.3.1)—(C.3.3), we obtain
oy 0, O
S SRS BN 3.4
&= VETVg (C.3.4)

The strains in the y and z directions can be determined in a manner similar to that
used to obtain Eq. (C.3.4) for the x direction. They are

o Jeray o
=ETE E
(C3.5)
Oy oy O
& =— +


ASIF
Rectangle

ASIF
Rectangle

ASIF
Rectangle


750

A

C Equations from Elasticity Theory

Solving Egs. (C.3.4) and (C.3.5) for the normal stresses, we obtain

)

Ox = m [836(1 — V) + ng + Vaz]
E

% = Ty e T (1= s+ ved (C.3.6)
E

o = =) [vex 4 ve, 4+ (1 — v)e]

The Hooke’s law relationship, o = Ee, used for normal stress also applies for
shear stress and strain; that is,

t=Gy (C.3.7)

where G is the shear modulus. Hence, the expressions for the three different sets of
shear strains are

Ty Tyz Tox
= Tema Tmm (C.3.8)
Solving Egs. (C.3.8) for the stresses, we have
Ty = Gy, Ty = Gy, Ty = Gy., (C.3.9)
In matrix form, we can express the stresses in Egs. (C.3.6) and (C.3.9) as
Oy
Oy
g, B E
oy [ (1+v)(1—2v)
Tyz
Tzx
(1—v v v 0 0 0 |
I —v v 0 0 0
I—v 0 0 0 o
1-2 >
—2v
x 5 0 0 “ L (30
yxy
1—-2v 0 Yy
2 yZX J
Symmetry ! —22v

where we note that the relationship
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has been used in Eq. (C.3.10). The square matrix on the right side of Eq. (C.3.10) is
called the stress/strain or constitutive matrix and is defined by D, where D is

1—v % y 0 0 0
1—v y 0 0 0
1—v 0 0 0
E 1 -2y 0 0
D] = C.3.11
D] (T+v)(1—2v) 2 ( )
1 -2y
0
2
Symmetry -2
L 2]
Reference

[1] Timoshenko, S., and Goodier, J., Theory of Elasticity, 3rd ed., McGraw-Hill, New York,
1970.





