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INTERPOLATION FUNCTIONS 

 

The basic idea of the finite element method is piecewise approximation i.e., the solution 

of a complicated problem is obtained by dividing the region of interest into small regions 

(finite elements) and approximating the solution over each subregion by a simple 

function. Thus, a necessary and important step is that of choosing a simple function for 

the solution in each element. 

The functions used to represent the behavior of the solution within an element are 

called interpolation functions or approximating functions or interpolation models. 

 

Polynomial Form of Interpolation Functions 

 

Polynomial-type interpolation functions have been most widely used in the literature due 

to the following reasons: 

a) It is easier to formulate and computerize the finite element equations with 

polynomial-type interpolation functions. Specifically, it is easier to perform 

differentiation or integration with polynomials. 

b) It is possible to improve the accuracy of the results by increasing the order of the 

polynomial as shown in the figure below. Theoretically a polynomial of infinite 

order corresponds to the exact solution. But in practice we use polynomials of 

finite order only as an approximation. 

 

Figure: Polynomial Approximation in One Dimension. 
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Although trigonometric functions also possess some of these properties, they are seldom 

used in the finite element analysis. 

 

(i.) If a polynomial type of variation is assumed for the field variable ( )x  in a one-

dimensional element,  ( )x can be expressed as: 

                                           2

1 2 3( ) ............. n

mx a a x a x a x       

Where 1 2 3, , .............., na a a a  are the coefficients of the polynomial, also known as 

generalized coordinates, n is the degree of the polynomial and m is the number of 

polynomial coefficients. 

(ii.) For two dimensional finite elements the polynomial form of interpolation 

functions can be expressed as: 

                             2 2

1 2 3 4 5 6( , ) ............. n

mx y a a x a y a x a y a xy a y          

(iii.) For three dimensional finite elements the polynomial form of interpolation 

functions can be expressed as: 

   2 2 2

1 2 3 4 5 6 7 8 9 10( , , ) ............. n

mx y z a a x a y a z a x a y a z a xy a yz a zx a z             

 

Finite elements can be classified into three categories as simplex, complex, and 

multiplex elements depending on the geometry of the element and the order of the 

polynomial used in the interpolation function.  

• Simplex elements are those for which the approximating polynomial consists of 

constant and linear terms. For example, the simplex element in two dimensions is 

a triangle with three nodes (corners). 

• Complex elements are those for which the approximating polynomial consists of 

quadratic, cubic, and higher order terms, according to the need in addition to the 

constant and linear terms. For example, a triangular element with three corner 

nodes and three midside nodes satisfies this requirement. 

• Multiplex elements are those whose boundaries are parallel to the coordinate 

axes to achieve inter-element continuity and whose approximating polynomials 

contain higher order terms. The rectangular element is an example of a multiplex 

element in two dimensions. Note: The boundaries of the simplex and complex 

elements need not be parallel to the coordinate axes.) 
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• If the interpolation polynomial is of order two or more, the element is known as a 

higher order element. In higher order elements, some secondary (midside and/or 

interior) nodes are introduced in addition to the primary (corner) nodes to match 

the number of nodal degrees of freedom with the number of constants 

(generalized coordinates) in the interpolation polynomial. 

• In general, fewer higher order elements are needed to achieve the same degree of 

accuracy in the final results. Although it does not reduce the computational time, 

the reduction in the number of elements generally reduces the effort needed in the 

preparation of data and hence the chances of errors in the input data.  

• The higher order elements are especially useful in cases in which tile gradient of 

the field variable is expected to vary rapidly. In these cases, the simplex elements, 

which approximate the gradient by a set of constant values, do not yield good 

results. The combination of greater accuracy and a reduction in the data 

preparation effort has resulted in the widespread use of higher order elements in 

several practical applications.  

 

SELECTION OF THE ORDER OF THE INTERPOLATION POLYNOMIAL 

 

While choosing the order of the polynomial in a polynomial-type interpolation function, 

the following considerations have to be taken into account: 

 

a. The interpolation polynomial should satisfy, as far as possible, the convergence 

requirements. 

b. The pattern of variation of the field variable resulting from the polynomial model 

should be independent of the local coordinate system. 

c. The number of generalized coordinates ( ia ) should be equal to the number of 

nodal degrees of freedom of the element. 

 

• The first consideration, namely, the convergence requirements is to be satisfied by 

the interpolation polynomial, is given in the next section. 

 

• According to the second consideration, i.e., the field variable representation 

within an element, and hence the polynomial, should not change with a change in 
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the local coordinate system (when a linear transformation is made from one 

Cartesian coordinate system to another). This property is called geometric 

isotropy or geometric invariance or spatial isotropy. In order to achieve 

geometric isotropy, the polynomial should contain terms that do not violate 

symmetry in figures below, which are known as Pascal triangle in the case of 

two dimensions and Pascal tetrahedron in the case of three dimensions. 

 

(a) In two dimensions (Pascal triangle) 

 

Thus, in the case of a two-dimensional simplex element (triangle) the interpolation 

polynomial should include terms containing both x and y but not only one of them, in 

addition to the constant term. In the case of a two-dimensional complex element 

(triangle), if we neglect the term x3 (or x2y) for any reason, we should not include y3 (or 

xy2) also in order to maintain geometric isotropy of the model. Similarly, in the case of a 

three dimensional simplex element (tetrahedron), the approximating polynomial should 

contain terms involving x, y, and z in addition to the constant term. 
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                       (b) In three dimensions (Pascal tetrahedron) 

 

• The final consideration in selecting the order of the interpolation polynomial is to 

make the total number of terms involved in the polynomial equal to the number of 

nodal degrees of freedom of the element. 

 

(a) CONVERGENCE REQUIREMENTS 

 

Since the finite element method is a numerical technique, we obtain a sequence of 

approximate solutions as the element size is reduced successively. This sequence will 

converge to the exact solution if the interpolation polynomial satisfies the following 

convergence requirements. 
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(i.) The field variable must be continuous within the elements. This requirement is 

easily satisfied by choosing continuous functions as interpolation models. Since 

polynomials are inherently continuous, the polynomial type of interpolation 

models satisfies this requirement. 

 

(ii.) The interpolation function should allow for rigid body displacement and for 

a state of constant strain with in the element 

The uniform or constant value of the field variable is the most elementary type of 

variation. Thus, the interpolation polynomial must be able to give a constant value 

of the field variable within the element when the nodal values are numerically 

identical.  

In the case of solid mechanics and structural problems, this requirement states 

that the assumed displacement model must permit the rigid body (zero strain) and 

the constant strain states of the element. 

 

(iii.) The field variable ( )x and its partial derivatives up to one order less than 

the highest order derivative appearing in the functional ( )I   must be 

continuous at element boundaries or interfaces.  

In the case of general solid and structural mechanics problems, this requirement 

implies that the element must deform without causing openings, overlaps, or 

discontinuities between adjacent elements. In the case of beam plate, and shell 

elements, the first derivative of the displacement (slope) across inter element 

boundaries also must be continuous. 

 

The elements whose interpolation polynomials satisfy the requirements (i) and (iii) are 

called "compatible" or "'conforming" elements and those satisfying condition (ii) are 

called "complete" elements.  

 

If the interpolation polynomial satisfies all three requirements, the approximate 

solution converges to the correct solution when we refine the mesh and use an 

increasing number of smaller elements.  
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In order to prove the convergence mathematically, the refinement has to be made in a 

regular fashion so as to satisfy the following conditions: 

 

(i.) All previous (coarse) meshes must be contained in the refined meshes. 

(ii.) The elements must be made smaller in such a way that every point of the solution 

region can always be within an element. 

(iii.) The form of the interpolation polynomial must remain unchanged during the 

process of mesh refinement. 

 

Conditions (i) and (ii) are illustrated in the figure below, in which a two-dimensional 

region (in the form of a parallelogram) is discretized with an increasing number of 

triangular elements.  

 

                  (a) Idealization with 2 elements             (b) Idealization with 8 elements 

 

                                               (c) Idealization with 32 elements 

Figure: All Previous Meshes Contained in Refined Meshes. 
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For a curved boundary, it can be seen that conditions (i) and (ii) are not satisfied if we use 

elements with straight boundaries.  

 

(a) Idealization with 6 elements   (b) Idealization with 12 elements 

Figure: Previous Mesh Is Not Contained in the Refined Mesh. 

 

Convergence 

 

When modeling a problem using a finite element program, how do we know that the 

solution that we get is correct?  Just because we get a solution, this does not mean that the 

solution is correct  

The word convergence is used because the output from the finite element program is 

converging on a single correct solution.  In order to check the convergence of the 

solution, at least two solutions to the same problem are required.  The solution from the 

finite element program is checked with a solution of increased accuracy.  If the more 

accurate solution is dramatically different from the original solution, then the solution is 

not converged.  However, if the solution does not change much (less than a few percent 

difference) then the solution is considered converged. It is very important to check 

whether the solution has converged. Convergence is tested differently depending on 

which solution method is used.  The two available methods are the p-method and the h-

method. 

 

Convergence Using H-Method: 

Simple shape functions and many small elements are used in h-method problems.  In 

order to increase the accuracy of the solution, more elements must be added.  This means 

creating a finer mesh. 
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As an initial run, a course mesh is used to model the problem.  A solution is obtained.  To 

check this solution, a finer mesh is created.  The mesh must always be changed if a more 

accurate solution is desired. The problem is run again to obtain a second solution.    If 

there is a large difference between the two solutions, then the mesh must be made even 

finer and then solve it again.  This process is repeated until the solution is not changing 

much from run to run. 

  

When using an h-method finite element program, the user must run two or more solutions 

to ensure that the solution has converged.  The user runs the solution with one mesh and 

then changes the mesh and reruns the solution. 

  

The density of the mesh only needs to be increased in the areas of the part where stresses 

are very high or the stresses change quickly over a small distance.  In areas of the part 

where stress variations are not very high, few elements are required to accurately model 

the problem.  So, when checking convergence, it is only really necessary to create a finer 

mesh in areas of stress concentration.   

  

 Convergence Using P-Method: 

Large elements and complex shape functions are used in p-method problems.  In 

order to increase the accuracy of the solution, the complexity of the shape function must 

be increased.  The mesh does not need to be changed when using the p-method.  

  

Increasing the polynomial order increases the complexity of the shape function.   As an 

initial run, the solution might be solved using a first order polynomial shape function.  A 

solution is obtained.  To check the solution the problem will be solved again using a more 

complicated shape function.  For the second run, the solution may be solved using a 

second order polynomial shape function.  A second solution is obtained.  The output from 

the two runs is compared.   If there is a large difference between the two solutions, then 

the solution should be run using a third order polynomial shape function.  This process is 

repeated until the solution is not changing much from run to run. 

 


