
Method of weighted residuals 
Engineering problems can be described by ODE (Ordinary differential equation) or 

PDE (Partial differential equation). It is usually not possible to solve the derived ODE 

or PDE analytically.  

In fields other than structural/solid mechanics, it is quite probable that a variational 

principle, analogous to the principle of minimum potential energy, for instance, may 

not be known or even exists. In some flow problems in fluid mechanics and in mass 

transport problems, we often have only the differential equation and boundary 

conditions available. However, the finite element method can still be applied. 

The methods of weighted residuals applied directly to the differential equation can be 

used to develop the finite element equations. In this section, we describe Galerkin’s 

residual method in general and then apply it to the bar element. This development 

provides the basis for later applications of Galerkin’s method to the beam element  

and to the nonstructural heat-transfer element (specifically, the one-dimensional 

combined conduction, convection, and mass transport element. Because of the mass 

transport phenomena, the variational formulation is not known (or certainly is difficult 

to obtain), so Galerkin’s method is necessarily applied to develop the finite element 

equations. 

In weighted residual methods, a trial or approximate function is chosen to 

approximate the independent variable, such as a displacement or a temperature, in a 

problem defined by a differential equation. This trial function will not, in general, 

satisfy the governing differential equation. Thus substituting the trial function into the 

differential equation results in a residual over the whole region of the problem as 

follows: 

 

In the residual method, we require that a weighted value of the residual be a minimum 

over the whole region. The weighting functions allow the weighted integral of 

residuals to go to zero. If we denote the weighting function by W, the general form of 

the weighted residual integral is 
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Governing ODE for linear elastic problem of an axially loaded bar 

Consider an infinitesimal slice of the axial bar 

   

y 

q(x) 

x, u 

 q(x) 
P(x) P(x) + ΔP(x) 

Δx 

F 

Force equilibrium for the slice: 

** Note: variable x are omitted in P(x), A(x), σ(x), E(x), ε(x), q(x), u(x) for clarity.   
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Taking the limit as , the LHS function becomes   0x
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The ODE in terms of displacement u(x) is  

0)()()( 





 xq

dx

du
xExA

dx

d
 

Next step, we identify the boundary conditions: 

1. At left end x = 0, u = 0 

2. At right end x = L, f = F 
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The ODE is in terms of u. We need to describe boundary condition (2) in terms of u.  

   
Lx

LxLx dx

du
AEAEεAσ


 






F   

Therefore, the boundary conditions become 

1. At left end x = 0, u = 0 

2. At right end x = L, 
LxLx AE

F

dx

du



  

The problem can be stated as 

Find u(x) which satisfies  

0)()()( 





 xq

dx

du
xExA

dx

d
 

u(0) = 0 

LxLx AE

F

dx

du



  

Note: for engineering problem, we usually want to find both 

)(xu displacement at point x 

)(x stress at point x  

To do it, the ODE with boundary conditions is solved to obtain u(x). The stress field 
)(x is then obtained from the stress-strain-displacement relationship 

dx

du
xExxEx)( )()()(        

Now we attempt to find the approximated solution for our mathematical problem 
using a method which is called method of weighted residual  

Method of weighted residual 

Method outline: 

1. Nominate a trial solution u(x)  which contains n nodal unknown solutions that 
we need to find.  

2. Substitute the trial solution into the ODE. Compute the point-wise residual 
residual(x) 

3.  Weight the point-wise residual by n nominated weighting function wi(x).  

4. Integration of each weighted residual over the whole domain is set to zero. A 
system of n independent equations for n unknown coefficients must be formed 
from this action. 

5. Solve the system of n equations for n unknown coefficients. Use them to 

recover approximate solution u(x) .   

The method is applied here to solve the ODE for the linear static problem of the axial 
bar for illustration.  
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Step 1: Trial solution u(x)     

The problem is described on domain  Lx ;0 . We introduce a finite number of nodes 
n into the domain. For an arbitrary node ith, the location is xi, the unknown nodal 
displacement is ui, ..etc.   

3 4 5 2 1 

 

An example of the 1D domain with 5 global nodes (n=5). 

The trial solution )(xu  is assumed to be in the form 

 
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Where  

1. n nodal displacements u1, u2, … un  are n unknown that we need to find.  

2. Function  is called ‘shape function’. (Shape function is a key ingredient of 

the FEM). It is generally defined by continuous polynomial which has following 
properties: 

)(xNi

2a. The shape function associated with node i has a value of 1 at node i and 
vanishes at all other nodes.   

2b. Sum of all shape functions equals 1,  1)(
1




n

i
i xN
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)(1 xN : High order shape function (in red) 

 

 

 

 

 

)(2 xN : High order shape function (in red) 
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1st property enforces the approximate solution to be equal the nodal variable at each 

node, i.e. ixx
uxu

i




)( . Importance of 2nd property reveals throughout the formulation 

and be addressed in later stage of this lecture. 

 

Extension to 2D and 3D are straightforward 
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Step 2: Point-wise residual residual(x) 

Mathematical background  

For numerical analysis, residual means the error in a result. Suppose we have  

bxf )(   

Given an approximated solution x0, the residual is the difference 

bxf o )(  

Whereas the error is 

xx 0  

In our case, we have 0)()()( 





 xq

dx

du
xExA

dx

d
,  

By definition, we have b=0, the residual at location x equals 

)()()()( xq
dx

ud
xExA

dx

d
xresidual 








  

As )(xu is the approximated solution only, this residual is generally different from 0. 

If we want )(xu to be a good approximation of the exact , we must define the 
unknown coefficients u1, u2 … un in such a way that the residual is minimised over the 
domain , i.e. 

)(xu

 Lx ;0 

minimum)(
0

 dxxresidual
L

  for  Lx ;0  

Step 3: Weighting function w(x) 

To minimize the domain residual, a mathematical method which is called the method 
of weighted residuals is employed. Note that we have n unknowns to find, therefore a 
set of n weighting function  are selected to yield a system of n linear 

independent equations. The weighted residuals over the problem domain are then set 
to zero. We have 

)(xwi
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Most popular methods for defining are  )(xwi

1. Collocation method:  

The weighting function is the Dirac delta function evaluated at nodal points 

    ii xxxw  )(  

Having     0)()(
0

 
L

iii xresidualdxxresidualxxR 

This method enforces the residual to be zero at each nodal point but could be anything 
in between.  

2. Least square method: 

The weighting function is defined as the partial derivative of the residual  

 
 

i
i u

residual
xw




)(  

3. Galerkin’s method: 

The weighting functions are the derivatives of the trial solution )(xu with respect to 
the unknowns 

 

function shape  thei.e.),()(

)(

xNxw

du

ud
xw

ii

i
i




 

The weighting function defined by Galerkin’s method is used in the formulation of 
the FEM.   

Strong form and weak form of the weighted residual R 
























L

dxxq
dx

ud
xExA

dx

d
xwR

0

)()()()(   

When R includes the highest order of derivative term in the differential equation, it is 
regarded as the strong formulation of the weighted residual method. In this example 

highest order of differentiation of the variable )(xu  is 2nd order. To yield a 

meaningful approximation, the trial solution function )(xu  must be differentiable 
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twice and its 2nd derivative must not vanish on the domain  Lx ;0 , i.e. the shape 

functions in   have to be at least quadratic functions. To reduce the requirement 

for 

)(xN

)(xu  in terms of order of differentiability, integration by parts is applied to the 
strong form  

xqxwdx
dx

dw

dx

ud
xExA

u
xAxw

dxxq
dx

ud
xExwR
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d

)()

(




 

dx)

Mathematics background:  

Integration by part states , where u, v are functions u(x), v(x)   vduuvudv 
The new expression needs 1st order differentiation instead of 2nd order differentiation. 

As a result, the requirement for )(xu  and hence  )(xN  is reduced for R. This 
formulation is called the weak formulation of the weighted residual method. We will 
use the Galerkin’s method and the weak formulation to continue with our FEM 
formulation. 

Describe weak form of the weighted residual R in matrix form with FEM notations 
to prepare for systematic FEM formulation 

Galerkin’s method:  

)(

function shape  thei.e.),()(

)(

' xN
dx

dN

dx

dw

xNxw

du

ud
xw

i
ii

ii

i
i







 

(the dash sign ’ means differentiation) 

       uxN
dx

d
uxN

dx

d

dx

ud






 )()(  

  





dx

dN

dx

dN

dx

dN

dx

dN
xN

dx

d n....)( 321  

The derivative operator is denoted as matrix [L], the above equation becomes 

    )()( xBxNL          

Where    ( )B x =Element strain displacement matrix 

The approximated strains and stresses are  

  uxBx )()(   

   uxBDxEx )()()(    

In above, matrix  D  refers to the stress/strain matrix or constitutive matrix. In this 

1D problem, =E. Assume E = constant for formulation clarity.  D
Back to our computation of the weighted residuals, we have 
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By substituting the terms accordingly, the system becomes 

 
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With , the first two terms in above equations equals zero 

except for 1st equation (  and last equation (

i, jxxxN

xxxN

ji

ii




 if 0)(

 if 1)(

1 xx )0 )Lxx n  . Hence, 

 8

Tuqeer
Highlight

Tuqeer
Highlight

Tuqeer
Arrow

Tuqeer
Highlight

Tuqeer
Arrow

Tuqeer
Arrow

Tuqeer
Arrow



 

 

 

 






























































































0)()()()]([][)()(

....

0)()()()]([][)(0

0)()()()]([][)(0

0)()()()]([][)()(

 

00

'

0

3

0

'
33

0

2

0

'
22

0

1

0

'
1

0

1

dxxqxNudxxAxBDxN
dx

ud
ExAR

dxxqxNudxxAxBDxNR

dxxqxNudxxAxBDxNR

dxxqxNudxxAxBDxN
dx

ud
ExAR

L

n

L

n

Lx

n

LL

LL

LL

x

 

0

)(

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
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


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x
dx

ud
ExA and 

Lx
dx

ud
ExA










)( are the external nodal forces F0 and FL  at the 

start and the end of the axial bar. All first terms form a vector {F} of size n x 1 

   TLFFF 0...00  

 

Write all 2nd terms in matrix form. They form negative of the multiplication of size n 
x n stiffness matrix [K] and size n x 1 nodal displacement vector {u}. 

     dxxAxBDxBK
L

T )()()(][
0
   

 
0

1
1 1

1

L
LK AE d

L L

L

          
  

 x  

  1 1

1 1

AE
K

L

 
   

 

 

When the Galerkin’s method and the weak formulation are used, combination of these 
two results in symmetric element stiffness matrix and banded symmetric global 
stiffness matrix for unknown nodal displacements in the trial solution. This advantage 
reduces significantly the computational cost for solving the ODE. 

 

Consider the term , the weighting function  weights and lumps 

the traction  to node i. The integral  hence computes the 

equivalent nodal force at node i. Write all 3rd terms in matrix form. They form a nodal 
force vector {f} of size n x 1. 

dxxqxN
L

i )()(
0
 )(xNi

dx))(xq xqxN
L

i ()(
0

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 
L

T
n dxxqxNxNxNf

0

21 )()(....)()(   

We combine  into   and modify [K] to include the boundary conditions  F f

The system of n linear independent equations becomes 

   fuK ][  

 

We solve for the nodal displacement vector  u . Then we compute our approximated 
solution 
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2nd property of shape functions states that the sum of all shape functions equals 1, 

i.e. . In Galerkin’s method, the shape functions are also the weighting 

function. This property ensures that shape functions can act as weighting factors to the 
integrals, i.e. summation of the weighted values recover the domain value.  
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For example, 

If we sum the weighted residuals, we have domain residual  
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When weighting the traction over the domain, we have 
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Summation of all equivalent nodal force terms in the nodal force vector recovers full 
traction over the domain   
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