Development of Beam Equations

Beam Stiffness

Consider the beam element shown below.
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The beam is of length L with axial local coordinate x and
transverse local coordinate y.

The local transverse nodal displacements are given by v; and
the rotations by ¢,. The local nodal forces are given by f;, and
the bending moments by m..



Beam Stiffness

At all nodes, the following sign conventions are used:

N~

Moments are positive in the counterclockwise direction.
Rotations are positive in the counterclockwise direction.
Forces are positive in the positive y direction.

Displacements are positive in the positive y direction.
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The differential equation governing simple linear-elastic beam behavior can be
derived as follows. Consider the beam shown below.
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(a) Beam under load w(x) (b) Differential beam element
Write the equations of equilibrium for the differential element:
n ay A AX n2
2M e =0=(M+dM)—-M —Vdx + w(x)dx[EJ dx” =0
2 F,=0=V—(V+dV)-w(x)dx



From force and moment equilibrium of a differential beam
element, we get:

ZMﬂghr—sde:O = =Vdx+dM =0 or V:ﬂ
ax
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ax
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The curvature « of the beam is related to the moment by:
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where pis the radius of the deflected curve, Vv is the transverse displacement
function in the y direction, E is the modulus of elasticity, and I is the principle

moment of inertia about y direction, as shown below.
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The curvature for small slopes @ = dv/dx is given as:
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Substituting the moment expression into the moment-load equations gives:

a [EI djﬁ] = -w(X)

dx*\  dx®

For constant values of El, the above equation reduces to:

Ef[ddﬁ) = —w(X)

dx*

Step 1 - Select Element Type

We will consider the linear-elastic beam element shown below.
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Step 2 - Select a Displacement Function
Assume the transverse displacement function v is:
v=ax’+a,X’+a,x+a,
The number of coefficients in the displacement function, a;, is equal to the total

number of degrees of freedom associated with the element (displacement and
rotation at each node). The boundary conditions are:

V(X =0)=d

dﬂi=m=£ mnx=u=a
dx ! ax ?

Applying the boundary conditions and solving for the unknown coefficients gives:
v(0)=d,, =a,
V(L)=d,, =al +a,l* +a,l +a,

av(0)
dx

W]

a,

av(L)
ax

4, =3al’+2al +a,



Solving these equations for a,, a,, a; and a, gives:

v |:f_3(&“’ _&zy]_*'l,j—g(‘ri —1;32)]5&3 +[_%(&1r _&Ey)_%(z'ﬁ +"f'£2

In matrix form the above equations are:

v =[N1d|

where
d,
@=1"t =[N N NN
2y
| &, )
and
N, =L (2%° -3%°L+L°) N, =L—1(ff_-2ﬁf + 31°)
N, =Ll3(-2.£-3 +3%°L) N, =Li3(1?3L—.E2L2]



N; N> N5; and N, are called the shape functions for a beam element.
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Step 3 - Define the Strain/Displacement and Stress/Strain Relationships

The stress-displacement relationship is:

~ o~y dl

e\ Y)=—

(xy)=—

where U is the axial displacement function. We can relate the axial displacement
to the transverse displacement by considering the beam element shown below:
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One of the basic assumptions in simple beam theory is that planes remain planar
after deformation, therefore:

. - [ d*v
Ex(x‘y)=-y[ ]

dx’

Moments and shears are related to the transverse displacement as:

()= Ef(dz';) V(x)= E:{daﬁ)

dx* dx*
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Step 4 - Derive the Element Stiffness Matrix and Equations

Using beam theory sign convention for shear force and bending moment we
obtain the following equations:

FY - 3 ; 7 i ry
f,=v =199 _El6 1 eLg,-12d, +6L4,)
dx L
F.3 Ll 3 / 7 r r
h, =V =610 - El( 124, ~614, +12d,, - 6L4,)
dx L
-
i, =11 < —El ”d";':” El(6Ld, +41%4, -6Ld, +21°,)

d*v(L) _El

t, = th = E1 2 = " 6Ld, +2124, —6Ld,, +414,)
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In matrix form the above equations are:

where the stiffness matrix is:
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Two-Dimensional Arbitrarily Oriented Beam Element

We can derive the stiffness matrix for an arbitrarily oriented
beam element, in a manner similar to that used for the bar
element.

The local axes and are located along the beam element and
transverse to the beam element, respectively, and the global
axes x’and y’ are located to be convenient for the total
structure.
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Two-Dimensional Arbitrarily Oriented Beam Element

The transformation from local displacements to global
displacements is given in matrix form as:

u'’ B C S||lu C =cosé@
v |=S Cllv S =sing

Using the second equation for the beam element, we can
relate local nodal degrees of freedom to global degree of

freedom: )
o T v, =-Su, +Cv,
v.\] [-<S ¢ 00 0 0]l
4|_[0 010 0 0|¢
v,[ |0 0 0 -S C 0|y, d = Td
#] [0 0 00 0 1]y,
._¢2J
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Two-Dimensional Arbitrarily Oriented Beam Element

For a beam, we will define the following as the
transformation matrix:

S CO00 00
= [0 010 00
0 00 -SC O
0 000 0 1

Notice that the rotations are not affected by the orientation of
the beam.
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Two-Dimensional Arbitrarily Oriented Beam Element

Substituting the above transformation into the general form of
the stiffness matrix TTk’T gives:

l""‘1 1""“1 ¢1 UE v.? ¢2
(1282 _12SC -6LS. -12S? 12SC -6LS
-12SC 12C* 6LC ' 12SC -12C* 6LC
El| -6LS 6LC 42 ' 6LS -6LC 2I°
[°| -1282 12SC 6LS, 12S8? -12SC 6LS
12SC  -12C*> —BLCE -12SC 12C* -6LC
6LS B6LC 212 ' 6LS -B6LC 4l




Two-Dimensional Arbitrarily Oriented Beam Element

Let's now consider the effects of an axial force in the general

beam transformation.
‘\'* lIZ\ ' ""2
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Recall the simple axial deformation, define in the spring

element: £ i AE[ 1 -1 u!
5. L|-1 1]|y;
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Two-Dimensional Arbitrarily Oriented Beam Element

Combining the axial effects with the shear force and bending
moment effects, in local coordinates gives:

1] [c, 0 0 |-c, © 0 T(u)

f 0 12C, 6LC,. 0 -12C, 6LC, ||v!

|mi| _| 0__6LC, 4CL'| 0 -6LC, 2GL*||4

f, [ |-C, 0 0 | C, 0 0 ul

fy, 0 -12¢c, -6LC,, 0 12C, -6LC,||v,

my] | 0 6LC, 2C,l*, 0 -6LC, 4C,L%||4}
c;% cz—%




Two-Dimensional Arbitrarily Oriented Beam Element

Therefore:
" C, 0 0 ,-C, 0 0
0 12Cc, 6LC,, 0 -12C, 6LC,
w_| 0 _BLC, 4CL*, 0 -6LC, 2C,L*
-C, 0 0 . C, 0 0
0 -12C, -6LC,: 0 12C, -6LC,
0 BLC, 2C,L*1 0 -6LC, 4C,>

The above stiffness matrix include the effects of axial force in
the x' direction, shear force in the y’direction, and bending
moment about the z' axis.

20



Two-Dimensional Arbitrarily Oriented Beam Element

The local degrees of freedom may be related to the global
degrees of freedom by:

u)) [C S 0
vi| |-S C 0,
X 0 0 1.
lur [~ _0'"0"6*;
v, 0 0 0]
'] L0 0 0.

U,

d=Td

where T has been expanded to include axial effects
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Two-Dimensional Arbitrarily Oriented Beam Element

Substituting the above transformation T into the general form
of the stiffness matrix gives:

I 12 121 6/ 121 121 6/ _ |
ACE +L—252 (A—F]GS -TS —{ACE +L—252J —[A-L—EJGS —TS
AS? +gf_‘:2 EI:I —{A—@]GS -{AC?+1—?S?J E-’.‘:
L L L L L
E 4/ ﬂS —EG 21
symmetric Act+ 12 g2 (A—L?]CS Sl's
& L L
symmetric AS? + %C‘? —%S
symmetric 41 |
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Inclined or Skewed Supports

If a support is inclined, or skewed, at some angle « for the
global x axis, as shown below.

The boundary conditions on the displacements are not in the
global x-y directions but in the x’-y’ directions.

-i_'..'l i .T.’J
3 , iiﬂ!
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Inclined or Skewed Supports

We must transform the local boundary condition of v’; = 0 (in
local coordinates) into the global x-y system.

-i_'..'l = .t'*
3 ", iiﬂ!
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Inclined or Skewed Supports

Therefore, the relationship between of the components of the
displacement in the local and the global coordinate systems at
node 3 is:

u'y| [cosa sina 0][u,
Viir=|-sina cosa 0O|qv;;
95 L0 0 14

We can rewrite the above expression as:

" cosa sina 0
{d',} =[t,]1{d,} [t,]=| -sina cosa 0
0 0 1




Inclined or Skewed Supports

We can apply this sort of transformation to the entire
displacement vector as:

{d'}=[TNd}  or  {dj=[T] {d]

where the matrix [T] is: 11 [0] [0]
[T.1=([0] [/] [O
[0] [O] [t]]

Both the identity matrix [/] and the matrix [t;] are 3 x 3 matrices.



Inclined or Skewed Supports

The force vector can be transformed by using the same
transformation.
('} =M}

In global coordinates, the force-displacement equations are:
if =[K1{d]

Applying the skewed support transformation to both sides of the
force-displacement equation gives:

[T1if} = [T 1IK] d}

By using the relationship between the local and the global
displacements, the force-displacement equations become:

TIf =TIKITY ey = AP} =[TIKITT a7}
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Inclined or Skewed Supports
Therefore the global equations become:

F, 1
Fy 1
M, 2
F,, u,

; Fy = [T:][K][T;]T“ Voo
M, @,
F'sy u's
F's, v,
M, | | &5
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Grid Equations

A grid is: a structure on which the loads are applied
perpendicular to the plane of the structure, as opposed to a
plane frame where loads are applied in the plane of the
structure.

Both torsional and bending moment continuity are maintained at
each node in a grid element.

/o

Examples of a grid structure are floors and bridge deck
systems.
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Grid Equations
A representation of the grid element is shown below:

g fiy Vi [y V2

The degrees of freedom for a grid element are: a vertical
displacement v’; (normal to the grid), a torsional rotation ¢’
about the x’ axis, and a bending rotation ¢, about the z’ axis.

The nodal forces are: a transverse force £, a torsional m’,

moment about the x’ axis, and a bending moment m’;, about

the z’ axis.
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Grid Equations

Let's derive the torsional rotation components of the element
stiffness matrix.

Consider the sign convention for nodal torque and angle of twist
shown the figure below.

M) ey P My $s My, ", .
AR 5 .
(G | O~ 1 (F—x
L N o L
Nodal Elemental

A linear displacement function is assumed. ¢=a;+a,x’

Applying the boundary conditions and solving for the unknown
coefficients gives: &~
¢=( 2X 1x)x'+¢1fx

L
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Grid Equations

Let's derive the torsional rotation components of the element
stiffness matrix.

Consider the sign convention for nodal torque and angle of twist
shown the figure below.

""Jl Xy 'f’l; X nl‘lj L] ‘ﬁ:'t:l: ﬂ‘l;.. 95'1. ;nfx- 'ﬁ:
£ 2 .
(U | O~ 1 (F—
L L) L
Nodal Elemental

Or in matrix form: ¢'=[N, N,]|= {ix}

r r

where: N1=1_i N2=£
L L
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To obtain the relationship between the shear strain yand the
angle of twist ¢’ consider the torsional deformation of the bar
as shown below.

VA
N R r
‘1 i
T :I'* A L q: - X
) N "
"/ Yo X2 d¢

If we assume that all radial lines, such as OA, remain straight
during twisting or torsional deformation, then the arc length
AB is: _ dqﬁ'

AB=y dx' =Rd¢ = Voux =R v

max
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To obtain the relationship between the shear strain yand the
angle of twist ¢’ consider the torsional deformation of the bar

as shown below.
Vi
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D
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At any radial position, r, we have, from similar triangles OAB
and OCD:

d¢

t
A

d¢' _r
dx" L

y=r (45 =25 )
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To obtain the relationship between the shear strain yand the

angle of twist ¢’ consider the torsional deformation of the bar

as shown below.

Vi
TN
\ R r
\ /
1 :I'* s C D': - X
/ D g
/ Yma
- ; B dep

The relationship between shear stress and shear strain is:

r =Gy

where G is the shear modulus of the material.
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To obtain the relationship between the shear strain yand the

angle of twist ¢’ consider the torsional deformation of the bar

as shown below.
Vi

; > d

rd

R
Where J is the polar moment of inertia for a circular cross

section or the torsional constant for non-circular cross
sections.

From elementary mechanics of materials, we get: M,
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Cross Section Torsional Constant Cross Section Torsional Constant
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r GJ r I
Rewriting the above equation we get: m, = T(¢2x -4.)

r

The nodal torque sign convention gives: m.:x = —”r?x
mZX = mx
! GJ r r ] GJ ' r
Therefore: m;, = T( 4. — b ) m,, = T( % —4.)

In matrix form the above equations are:
m‘:x . @ 1 _1 ¢1rx
m., L{-1 1]|g,
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Combining the torsional effects with shear and bending effects,
we obtain the local stiffness matrix equations for a grid
element.

. . [ 12EI BEI  __12EI BEI | - X
f, 3 0 E g 0 2 v,
' GJ _GJ '
m; 0 = 0 0 = 0 3
' 6EI 4El  _ BEl 261 :

m1z . L* 0 L 12 0 L J ¢1z X
[ T 12E BEI  12EI 6EI '
fEF E 0 - 12 & 0 —2 ||V
r r
m, 0 - 0 0 & 0 ||l
r r

m,| | e= o 2= _ea o 4 |g,



The transformation matrix relating local to global degrees of

freedom for a grid is:

0 O
Cc S
-S C
0 O
0 O
0 O

o A O O

0

0 O
0 O
0 O
0 0
cC S
S C

where ¢is now positive taken counterclockwise from x to x’ in

the x-z plane: therefore:

C =cosé¥ =

S =sind =

z-—z}-

/
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The transformation matrix relating local to global degrees of
freedom for a grid is: _ _

1 0 00 0 O
0 C S0 0 O
0 -S CO0 0 O

T, =
0 0 01 0 O
0 0 00 C S

0 0 00 -S C|

The global stiffness matrix for a grid element arbitrary oriented

in the x-z plane is given by:
P ° g krs :TGTk:';TG





