Chapter # 3

Development of Truss
Equations



Development of Truss Equations

Having set forth the foundation on which the direct stiffness
method is based, we will now derive the stiffness matrix for
a linear-elastic bar (or truss) element using the general
steps outlined in Chapter 1.

We will include the introduction of both a local coordinate
system, chosen with the element in mind, and a global or
reference coordinate system, chosen to be convenient (for
numerical purposes) with respect to the overall structure.

We will also discuss the transformation of a vector from the
local coordinate system to the global coordinate system,
using the concept of transformation matrices to express
the stiffness matrix of an arbitrarily oriented bar element in
terms of the global system.



Development of Truss Equations

Next we will describe how to handle inclined, or skewed,
supports.

We will then extend the stiffness method to include space
trusses.

We will develop the transformation matrix in three-dimensional
space and analyze a space truss.

We will then use the principle of minimum potential energy
and apply it to the bar element equations.

Finally, we will apply Galerkin's residual method to derive the
bar element equations.



Development of Truss Equations
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Stiffness Matrix for a Bar Element

Consider the derivation of the stiffness matrix for the linear-
elastic, constant cross-sectional area (prismatic) bar
element show below.
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The bar element has a constant cross-section A, an initial
length L, and modulus of elasticity E.

The nodal degrees of freedom are the local axial
displacements v, and u, at the ends of the bar.



Stiffness Matrix for a Bar Element
du

The strain-displacement relationship is: o =Es¢ &=

From equilibrium of forces, assuming no distributed loads
acting on the bar, we get:

Ac, =T =constant

Combining the above equations gives:

AE E =T =constant

ax

Taking the derivative of the above equation with respect to the
local coordinate x gives:

=0
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Stiffness Matrix for a Bar Element

The following assumptions are considered in deriving the bar
element stiffness matrix:

1. The bar cannot sustain shear force: 7, =1, =0
2. Any effect of transverse displacement is ignored.

3. Hooke's law applies; stress is related to strain: o, = E¢
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Stiffness Matrix for a Bar Element

Step 1 - Select Element Type

We will consider the linear bar element shown below.
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Stiffness Matrix for a Bar Element

Step 2 - Select a Displacement Function

A linear displacement function v is assumed: v =a,+a,x

The number of coefficients in the displacement function, a;, Is
equal to the total number of degrees of freedom associated

with the element.
Applying the boundary conditions and solving for the unknown
coefficients gives:
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Stiffness Matrix for a Bar Element

Step 2 - Select a Displacement Function

Or in another form: v =[N, Nﬂ]{j}'
Uy

where N, and N, are the interpolation functions gives as:

X X
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The linear displacement

function ¢ plotted over the ! ”/ -
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length of the bar elementis  «, 4

shown below. '
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Stiffness Matrix for a Bar Element

Step 3 - Define the Strain/Displacement
and Stress/Strain Relationships

du u,-u,
ax L

The stress-displacement relationship is:  &x =

Step 4 - Derive the Element Stiffness Matrix and Equations

We can now derive the element stiffness matrix as follows:
T = A:‘:Tx

Substituting the stress-displacement relationship into the
above equation gives:

Uy -y |

I =AE

i
N,
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Stiffness Matrix for a Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

The nodal force sign convention, defined in element figure, is:

flx =T fEx:T

therefore.

U, —u, ] U, —u, ]

f = AE[ f, = AE{

Writing the above equations in matrix form gives:
=
15 L 1=1 1]y,

Notice that AE/L for a bar element is analogous to the spring
constant k for a spring element.



Stiffness Matrix for a Bar Element

Step 5 - Assemble the Element Equations
and Introduce Boundary Conditions

The global stiffness matrix and the global force vector are
assembled using the nodal force equilibrium equations, and
force/deformation and compatibility equations.

K=[K]= >k - (F} = 2.1

Where k and f are the element stiffness and force matrices
expressed in global coordinates.
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Stiffness Matrix for a Bar Element

Step 6 - Solve for the Nodal Displacements

Solve the displacements by imposing the boundary conditions
and solving the following set of equations:

F =Ku

Step 7 - Solve for the Element Forces

Once the displacements are found, the stress and strain in
each element may be calculated from:

du u,—-u
g =—=—2—1 o, =Ee,
ax L




Stiffness Matrix for a Bar Element
Example 1 - Bar Problem

Consider the following three-bar system shown below. Assume
for elements 1 and 2: A =1 in2 and E = 30 (10°) psi and for
element 3: A =2 in?and E = 15 (10°) psi.

3000 Ib
%1 O, 3/::@ : ® 4F -
2-— 30 in. —}=— 30 in. —=}~— 30 in.
_,//* 90 in.
Z 7

Determine: (a) the global stiffness matrix, (b) the displacement
of nodes 2 and 3, and (c) the reactions at nodes 1 and 4.



Stiffness Matrix for a Bar Element

Example 1 - Bar Problem

For elements 1 and 2:

1 2 node numbers for element 1
2 3 node numbers for element 2

(1)(30x10°)[ 1 _1 1 -1
k(h — k@ __ ; i/ —10° iby
30 {—1 J 7 {—1 1} g

For element 3:
3 4 node numbers for element 3

(o (OSA0) )
30 -1 1 -1 1

As before, the numbers above the matrices indicate the
displacements associated with the matrix.



Stiffness Matrix for a Bar Element

Example 1 - Bar Problem
Assembling the global stiffness matrix by the direct stiffness

methods gives: E1 E2 E3
P T=Tio O

' 47210
K:1DBI__|__——I—-|

0,-11 2119,

o

0 0.=1_1

Relating global nodal furce_s related to glt;bal nodal
displacements gives:

(F,, | 1 -1 0 0]y,
{sz:—:'l[]ﬁ _1 2 _1 D ~=:L|III2 :
F,, 0 -1 2 -1||u,
F,, | 0 0 -1 1]y,




Stiffness Matrix for a Bar Element

Example 1 — Bar Problem

The boundary conditions are: u,=u, =0

’F,”E 1i—1 DE_D ’u,,“
F,, _10° —152—150{{12
F,, 0i—1 21-1]|u,
F,, i 0,0 -1} 1_ u, |

Applying the boundary conditions and the known forces
(F,, = 3000 Ib.) gives:

{'3000‘1 . 05[ 2 —1}[ )|

0 | -1 2]|u,]



Stiffness Matrix for a Bar Element

Example 1 — Bar Problem

Solving for u, and u; gives:  u, =0.002in
u, =0.001in

The global nodal forces are calculated as:

F, 1 -1 0 01 0 1 [-2000
F 1 2 -1 01//0.002 3000

L _10° J = . Ibs
F.. 0 -1 2 —-1//0.001 0

F,, | 0 0 -1 1]l 0 | |-1000




Stiffness Matrix for a Bar Element

Transformation of Vectors in Two Dimensions

In many problems it is convenient to introduce both local and
global (or reference) coordinates.

Local coordinates are always chosen to conveniently
represent the individual element.

Global coordinates are chosen to be convenient for the whole
structure.



Stiffness Matrix for a Bar Element

Transformation of Vectors in Two Dimensions

Given the nodal displacement of an element, represented by
the vector d in the figure below, we want to relate the
components of this vector in one coordinate system to
components in another.
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Stiffness Matrix for a Bar Element

Transformation of Vectors in Two Dimensions

Let's consider that d does not coincident with either the local
or global axes. In this case, we want to relate global
displacement components to local ones. In so doing, we will
develop a transformation matrix that will subsequently be

used to develop the global stiffness matrix for a bar element.
Ay




Stiffness Matrix for a Bar Element

Transformation of Vectors in Two Dimensions

We define the angle#to be positive when measured
counterclockwise from x to x'. We can express vector
displacement d in both global and local coordinates by:

_ H e Far
. d=uji+v,j=ul+Vv,j




Stiffness Matrix for a Bar Element

Transformation of a vector in two dimensions

) vyl o TNV, cos 0 . Angle O 1s
y . ) measured positive
K V . -
| o\’ in the counter
v/ o ,1 '\‘:’ SiR 6 clockwise direction
/ from the +x axis)

5 [
el L

/\,Vv sin @ X
) e “1 J

&V, cos

The vector v has cnmﬁonents (Vy, Vy) In the global coordinate system
and (£§ v,) n the local coordmate system. From geometry

v, =V, ,cosO+v sin6

~

v, ==V, smb+v cos6



Stiffness Matrix for a Bar Element

Global Stiffness Matrix

We will now use the transformation relationship developed
above to obtain the global stiffness matrix for a bar element.

P
HI'-"!.';

- I‘ 1-

= X, U



Stiffness Matrix for a Bar Element
Global Stiffness Matrix

We known that for a bar element in local coordinates we have:

‘,fl.!f :£ 1 _1 u;l fr:krd:
" L= 1]|u

We want to relate the global element forces f to the global
displacements d for a bar element with an arbitrary
orientation.

o] [ur
f

S LtV f =kd
f.?x uE

L_fzy_ _VE_




Stiffness Matrix for a Bar Element

Global Stiffness Matrix

Using the relationship between local and global components,
we can develop the global stiffness matrix.

We already know the transformation relationships:

U, =u,cosf+v,sind u, =u,cosé+v,sind

Combining both expressions for the two local degrees-of-
freedom, in matrix form, we get:

. d=T4d

1
. [cs 00
|10 0C S

c < o

ugl{c S 0 0}_

|
luy) |0 0 C S

f2
—

i
-
P
N,



Stiffness Matrix for a Bar Element

Global Stiffness Matrix

A similar expression for the force transformation can be

developed.
[

e

ho o= h

fi,] [C S 00
f,] |0 0 C S

Substituting the global forCe expression into element force
equation gives: fod — T'f—k'd

- T

Substituting the transformation betw% and global
displacements gives: X . .
| d=Td |” = |Tf=kTd

[

N




Stiffness Matrix for a Bar Element
Global Stiffness Matrix

The matrix T*is not a square matrix so we cannot invert it.

Let's expand the relationship between local and global
displacement.

] [C S 0 0]y
vi| |-S C 0 0f|v,| |
T = 1 d=Td
u, 0 0 C S|y
v,] |0 0 -S Cl|v,]
where T is:
'C S 0 0]
T_ -SC 0 0
0 0 C $§
0 0 -S C|




Stiffness Matrix for a Bar Element

Global Stiffness Matrix

We can write a similar expression for the relationship between
local and global forces.

] [C S 0 O][f.

fl;.r = _S C U D 4 flj.-f .rr - Tf
oy 0 0 C S||f,
Ef_._: ] 10 0 -8 C] __ny_

Therefore our original local coordinate force-displacement
expression

M}lzﬁ[_1 1 Ml e

B L1 1y



Stiffness Matrix for a Bar Element

Global Stiffness Matrix

May be expanded: f 1 0 -1 07(u
f,] AE{0 0 0 0/|v,
(" L]-10 1 0o|lu
.fEIy_. _D 0 0 U_ Vz

The global force-displacement equations are:
ff=k'd = Tf=k'Td
Multiply both side by T -1 we get: f=T"k'Td

where T-1is the inverse of T. It can be shown that: T =T'



Stiffness Matrix for a Bar Element

Global Stiffness Matrix

The global force-displacement equations become: f=T'k'Td

Where the global stiffness matrix kis: k=T 'k'T

Expanding the above transformation gives:

- Cc* CS -C?* -CS
AE| CS S -CS -§°
L |-c? -CS ¢c* (S
-CS -§* ¢S &

We can assemble the total stiffness matrix by using the above
element stiffness matrix and the direct stiffness method.

K=[K]=>Kk® F = (F} =) f F=Kd
e=1 e=1



Stiffness Matrix for a Bar Element
Global Stiffness Matrix

Local forces can be computed as:
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- Cu,+Sv,—Cu,—-Sv, |

0
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Stiffness Matrix for a Bar Element
Example 3 - Bar Element Problem

For the bar element shown below, evaluate the global stiffness
matrix. Assume the cross-sectional area is 2 in?, the length
is 60 in, and the E is 30 x 10° psi.

|

' C?! CS -C? -CS|
s _AE| CS S? _CS -§°
] -
s L|-c? -cS ¢ cCS
ﬁ;ﬁ,ﬁ;ﬁ CS -S* CS §°)
J3 1

Therefore: C =co0s30° = o S =sin30° = 5



Stiffness Matrix for a Bar Element

Example 3 - Bar Element Problem

The global elemental stiffness matrix is:

(2in*)(30x10° psi )

60in

B/ /AR
Y % -l
Y % %

AR A

Simplifying the global elemental stiffness matrix is:

k=10°

- 0.750 0.433 -0.750 -0.433
0433 0250 -0433 -0.250
—0.750 0433 0.750 0433

-0.433 -0.250 0433 0.250

I
mn

Vo



Stiffness Matrix for a Bar Element

Computation of Stress for a Bar in the x-y Plane

For a bar element the local forces are related to the local
dlsplalgements by: [ r } ) E{ 4 _1} M l

l H 1-@1’ L 1 1 1”5 J |

The fn}be-displacement equation forf, is:
u
E[_*] 1] ( 1 l

|y

The stress in terms of global displacement is:
)

r_
fﬂx_

E CS00
~E1-1 1 .:
o=l ]{DUCS}

v,| E
u; ; I[—CuI —Sv, +Cu, + Sv, |

5 |
W =



Stiffness Matrix for a Bar Element

Example 4 - Bar Element Problem

For the bar element shown below, determine the axial stress.
Assume the cross-sectional area is 4 x 10* m?, the length is
2m,andthe Eis 210 GPa. v 4 d

The global displacements are known as
u,=025mm, v, =0, u, =0.5mm,
and v, = 0.75 mm.

b
o= 2102107 1525y ¥3 0y, L(0.5). P2
2 2 42 4

(0.79) | "V

5:81.32;{103*‘%2 =81.32 MPa



Example S - Plane Truss Problem

The plane truss shown below is composed of three bars
subjected to a downward force of 10 kips at node 1. Assume
the cross-sectional area A =2 in? and E is 30 x 10° psi for all
elements.

Determine the x and y displacement at node 1 and stresses in
each element.

[

10




Example 5 - Plane Truss Problem

Element Node 1 Node 2 7, C S
1 1 2 9Q° 0 1
2 1 3 450 0.707 0.707
3 1 4 Q° 1 0

10 fi

10 fi



Example 5 - Plane Truss Problem A g;
k=" W
. . L]-c
The global elemental stiffness matrix are: _Cs
0
. 0 e_ o _ (2in*)(30x10° psi)| 0
element 1. C=0 S=1 k' = 507 0
0
1
o (2in7)(30x10° psi)| 1
;=¥ 5=£ = k!
element 2 : ; 0o |~
1
element 3 01 S—0 — kiaz,zqzmzj{anﬂuﬁpmj 0
' 120in -1
0

0
0

it
0 Vin
0

¢ —CS]
—cs -§°
c: CS
cs S|

Vin

0
0

ity
g%
0




Example S - Plane Truss Problem

The total global stiffness matrix is:

K=5<10°

i 4

| 0O
-10,000

| :jzzx
I 2y L B..140°
] FE:{ -5,-510
| F-’»}-’
| Fax
| ay

L

1354 0354| 0 0 |[02354 —0254) 1 0
0354 1354| 0 -1||-03%4 o034l 0 o0
0 D 0 0| o 0 0 0
0 1 0 1| o© 0 0 0
0354 0354 0 o0 [0354 o034] 0 0O
0354 0354 0 0 |0354 o034| 0 ©
-1 0 |lo o o o [1 0
0 0o Jo o o 0o (o o

The total global force-displacement equations are:

1.354

0.354
038 1354
0 0
0 -1
-0.354 0354
-0.354 0354
-1 0
0 0

0
0
0
0
0
0
0
0

0 -035%4 034 1
-1 0354 -03% 0
0 0 0 0
1 0 0 0
0 03 0354 0
0 03 0354 0
0 0 0 1
0 0 0 0

o [ e R e R e [ [ e Y e o

Vi

-

|y

1o

o~ — 1

=
-

-

o R e I e R e [ s

element 1
element 2

element 3



Example S - Plane Truss Problem

Applying the boundary conditions for the truss, the above
equations reduce to:

0 1354 0354 '0 0 -0354 —0384 -1 0

~10, 000 0354 1354 10 -1 0354 -0354 0 0O
Fx 0 00 J0 0 0 0 0 0
F _ I

4 2y L _ 5 K"]Dﬁ 0 1 | 0 1 0 0 0 0O
Fax 0354 -0354,0 0 0354 0354 0 0
Fay 0354 03540 0 0354 0354 0 O
RS
F"f}’ ) B I 1

=

:::t::::::::t::::::,F




Example 5 - Plane Truss Problem

Applying the boundary conditions for the truss, the above

equations reduce to: |
[ 0 1:5}{105 1.394 0.354 uql_
| -10,000] 0.354 1.354||v,|

Solving the equations gives: 1, =0.414x107in

v, =-1.59x1072in
_E

The stress in an elementis: o= 7 |-Cu,—Sv, +Cu, +Sv,|



Example 5 - Plane Truss Problem

Element Node 1 Node 2 2 C S
1 1 2 900 0 1
2 1 3 450 0.707 0.707
3 1 4 0o 1 0
B
element 1 o =210 [-v,] = 3,965 psi
120
6
element2 ¢ = —3012330 [(0.707)u, +(0.707)v,| =1,471psi
6
element3 o® —>210 [-u,]=-1035 psi

120



Example S - Plane Truss Problem

Let's check equilibrium at node 1.

'\.\:
- —= i

AN €
1 -
'I..;
pab———— 0] ft 4~|
10,000 b '

D> F,=(1471psi)(2 in®)(0.707)— (1,035 psi)(2in*)=0

ZF}, — (3,965 psi)(2in*)+(1,471psi)(2in*)(0.707)-10,000 = 0



Example 7 - Plane Truss Problem

Consider the two bar truss shown below.

P = | KM
& = 50 mm

Determine the displacement in the y direction of node 1 and
the axial force in each element.

Assume E=210 GPaand A=6 x 104 m?



Example 7 - Plane Truss Problem

The global elemental stiffness matrix for element 1 is:

cos 8" = 3 06 sin&'" = 4 =08
5 5

036 048 -0.36 -0.48°
210x10°(6x10~)| 0.48 0.64 -0.48 —0.64

5 036 048 036 048
048 -064 048 064

K —

Simplifying the above expression gives:

u, v, u, v,
| 0.36 048 -0.36 -0.48]
048 0864 -048 -0.64
-0.36 048 036 048

048 064 048 064

k'" =25,200




Example 7 - Plane Truss Problem

The global elemental stiffness matrix for element 2 is:

cos 8 =0 sing™® =1
0 0 0 -0}
km:(ﬂﬂmﬂﬁ)(ﬁﬂﬂ'q} 0 1 0 -1
4 0 00 O
0 -10 1

L 'I.--"1 ”E- VE-

0 0 0 0

0 125 0 -1.25
k'?) = 25,200

0 0 0 O

0 125 0 1.25




Example 7 - Plane Truss Problem

The total global equations are:

-

X

¥

X

k3

LWL LIy | B

X

F

- 3y

The displa;:ement boundary conditions are:

-

= 25,200

U, = %)

- 0.36
0.48
—0.36
—0.48
0

0

0.48
1.89
—0.48
—0.64
0
-1.25

—-0.36
-0.48
0.36
0.48
0

0

-0.48
—-0.64
0.48
0.64
0

0

U, =v,=U,=v, =0

o o O O o o

C < &

=

o=




Example 7 - Plane Truss Problem

The total global equations are:

Fi 036 048] 036 048 0 015
i _048 __1.89] 048 064 0 -125]v,
F,, _ o500 038 048! 036 048 0 0||u, |
£, 048 064! 048 064 0 0||v,
F,, 0 01 0 00 0||u,
F, 0 1251 0 0 0 125,

By applying the boundary conditions the force-displacement
equations reduce to:

P =25,200(0.486 +1.89v,)



Example 7 - Plane Truss Problem

Solving the equation gives: v, =(2.1x107)P -0.255

By substituting £ = 1,000 kKN and 6=-0.05 m in the above
equation gives:

v, =0.0337m
The local element forces for element 1 are:
(u =-0.05
o - _ |
[f, | _ 25 200 1 -1][06 08 0 0 1}v,=00337|
7, 1 1|0 0 06 08 u, |
v, |

The element forces are: f,, = -76.6 kN f,, =76.T kN



Example 7 - Plane Truss Problem

The local element forces for element 2 are:

(U, =-0.05)

' . _ I
{ﬂx 31500 1 -1/0 100 qv,, U.DE?}TL
L 3x -1 1110 0 0 1 L"S
Vs )

The element forces are: f,, =1,061 kN f,, =—-1061kN

X —



Transformation Matrix and Stiffness Matrix for
a Bar in Three-Dimensional Space

Let's derive the transformation matrix for the stiffness matrix for
a bar element in three-dimensional space as shown below:

i T, I




Transformation Matrix and Stiffness Matrix for
a Bar in Three-Dimensional Space

The coordinates at node 1 are x,, y;, and z,, and the coor-
dinates of node 2 are x;, );, and z;. Also, let &, £, and &, be
the angles measured from the global x, y, and z axes,
respectively, to the local axis.




Transformation Matrix and Stiffness Matrix for
a Bar in Three-Dimensional Space

The three-dimensional vector representing the bar element is

gives as: g o gwen
d=ui+Vj+wWk =U'i"+V'j+W'kK

- U

o W



Transformation Matrix and Stiffness Matrix for
a Bar in Three-Dimensional Space

Taking the dot product of the above equation with i’ gives:
ui-i)+v(j-"+wlk-i)=u

By the definition of the dot product we get:

=N ¢ Gi=X2Ni_c ki=2T4
L : L ! L
Where L:\/(XE—X.|)2+(y2—y1)2+(22—21)2
C_=cosé, C, =cosg, C, =cosd,

where C,, C,, and C, are projections of 'on to i, j, and Kk,
respectively.



Transformation Matrix and Stiffness Matrix for
a Bar in Three-Dimensional Space

Therefore: U =Cu+Cyv+Cw

The transformation between local and global displacements is:

=

d=Td

=

£ =

P

]'u;} {cxc},cz 0 0 D}
4= 4
1_1‘..‘2; 0 0O0 Cx C}, CE Cr C_],-' Cz 0 0D0

{n 0 ncxcycj

=~
13

=



Transformation Matrix and Stiffness Matrix for
a Bar in Three-Dimensional Space

The transformation from the local to the global stiffness matrix

IS (C. 0]
c, 0
C, 0 |AE[ 1 -1][c,C,C,0 0 0
0C, TLI 1]{0 0 ucrcycj
0cC,
_[] GI_

k=T'kT k =

c2 CC, cc.. ¢ CC -CccC
cce, € c¢c ,-cc € CC




Transformation Matrix and Stiffness Matrix for
a Bar in Three-Dimensional Space

The global stiffness matrix can be written in a more convenient
form as:

PP ¢’ CcC, CC,
k:—{ - } i=/CC. C? cCC
L l-2 2 X~y y yTz
c.C, CC, C;




Example 8 — Space Truss Problem

Consider the space truss shown below. The modulus of
elasticity, E = 1.2 x 10° psi for all elements. Node 1 is
constrained from movement in the y direction.

AMY — 0,302 in?
Al — 0,729 jn?
A = 18T in?

To simplify the stiffness matrices
for the three elements, we will
express each elementinthe -,
following form:

Roller preventing

- A E{ A — fq 7 | ~.. /¥ dptcemen

k - (T2, 0, M
L A A

=y

(0, 0, —48
Y i



Consider element 1:

L = (-72)% +(36)* =80.5in

7

C,=—==-0.89

* 805 A% 0729 in?
AN = 0187 in?

c - >° _045

Y 80.5 »

C.=0 —

Roller preventing
i / v displacement

(T2, 0, 0)

079 040 O
-040 020 O
0 0 0

- - (0, 0, —48)

n
Il

1K} 1




Consider element 1:

« _ (0:302in%)(1.210° psi)

80.5in

(0, 0, —48) gj

A — 0302 in?
A = 0,729 in?
A = 01T in?

Raoller preventing
/ v displacement

(72, (b, )

e



Consider element 2:

L@ = J(=72)% +(36)? +(72)? =108in

C _Zlf2_ -0.667

* 108
c =3% _033
Y108
c -2 _0e67
2108

(045 -022 -045]
A=|-022 011 045
|-045 045 045 |

A'M = 0,302 in®
A" = 0.71% in?
A = 0187 in?

Roller preventing
i ’/ v displace ment

(T2, 0, 0)

1{HHE 1




Consider element 2:

o (0.729in%)(1.2:10°psi)[ A~/ o
108in _J VRGN ©>

A'Y — 0302 in®
AP = 0,729 in?
A = L1ET ind

The boundary conditions are:

HEZVE:WE:U z 4 II
u3 :vﬂ :WE :D -' '

| Roller preventing
Uy =V, =W, = 0 III F ‘d]::“:"::‘

e

v,=0

(0, b, —48)




Consider element 3: [ = \/(){:l X+ (Vs =V +(2,-2,)

[® = \(-72)* +(—48)* =86.5in

c -2 _ 0833 AL - 030nin
86.5 i
c, =0
c. - 28 _ 0550 L
=~ 865 |
\ Rzlllnrlprﬂtnting
_ — i ¥ displacement
069 0 0.46 L

A=/ 0 0 0
0.46 0 0.30 |~
| — o, o, —45}2: il

10HHE Db




Consider element 3:

)=\

0.187in%)(1.2x10%psi)| 4 —A

86.51n {
AN = 0,302 in?
A = 0,729 jn?
A'™M = 0,187 in?

Roller preventing

'F,_,-v"’"J : III"'.,I ‘/ y displacenent




Canceling the rows and the columns associated with the
boundary conditions reduces the global stiffness matrix to:

u W

1

. 9.000-2,450
| -2.450 4,450

1

The global force-displacement equations are:

9,000 -2,450 j‘uq_{ 0
2,450 4,450 ||w,| |-1000]

Solving the equation gives:

u,=-0.0721in w, =-0.264 in



It can be shown, that the local forces in an element are:

f.| ae[-C, -C, -C, C, C, C,]|w,|
c, C, C, -C -C, —C,|lul

The stress in an element is:

=

-

= <

-

ng[—cx -C, -C, C, C, C|i "

=

-

=



The stress in element 1 is:

—0.072
0
ot - 1-2x10 089 045 0 -089 045 ﬂ}_D'2m=
805 0
0
" — _955 psi 0
The stress in element 2 is:
[i]
ceiﬂ_“fl?” [0667 -033 -0667 -0667 033 0667

2 =1,423 psi

—0.072

—0.264




The stress in element 3 is: "_0.072)

0
1.2x10° —0.264
3 _ 083 0 055 -083 0 —-055
o =—g65 | A
0
' = 2,843 psi -0




Inclined, or Skewed, Supports

If a support is inclined, or skewed, at some angle « for the
global x axis, as shown below, the boundary conditions on
the displacements are not in the global x-y directions but in
the x’-y’ directions.




Inclined, or Skewed, Supports

We must transform the local boundary condition of v’3 =0
(in local coordinates) into the global x-y system.




Inclined, or Skewed, Supports

Therefore, the relationship between of the components of the
displacement in the local and the global coordinate systems

at node 3 is:
u's cosa Sina ||u,
Vs |-sina cosa ||V,
We can rewrite the above expression as:

, : cosa Siha
{d 3_} = [ral{dﬁ.} [t:a] - { }

—Sinag CoS«

We can apply this sort of transformation to the entire
displacement vector as:

'y =[Thdy or {dj=[T]"{d"]



Inclined, or Skewed, Supports

Where the matrix [T,]" is: [/] [0] [O]]
[T.]"={[0] [11 [O
[O] [O] [&])

Both the identity matrix [/] and the matrix [t;] are 2 X 2 matrices.

The force vector can be transformed by using the same
transformation. |
{f'y =[T1{f}

In global coordinates, the force-displacement equations are:

iy = K1id;



Inclined, or Skewed, Supports

Applying the skewed support transformation to both sides of

the equation gives:
[T1if} =[TIK]1d}

By using the relationship between the local and the global
displacements, the force-displacement equations become:

{(f'} =[TIKITY {d'}

Therefore the global equations become:

F. ] Cu,
Fy v,
F, u, |
¢ o r=[TIKITY 4 %%
£, ! V, |
F' u'y |
_FFEL J"rla,-




Example 9 — Space Truss Problem

Consider the plane truss shown below. Assume E = 210 GPa,
A =6 x 104 m?2 for element 1 and 2, and A =/2(6 x 104)m?
for element 3.

Determine the stiffness matrix
for each element.




The global elemental stiffness matrix for element 1 is:

cosd'" =0 sing'” =1

(210 <10°kN [ n7 )6 %107 m™)
1m

ki —




Example 9 — Space Truss Problem

The global elemental stiffness matrix for element 2 is:

cosg"? =1 sing* =0

(210 x10°KN T m*)(6x 107 m”)

k2
Tm




The global elemental stiffness matrix for element 3 is:

cosf¥ =— sin g :E
2
v
(11
(3 _ (210x10°kN 1 m?)(62 x 10 m?)| 1 1
2N2m -1 -1
-1 —1




Using the direct stiffness method, the global stiffness matrix is:

05 05 0 0 -05 -05]
0 15 0 -1 -05 -05

0 o 1 0 -1 0
_ =
K=1260x10 Aﬂ

0 -1 0 1 0 O
05 -05 -1 0 15 05
05 -05 0 0 05 05

We must transform the global displacements into local
coordinates. Therefore the transformation [T,] is:

N 0 [0]] |z--F2-—ok-t--
lﬂ]{[ﬂl [1] [D]}g g [*:: 0 0
01 [0 [t.] (011




The first step in the matrix transformation to find the product of

[T4][K]. i

05 -05

0.5 0.5 D O
0.5 15 D -1 05 -05

_ s N 0 0 1 0 1 0
[T.][K]=1260x10°N/ 00 0 0
0707 -0707 -DJF07 0O 1414 0.707

0 0 0707 D -0.70 0

The next step in the matrix transformation to find the product of

[TAIKIT4]"

0.5 05 0 0 -0707 0

0.5 15 0 -1 -0707 0

T 5 0 0 1 0 -0707 0707
[T,][K][T,] =1260x10 % o0 oo
-0.707 -D.707 0707 O 15 -05

i 0 0 0707 0 05 05




= =

g

L IYL I 2 B

FI

3x

L _ 5N
=1260=10 /g?

31;;

05 051 0 10!-0.707
o 0o 1ol 010707
0 01 1101-0707
————————— e T
I | I N A ¢ B A I
| 1 |
0707 -07071-0707 101 15
_________ 120.707 (0 _ 1.5
0 0, 0707 10, -05

=

W=

.




By applying the boundary conditions the global force-
displacement equations are:

1 -0.707|[u,| [F, =1000kN]
1,25':}}’1[}5” ] a-',?:; 2x ’ ‘
%ﬂ{—n.m? 1.5 }L_u'sj \F',, =0 I

Solving the equation gives:  uw,=1191mm  u',=561mm



Fi _
E 0.5 0.5 0
F‘f 0.5 1.5 0
1 i=1260x10%w,.| 9 O 1
Fzy 0 -1 0
F -0.707 -0.707 -0.707
= |0 0 0.707
hF 3y
Therefore: i
F, =-500 kN F,, =—500 kN
F,, =0 F',, =707 kN

0

2 8 o a

—0.707 0
—0.707 0
0707 0.707
0 0

15 05
0.5 0.9

P

-

300 kN

Y 500 kN

707 kN



Development of Truss Equations

3.8 Use of Symmetry in Structure

Reflective symmetry

Figure 3-20 Plane truss Figure 3-21 Truss of Figure 3-20
reduced by symmetry



3.8 Use of Symmetrv in Structure
Table 3-2 Data for the truss of Fiqure 3-21

Element I . s C? 5 S
Example 3.10 l 45 v2/2 V2/2 1/2 1/2 1/2
2 31§ V)2 V22 12 1/2 12

3 o 1 0 1 0 0

4 90y 0 I 0 1 0

5 9y 0 1 0 1 0

using Eq. (3.4.23) along with Table 3-2 for the direction cosines, we obtain

'ﬁ!rlr d]x

Y
-

) 1] = b= b=

&

I
b= 1a] = baf= b=

i _ V24E
= y’li_[.

b b s i i

Pal= o] = bt = Pd]—=

Similarly, for elements 2-35, we obtain

ﬂrll‘

| =
B
.

Pt | Tt = ol — ] —
I—l'.|
]

V2AE

—

"l.-"izf.- -

k:fl —

[ [y Ty Sy

(RTINS I

[ [y Py Sy ! -



3.8 Use of Symmetry in Structure

Example 3.10

AFE
kul N —
- L

. AE

|,-'1| -
k= L

. AE
k“j' _
- L

dl}' d-ﬂ-x
D -1
() ()
0 |
() ()
day doy
0 0
1
0 0
~L
day day
0
Lo
0 0
~L0




3.8 Use of Symmetry in Structure

Example 3.10
1 0 =if (4 )
AE [ : N

On solving Eq. (3.8.6) for the displacements, we obtain

—PL —PL -2PL
- dyy = =

AFE ! AE





