REAL EIGENVALUE
ANALYSIS

The usual first step in performing a dynamic analysis is determining the natural frequencies
and mode shapes of the structure with damping neglected. These results characterize the
basic dynamic behavior of the structure and are an indication of how the structure will respond
to dynamic loading.

The natural frequencies of a structure are the frequencies at which the structure naturally tends
to vibrate if it is subjected to a disturbance. For example, the strings of a piano are each tuned
to vibrate at a specific frequency. Some alternate terms for the natural frequency are
characteristic frequency, fundamental frequency, resonant frequency, resonance frequency, and
normal frequency.

The deformed shape of the structure at a specific natural frequency of vibration is termed its
normal mode of vibration. Some other terms used o describe the normal mode are mode
shape, characteristic shape, and fundamental shape. Each mode shape is associated with a
specific natural frequency.

Natural frequencies and mode shapes are functions of the structural properties and boundary
conditions. A cantilever beam has a set of natural frequencies and associated mode shapes
(Figure 3-1). If the structural properties change, the natural frequencies change, but the mode
shapes may not necessarily change. For example, if the elastic modulus of the cantilever beam
is changed, the natural frequencies change but the mode shapes remain the same. If the
boundary conditions change, then the natural frequencies and mode shapes both change. For
example, if the cantilever beam is changed so that it is pinned at both ends, the natural
frequencies and mode shapes change (see Figure 3-2).
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3.1 Reasons to Compute Normal Modes |

There are many reasons to compute the natural frequencies and mode shapes of a structure.
One reason is to assess the dynamic interaction between a component and its supporting
structure. For example, if a rotating machine, such as an air conditioner fan, is to be installed
on the roof of a building, it is necessary to determine if the operating frequency of the rotating
fan is close to one of the natural frequencies of the building. If the frequencies are close, the
operation of the fan may lead to structural damage or failure.

Decisions regarding subsequent dynamic analyses (i.e., transient response, frequency
response, response spectrum analysis, etc.) can be based on the results of a natural frequency
analysis. The important modes can be evaluated and used to select the appropriate time or
frequency step for integrating the equations of motion. Similarly, the results of the eigenvalue
analysis—the natural frequencies and mode shapes—can be used in modal frequency and
modal transient response analyses (see Chapters 5 and 6).

The results of the dynamic analyses are sometimes compared to the physical test results. A
normal modes analysis can be used to guide the experiment. In the pretest planning stages, a
normal modes analysis can be used to indicate the best location for the accelerometers. After
the test, a normal modes analysis can be used as a means to correlate the test results to the
analysis results.

Design changes can also be evaluated by using natural frequencies and normal modes. Does
a particular design modification cause an increase in dynamic response? Normal modes
analysis can often provide an indication.

. In summary, there are many reasons to compute the natural frequencies and mode shapes of a

Eigenvalue analysis is the basis | strycture. Al of these reasons are based on the fact that real eigenvalue analysis is the basis

for many types of dynamic . .

response analyses. for many types of dynamic response analyses. Therefore, an overall understanding of normal
modes analysis as well as knowledge of the natural frequencies and mode shapes for your

particular structure is important for all types of dynamic analysis.




The solution of the equation of motion for natural frequencies and normal modes requires a
special reduced form of the equation of motion. If there is no damping and no applied loading,
the equation of motion in matrix form reduces to

M) [} + (K] fu) = 3

where [M] = mass matrix

[K] = stiffness matrix

This is the equation of motion for undamped free vibration. To solve Eq. (3-1) assume a
harmonic solution of the form

[u} = {p}sin wt (3-2)

where {¢] = the eigenvector or mode shape

o = is the circular natural frequency

Aside from this harmonic form being the key to the numerical solution of the problem, this form |

also has a physical importance. The harmonic form of the solution means that all the degrees
of freedom of the vibrating structure move in a synchronous manner.  The structural
configuration does not change its basic shape during motion; only its amplitude changes.

If differentiation of the assumed harmonic soiution is performed and substituted into the
equation of motion, the following is obtained:

-0 M]jp}sin wt + [K][¢]sin wt = 0 (3-3)

which after simplifying becomes

(1K1 - w?[M])g] = 0 (3-4)
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This equation is called the eigenequation, which is a set of homogeneous algebraic equations
for the components of the eigenvector and forms the basis for the eigenvalue problem. An
eigenvalue problem is a specific equation form that has many applications in linear matri
algebra. The basic form of an eigenvalue problem is

A~ Allx =0 (3-5)

where A = square matrix

A = eigenvalues
[ = identity matrix
x = eigenvector

In structural analysis, the representations of stiffness and mass in the eigenequation result in
the physical representations of natural frequencies and mode shapes. Therefore, the
eigenequation is written in terms of K, w, and M as shown in Eq. (3-4) with w2 = \.

There are two possible solution forms for Eq. (3-4):

1. If det (K] — w2[M]) = 0, the only possible solution is

[¢] =0

This is the trivial solution, which does not provide any valuable information from a
physical point of view, since it represents the case of no motion. (“det” denotes the
determinant of a matrix.)

2. If det ([K] - w?[M]) = 0, then a non-trivial solution ({¢) = 0)is obtained for

(K] - w?[M])p} = 0 (3-7)

From a structural engineering point of view, the general mathematical eigenvalue
problem reduces to one of solving the equation of the form

det ([K] — w?[M]) = 0 (3-8)
or
det (K] — A[M]) = 0 (3-9)

where A = ?

B




Section 3.2 Overview of Normal Modes Analysis

The determinant is zero only at a set of discrete eigenvalues 1, or {gf There is an eigenvector
f’@ i} which satisfies Eq. (3-7) and corresponds to each eigenvalue. Therefore, Eq. (3-7) can be
rewritien as

K—wMp} =0 =12 3. (3-10)

Fach eigenvalue and eigenvector define a free vibration mode of the structure. The i-th
eigenvalue A, is related to the i-th natural frequency as follows:

f =5 (3-11)
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where f, = I-th natural frequency
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The number of eigenvalues and eigenvectors is equal to the number of degrees of freedom that
have mass or the number of dynamic degrees of freedom.

There are a number of characteristics of natural frequencies and mode shapes that make them
useful in various dynamic analyses. First, when a linear elastic structure is vibrating in free or
forced vibration, its deflected shape at any given time is a linear combination of all of its normal
modes

W) = ey & (3-12)

vector of physical displacements
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[p,} = i-th mode shape

i-th modal displacement
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Second, if [K] and [M] are symmetric and real (as is the case for all the common structural
finite elements), the following mathematical properties hold:

{gbt.} {M}{q::j} =0 ifi=] (3-13)

T
{?«";} W}{%} = m; = j-th generalized mass (3-14)
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