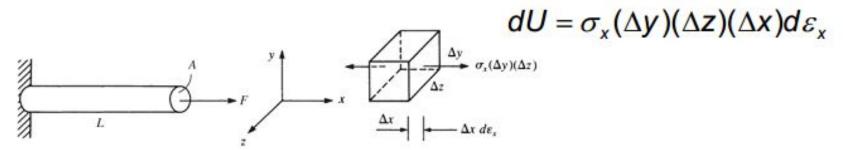
Let's derive the equations for a bar element using the principle of minimum potential energy.

The total potential energy, π_p , is defined as the sum of the internal strain energy U and the potential energy of the external forces Ω :

$$\pi_p = U + \Omega$$

The differential internal work (strain energy) dU in a onedimensional bar element is:



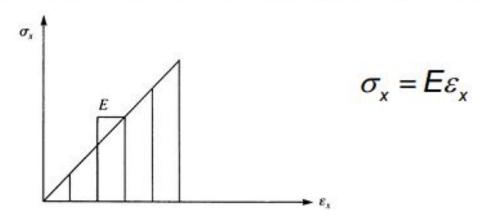
If we let the volume of the element approach zero, then:

$$dU = \sigma_x d\varepsilon_x dV$$

Summing the differential energy over the whole bar gives:

$$U = \int_{V} \left\{ \int_{0}^{\varepsilon_{x}} \sigma_{x} d\varepsilon_{x} \right\} dV$$

For a linear-elastic material (Hooke's law) as shown below:



The internal strain energy statement becomes

$$U = \frac{1}{2} \int_{V} \sigma_{x} \varepsilon_{x} dV$$

The potential energy of the external forces is:

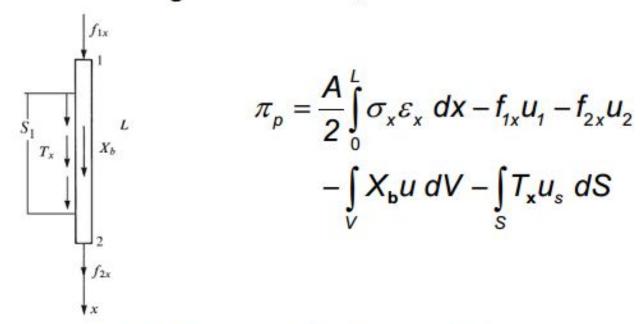
$$\Omega = -\int_{V} X_{b} u \, dV - \int_{S} T_{x} u_{s} \, dS - \sum_{i=1}^{M} f_{ix} u_{i}$$

where X_b is the body force (force per unit volume), T_x is the traction (force per unit area), and f_{ix} is the nodal concentrated force. All of these forces are considered to act in the local x direction.

Apply the following steps when using the principle of minimum potential energy to derive the finite element equations.

- Formulate an expression for the total potential energy.
- Assume a displacement pattern.
- Obtain a set of simultaneous equations minimizing the total potential energy with respect to the displacement parameters.

Consider the following bar element, as shown below:



We can approximate the axial displacement as:

$$u = \begin{bmatrix} N_1 & N_2 \end{bmatrix} \begin{Bmatrix} u_1 \\ u_2 \end{Bmatrix} \qquad N_1 = 1 - \frac{x}{L} \qquad N_2 = \frac{x}{L}$$

Using the stress-strain relationships, the axial strain is:

$$\varepsilon_{x} = \frac{du}{dx} = \begin{bmatrix} \frac{dN_{1}}{dx} & \frac{dN_{2}}{dx} \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix}$$

where N_1 and N_2 are the interpolation functions gives as:

$$\varepsilon_{x} = \begin{bmatrix} -\frac{1}{L} & \frac{1}{L} \end{bmatrix} \begin{Bmatrix} u_{1} \\ u_{2} \end{Bmatrix} \qquad \{\varepsilon_{x}\} = [B]\{d\}$$

$$B = \begin{bmatrix} -\frac{1}{L} & \frac{1}{L} \end{bmatrix}$$

The axial stress-strain relationship is: $\{\sigma_x\} = [D]\{\varepsilon_x\}$

Where [D] = [E] for the one-dimensional stress-strain relationship and E is the modulus of elasticity.

Therefore, stress can be related to nodal displacements as:

$$\{\sigma_x\} = [D][B]\{d\}$$

The total potential energy expressed in matrix form is:

$$\pi_{p} = \frac{A}{2} \int_{0}^{L} \left\{ \sigma_{x} \right\}^{T} \left\{ \varepsilon_{x} \right\} dx - \left\{ d \right\}^{T} \left\{ P \right\} - \int_{V} \left\{ u \right\}^{T} \left\{ X_{b} \right\} dV - \int_{S} \left\{ u \right\}^{T} \left\{ T_{x} \right\} dS$$

where {P} represented the concentrated nodal loads.

If we substitute the relationship between \hat{u} and \hat{d} into the energy equations we get:

$$\pi_{p} = \frac{A}{2} \int_{0}^{L} \{d\}^{T} [B]^{T} [D]^{T} [B] \{d\} dx - \{d\}^{T} \{P\}$$
$$- \int_{V} \{d\}^{T} [N]^{T} \{X_{b}\} dV - \int_{S} \{d\}^{T} [N_{s}]^{T} \{T_{x}\} dS$$

In the above expression for potential energy π_p is a function of the **d**, that is: $\pi_p = \pi_p(u_1, u_2)$.

However, [B] and [D] and the nodal displacements u are not a function of x.

Integration the energy expression with respect to x gives:

$$\pi_p = \frac{AL}{2} \{d\}^T [B]^T [D]^T [B] \{d\} - \{d\}^T \{f\}$$

where

$$\{f\} = \{P\} + \int_{V} [N]^{\mathsf{T}} \{X_{\mathsf{b}}\} dV + \int_{S} [N]^{\mathsf{T}} \{X_{\mathsf{b}}\} dS$$

We can define the surface tractions and body-force matrices as:

$$\{f_{\mathbf{s}}\} = \int_{S} [N]^{\mathsf{T}} \{T_{\mathbf{x}}\} dS \qquad \{f_{\mathbf{b}}\} = \int_{V} [N]^{\mathsf{T}} \{X_{\mathbf{b}}\} dV$$

Minimization of π_p with respect to each nodal displacement requires that:

$$\frac{\partial \pi_p}{\partial u_1} = 0 \qquad \frac{\partial \pi_p}{\partial u_2} = 0$$

For convenience, let's define the following

$$\left\{ \boldsymbol{U}^{\star} \right\} = \left\{ \boldsymbol{d} \right\}^{T} \left[\boldsymbol{B} \right]^{T} \left[\boldsymbol{D} \right]^{T} \left[\boldsymbol{B} \right] \left\{ \boldsymbol{d} \right\}$$

$$\{U^*\} = \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{cases} -\frac{1}{L} \\ \frac{1}{L} \end{cases} [E] \begin{bmatrix} -\frac{1}{L} & \frac{1}{L} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

Simplifying the above expression gives:

$$U^* = \frac{E}{L^2} \left(u_1^2 - 2u_1 u_2 + u_2^2 \right)$$

The loading on a bar element is given as:

$$\left\{d\right\}^{T}\left\{f\right\} = u_{1}f_{1x} + u_{2}f_{2x}$$

Therefore, the minimum potential energy is:

$$\frac{\partial \pi_p}{\partial u_1} = \frac{AE}{2L} (2u_1 - 2u_2) - f_{1x} = 0$$

$$\frac{\partial \pi_p}{\partial u_2} = \frac{AE}{2L} \left(-2u_1 + 2u_2 \right) - f_{2x} = 0$$

The above equations can be written in matrix form as:

$$\frac{\partial \pi_p}{\partial (d)} = \frac{AE}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} - \begin{pmatrix} f_{1x} \\ f_{2x} \end{pmatrix} = 0$$

The stiffness matrix for a bar element is: $\begin{bmatrix} k \end{bmatrix} = \frac{AE}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$

This form of the stiffness matrix obtained from the principle of minimum potential energy is identical to the stiffness matrix derived from the equilibrium equations.