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Design of Locally Unstable
Compression Members




LOCALLY UNSTABLE -
MEMBERS IN COMPRESSION

INTRODUCTION

The design of locally unstable sections, at
least with respect to overall buckling (local
instability does not occur before the
chances of overall buckling), is discussed
earlier.



Sometimes, thin / slender elements are
used in the compression members, which
may carry substantial loads even after this
local instabillity.

In fact, the thin plate cold-formed sections
are always made such that the individual
elements are not locally stable.



The buckling of a plate section, having a
size of b x t, depends on the equivalent
slenderness ratio.

his equivalent slenderness ratio is equal to
the width / thickness ratio denoted by A,
equalto b/ t.




DIFFERENTIAL EQUATION FOR
BENDING OF HOMOGENEOUS PLAT
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The general forces acting a 3-d element are
shown in Figure 11.1.

Following nomenclature is used for various
force effects:
M, = Bending moment per unit length on x-face.

M, = Bending moment per unit length on y-face.

M., = Twisting moment per unit length on x-face.
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Bending moment per unit length on x-face.e

Bending moment per unit length on y-fqlce.
Twisting moment per unit length on x-face.
Twisting moment per unit length on y-face.

Shearing force per unit length in z-direction
acting on x-face.

Shearing force per unit length in z-direction
acting on y-face.

Intensity of continuously distributed load in
z-direction.



Normal force per unit length on x-face.

Normal force per unit length on y-face.

13 ”

Deformation in z-direction load “q”.

Slope in x-direction.

Slope in y-direction.




Curvature in x-direction, proportional tog?
moment M,

Curvature in x-direction, proportional to
moment My.

Change of x-direction slope
measured in y-direction or vice versa,
showing torsional shear curvature
proportional to torsional moments Mxy
and M, .



First derivative of x-direction curvaturge
with respect to x-axis (indicating rate of
change of moment in x-direction),
proportional to the shear force Q,.

First derivative of y-direction curvature
with respect to x-axis (indicating rate of
change of moment in y-direction),
proportional to the shear force Q,.

Second derivative of x-direction
curvature with respect to x-axis
(indicating rate of change of shear force
In x-direction).



Load change along x-axis.

Second derivative of y-direction curvature
with respect to y-axis (indicating rate of
change of shear force in y-direction).
Load change along y-axis.

Second derivative of y-direction curvature
with respect to y-axis (indicating rate of
change of shear force in y-direction).

Thickness of plate.






dx







D = Flexural rigidity of the plate.
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The differential equation for bending of a
plate element may be written by adding the
load resistance by flexure and shear in the
two directions (the related derivatives along
with the constant of proportionality equal to
the flexural rigidity of the plate, D) and
equating it to the applied load.




The D-term may be taken on the right
hand of the equation.
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After solving this equation for the deflection
function w(x), analytically for some simple
cases or numerically, the corresponding load
effects may be calculated by using the
following expressions:
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BUCKLING OF UNIFORMLY
COMPRESSED PLATE

he buckling of a uniformly compressed plate
may be studied by considering a thin plate,
just at the stage of buckling, with free to
rotate edges and subjected to compressive
force uniformly distributed at the edges.



o000
, ) 0000
S . o000
bl ] N, = F,t oo
= - o
y n
Transverse Component of NV,
EENAREEENEY
X
JLateral Deflection, w
ow 8w+ 0 (ﬁwj I
Ox N, X e\ ox
,
dx ! N_+ N, dx
OX




Considering a thin plate element of size
x b, subjected to a critical buckling stres
on the edges denoted by F_, the applied
axial force per unit length on the edges
will become F_t = N, in our general

nomenclature for the plate element.

Now considering a differential element of
size dx x dy, a component of the force N,
after buckling acts as the transverse load
g on the element.



The magnitude of this load may be
estimated by considering the equilibrium|o
the element in the z-direction after buckling
as follows:
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Where N, dy is the total inclined force, ow/ox
is the slope or tangent of the angle and N dy
ow/ox is the z-direction component of this
load.



Remember that for small angles in
radians, the angle itself, its sine and
tangent are almost equal.

The second term in the equation is the
same expression developed for the right
end of the element.

After opening the brackets, the following is
obtained:
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Neglecting the product of infinitesimal terms,
the expression simplifies to:
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Using his load, the D.E. of plate bending may

provide all the required results. The form of
this equation will become as under:

qg = -N,
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This is a partial differential equation involving
two variables. For its solution, a deflection

function to be fitted may be assumed to be a
product of a x-function F.(x) and a y-function

F,(y)-

w = F(x)F,()



Further assuming that the buckling will yielés&s
sinusoidal variation along the x-axis, followlag
function may be tried:

F.(x)= sin(m zx/ a),

where a is the length of the plate and m is
an integer number.

This function satisfies the boundary
conditions as shown below:

x=0=Fkx=0=w=0 (BC#1)
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x=0= ow

3 =0 (BC#)
X

(Moment at edge 1s zero)

X =a= F((x)=mr=w=0 (BC#3)
2

a = 2? = 0 (as above) (BC #4)
X

Substituting the trial function into the governing
differential equation, the following result is obtained:

X
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This is an ordinary fourth order
homogeneous differential equation in terms
of only one variable, that is, y. The solution
of this equation is:



F,(y)= C,sinh ay + C, cosh ay
+ C3 sinh py + C4 cosh By

hers o= 2] 5] o
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The complete solution for the plate deflection
function is:




= [sin(m zx/ a)] (C, sinhay
+ C,cosh ay + C, sinhpy
+ C, coshpgy)

This function must satisfy all the boundary
conditions.

However, sine and sinh functions are not
symmetrical about x = 0 line.

For identical support conditions along the
two edges parallel to the direction of loading

(y =% b/ 2), the odd function coefficients
must be zero.
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y = coshx = (e+e¥)/2 y = sinhx = (e*—e™)/2



C,=C, =0
w = (C,cosh ay + C, coshpy)
X sin(m 7 x/ a)

ow = [Czasinhay+C4,6’sin,By]sin ne
oy a
0’ w mx

— = [C2052 coshay —C, B° cos,By]sin

oy a

The boundary conditions are that the

edges, y =+ b/ 2, are simply supported.
2

w=0and 2¥ =0
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Which give the following results:

C, cosh ag + C, coshﬂg = 0

C,a’ coshozé—Cél,B2 cos,Bé = 0
2 2
i ) L
cosh o — coS 7 — Vall
2 Py fe]

a’ cosha% — B’ cosﬂ% Ca_




For a non-trivial solution, C2 and C4
must be non-zero and the determinant
of the coefficients matrix must be zero:

— (cosh o gj(ﬂz COS ,ng — (az cosh o gj(cos ,B%) = 0

(a2+,6’2)cosha§cos,[)’§ = 0

The condition that «,, = — 5, represents a
trivial solution giving N, = 0 and cosh(ab/2)
can not be zero (it is always greater than or
equal to 1.0).



The only way in which the above
equation may be satisfied for a real
problem is the following:

b
cosf— = 0
'82

or 'Bg =nl/2,3n/2, 51/ 2, etc.

The first mode of buckling along the width
(quarter wave in b / 2 distance) is usually
the most critical, which is represented by
the least values out of the above solutions.
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The term in the brackets is called the plate-
buckling coefficient (k), m is the number of
half sine waves in the buckled shape along
the x-axis (or along the length) and D is the
plate rigidity defined earlier.
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The expression for F_ becomes:
n’E

F. = k
cr 120 =v*)(b /1)’

he buckling coefficient depends on the
type of stress (uniform compression or
otherwise), edge conditions (value of m will
be different), and the aspect ratio a/ b.



For a larger value of a/ b and if m also
becomes larger, the k-curve becomes
flatter and approaches a constant value
of 4.0. For example for a/ b of 15, the

value of k becomes:
2

oo |15.m
- m 15
m =1 = k = 227
m=4 = k = 16.1
m =1 = k = 5.8
m =1 = k = 4.02
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It is to be noted that the less value of k gives EE:‘
less buckling strength and is more critical. o
Hence for simply supported ends, a value of 4.0
s taken.
For the other end conditions, the critical values
are listed below:
K., value for two edges simply supported = 4.00
k... value for two edges fixed = 6.97
k... value for one edge fixed and other simply supported = 5.42
k.. value for one edge fixed and other free = 1.277
k.., value for one edge free and other simply supported = 0.425

The form of equation for F,, may be modified as
under in order to study the factors affecting the
buckling strength:
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The square root of the ratio of yield strength to the
elastic critical buckling strength may be denoted by
the parameter A, while the b/ t ratio may be
denoted by the parameter A.

The Poisson’s ratio for steel may be taken equal to
0.3 to simplify the above equation to the following:

F
A, =1.052,|-% x4
Ek



A graph between the parameter A (b / ¢ ratio) and
the ratio £, / F, 1s shown 1n Figure. This graph
shows distinct phases of strength under the action
of edge compression as described below:

s Strain Hardening
/No Buckling

. / Elastic Buckling
Transition Curve Showing Inelastic
<--..._Buckling And Effect of Residual Stresses

~——— Post-Buckling
Strength




a. For very low values of A, the strength
becomes higher than £, due to strain
hardening, without any buckling.

In such cases, post-buckling strength is absent
but the entire plate reaches strain hardening
after undergoing all the yielding.

Hence, F /F, may become greater than unity.

The value 4, is an equivalent elastic value of A,
at which chances of inelastic buckling just start
corresponding to the yielding stress.

Some typical values of A, are as under:



A, = 0.455 for long hinged flanges. ese:
A, = 0.461 for fixed flanges. S
A, = 0.588 for hinged webs.

A, = 0.579 for fixed webs.

)

An average value of 0.5 may be considered for
the general discussion.

b. The value of 4. is equal to one at the point
where no elastic buckling occurs up to F, stress.

c. Inelastic buckling occurs for values of A_ less
than approximately1.45.

d. The point B indicates a situation where the
elastic buckling formula gives strength equal to F,.



e. Elastic buckling according to the
derived formula when the value of 4_ is
greater than or equal to 1.45.

. Post buckling strength with stress
redistribution and large deformations results
after 4. equal to 1.45.

Point A

F../ F, = 1.0 according to the inelastic buckling
formula

Corresponding A for elastic formula ~ 0.5

Ek
Afor elastic A, of 0.5 ~ 0.475 /F

y



Point C eoce
A, ~ 1.45 S
F../ F, = 0.476 according to the elastic

buckling formula

A =~ 1.378\/? using the elastic formula

Slope of strey\ight line between Aand C = 0.58\/2
Point B
4. on the elastic curve = 1.00

F../F, = 1.00 on the elastic curve
Ek
A ~ 0951 /7 using the elastic formula



Corresponding value of F. / F, calculated
using the inelastic straight line = 0.724

The values of the factor A for the three points are
listed below for different critical values of k-factor:

For k = 0.425 For Overhanging Flanges

Ek _ E- Ek _ £
Mﬁ%-omm% .wﬂ%—Q&O%.
Ek E
L3 = 0.8981/7y



AISC Table B4.1:

Flexure in flanges of rolled I-shaped sections:

A, =038 |2
Fy

Uniform compression in flanges of rolled I-
shaped sections:

2 =056 | £
Fy

For k = 4.0 For Stiffened Webs

Ek E Ek - _ £
0.475\/F:y = O.95\Ey. 0-951\/; = 1.902\/; .




Ek E
1.378\/F:y = 2756 \Ey

AISC Table B4.1:

Flexure in webs of doubly symmetric |-shaped

sections: E
A, =376 |—
Fy

(Half of the web is in compression and that
compression also varies along the member.)

Uniform compression in webs of doubly
symmetric I-shaped sections: \/7
ir :149 ?



Any plate with no residual stresses develops
uniform axial stresses up to the stage when the
portions away from the side supports buckles in
out-of-plane direction (Figure).

After buckling, the stresses become non-uniform
and post-buckling strength 1s available near the
relatively stable ends.

The post-buckling strength becomes larger as the
width-to-thickness ratio 1s increased.

L [

Stress Distribution Stress Distribution
Before Buckling After Buckling

-




The AISC values are in general excessively
conservative because of the presence of
residual stresses and imperfections.

For design, the local buckling of a column
component must be prevented if it occurs
before achieving full strength of the column
based on its overall slenderness ratio KL / r.

This means that the acceptable b / t ratios vary
depending on the overall slenderness ratio of
the column.

F

>
cr component

F

cr overall column




Steel Structures

Design of Compression Members With Some Parts
Locally Unstable

AISC 2005 - E7

* Plate elements in compression, either “stiffened”
or “unstiffened” have post buckling strength.

o GStiffened elements have large post buckling
strength while unstiffened elements have little.



Steel Structures

Post Buckling Strength

£ Stress ¢
e | Distribution max

Stiffened

|12

b,/2

Stiffened Elements

Plate elements under axial compression, showing actual stress distribution and
an equivalent system
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Post Buckling Strength (contd...)

Nominal strength of a stiffened elements

Pﬁfjf(y)dy
—t><b X f

max

P Aeﬁ f max

b, = Effective width over which the maximum stress may be considered
uniform and still gives almost correct answer.
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Post Buckling Strength (contd...)

f
maxT | favg 1

Free

|12

Unstiffened Elements

Plate elements under axial compression, showing actual stress distribution and
an equivalent system
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Post Buckling Strength (contd...)

Nominal strength of an unstiffened element

})n :tXbeClvg
B/l — Ag Xfavg

Unstiffened elements have less post-buckling
strength. They may be idealized as not buckled
but subjected to a reduced equivalent stress.
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Post Buckling Strength (contd...)

Nominal strength of the member having both stiffened and unstiffened
elements (W-section)

A
Pn:fangAeﬁ‘ })n:favgx " effXA
fmax Ag ;

})n:QSXQaXfmaXXAg Ijn:QfmaXAg:}?crAg

A compression member consisting of both stiffened and
unstiffened elements may be treated as unstiffened for
establishing the stress £, while effective area is

determined after deducting the ineffective area out of
the stiffened elements.




Steel Structures
Post Buckling Strength (contd...)

Q = Full reduction factor for slender compression
elements, 1.0 for members with compact and
non-compact elements

Q. = Reduction factor for slender unstitfened
elements, 1.0 if no slender unstiffened element
1S present

Q. = Reduction factor for slender stitfened
elements , 1.0 if no slender stiffened element is
present



Steel Structures
2
F - w k :
(KL /r)
Critical/ Ultimate Compressive Strength, ¢_F.,

For 2 <471 |- o F >0.440F
r OF g
(7 QR

Fe
F,=|0.658 " |QF,
\ y

For ﬁ>4.71 B or F,<0440F,
y \/ OF

F. =0.877Fe
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Reduction Factor Q, for Unstiffened Elements

For columns

. cr ,plate > _ ¢, plate
0, = >
cr ,column y

For compression flanges of beams

r

. cr , plate > _ plate
Q, = 2

F F

cr ,beam .. flange y
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Reduction Factor Q, for Unstiffened Elements (cohtd..)

a) For single angles and double angles with separators

For 2<045 /E = 1.0
b\ [F
For 0.45 /—<—<091/ Q. =1.340 - 076( jw/gy

12.8 <b / t <25.8 for A-36 steel

0.53E
For E2091 E =

R R

b/ t>25.8 for A-36 steel
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Reduction Factor Q, for Unstiffened Elements (cohtd..)

b) For flanges, angles and plates projecting from rolled
beams or columns

b E
For —<0.56 /— = 1.
t F, O 0
F
For (.56 £<é<1.03 £ O =1.415-0.74 2 _r
F, F, ’ t )\ E

158 <b / t <29.1 for A-36 steel

b E ~ 0.69E
For 72 1.03\/F:y O, = F (%)2

b/ t>29.1for A-36 steel




Steel Structures

Reduction Factor Q, for Unstiffened Elements (cohtd..)

c) For flanges, angles and plates projecting from built-up
columns or other compression members

For é<045 /Ek 0. = 1.0

F

For 0.64 b Ek, ) =1.415—O.65(2j -
¢ ¢t )\ Ek,

; 221.17 0. =0.90 L%
i F b/
4

0.35<k. <0.76



Steel Structures

Reduction Factor Q, for Unstiffened Elements (cohtd..)

d) For Stem of Tees

d E
F —<0.75 |— =
or /F o, = 1.0

t Yy
For 075 | <9103 |2 =
F t F
y y
For i21.03 £:>
t V Fy

d = the full nominal depth of tee

0, = 1.908—1.22(%

F

y

E

0.

69FE

0, =
Fy

)
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Reduction Factor Q, for Stiffened Elements (contd. )

a) For flanges of square and rectangular sections of uniform

_ Aeﬁ”
0, = y
g
thickness
For é >1.04 E =
t f
Otherwise

b,=1.92t M{l—

0.38

b/t

7

b =b

= Computed elastic compressive stress in the stiffened element

=P,/ Ay (may conservatively be taken equal to F,.
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Reduction Factor Q, for Stiffened Elements (contd. )

b) For other uniformly compressed elements.

{ \ f

be:wzf\ﬁl_%\ﬁ
L bt NS

Otherwise b . = b

fis taken as F_, with F_ calculated based on Q = 1.0.
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Reduction Factor Q, for Stiffened Elements (contd..!

c) For axially loaded circular sections

For 011£<2< 045£

F t F

Y Y

0.038 £ 2
0=0,=—F+

F0]) 3

D = Outside diameter , mm

t = Wall thickness, mm




Steel Structures

Example: Design a double equal leg angle compression

member of width 416 mm connected by 10 mm gusset plate and
stay plates. Steel with F, =420 MPa is to be used

P, =1700 kN ]
KL = 6m

F, = 420 MPa

Solution 10 mm

Assume Slenderness ratio R = 90

F,>0.44F, =

P 7*E 7% 200000
© (KL/r)? (90)°

=243.69 MPa
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Solution (contd...)
F >0.44F
e y = F_y }4 416 mm »{
¢.F, =09x|0.658" |F,
420
= 0.9x £0.658 243.69 jx 420 = 183.74 mm?
10 mm

P, 17000 x1000

Are — -
1 ¢o.F 183 .74
= 9252 mm * For2Ls

= 9252 = 4626 mm > For single angle

2
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Solution (contd...)

Trial Section - 1: 2L, 203 x 203 x 12.7

A = 5000 mm > For single angle

rrnin = rx,of single angle = 63 .Smm
o KL _ 6000
v 63.5
2
F,== X9250?OOO = 218 .72 MPa

c cr

416 mm »{

10 mm

6. F, =0.9x(0.658 /2% ) 420 =169 .21 MPa
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Solution (contd...)

6 P =169 .21 x 2 x 5000 /1000

= 1692 .1kN Based on assumption that
member is locally stable

¢.P, < P, Revise the section

Trial Section - 2: 2L, 203 x 203 x 14.3

A = 5600 mm ° For single angle

y.. =7r = 63 .5mm

min x, of single angle

416 mm »{

10 mm
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Solution (contd...)

}4 416 mm »{

oo KL _ 6000 _
v 63.5
2
Fo= 2200000 _ 518 72 MPa
95 10 mm

8. F, =0.9x(0.658 /27 ) 420 =169 .21 MPa

C cr

6 P =169 .21 x 2 x 5600 /1000

¢.P =1895 kN Based on assumption that

member is locally stable
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Solution (contd...)
416 mm »{
Check Local Stability
=220 un s 4 o0as [E o3
t 143 Fy
10 mm

A > Kr section is locally unstable

Ao =0.91 / E _ =19.9
For unstiffened elements, if 0.45 /— <— <0.91 /
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Solution (contd...)

Q=0Q —1340—076(2j U
o \tJVE

420

200,000
= (0.846 15.4 % reduction

=1.340 —0.76(14.2)\/

OFy

So ¢ F = o.9o£o.658FeJQFy

0.845x420
= 0.90(0.658 218.72 j0.845 x 420

=161.96 MPa
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Solution (contd...)

6P =@ F A =161.96x5600x2/1000

cTcrttg

o P =1814 kN > P,

O.K.
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Example: Calculate the factored axial load capacity of the shown

300 mm x 300 mm non-standard structural tube having a thickness of
5mm and an effective length of 5.5 m. Use F, = 345 MPa.

Solution: y

KL =5.5m (- N

F, =345MPa —H— x
423007 —290° = 5900mm? o=

Neglecting chamfer r=2t

4 4
[ =g =300° 290
T2 12

~ 8560 x10*mm*
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Solution: (contd...)
re="r, = \/g =~ 120mm [( \\
Straight width b =300—2x (2x5)=280mm b
L —

A =1.40 /£ =33.7
F

y
A > kr Stiffened, locally unstable element

The section does not have unstiffened elements
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Solution: (contd...)

Q = QS X Qa For stiffened elements Q. = 1.0

= Q=Q,
Overall Stability
P KL _ 5.5x1000
v 120

Assume f = Fy = 345 MPa

b, =1.92t £ ] ———
-5

0.38

=45.83

=
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Solution: (contd...)

200,000

b =1.92x5
345

b, =193.4mm

Ineffective width

1

©0.38 200,000
56 | 345

=280—-193.4 =86.6mm

A,; =5900—-86.6x4x35
=4168mm?’
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Solution: (contd...)

A, 41
0 =—4 = 08 _0.70
A, 5900
2
Fo= T 200000 _ 939 79 MPa
45 .83

6,F, =0.9%(0.658 734 % 7 ), 0.7 x 345 =195 .19 MPa

C cr

6 P, =195 .19 x 5900 /1000

=1151 .6 kN
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Solution: (contd...)

If we ignore local buckling

$.F., =0.9x(0.658% /%™ )x 345 = 266 .27 MPa

C cr

6 P, =266 .27 x 5900 /1000

® P =1571 kN
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EX&IIIplEZ Determine the compression capacity of the given built-
up I-section for an effective length of 2.5m. F, = 345 MPa. Ignore the
residual stresses.
Solution
3 *
7 :2><10X250 XV \
g 12 t
5 x 280 mm Pla{é/\$
:26O4><104mm4 h 10 x 250 mm Plate
A=2x10x250+5x280 4N )
K
= 6400mm’

r, = W/I% = 63.8mm
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o
Solution
Local Stability Check
For flange A= b, _ 250 _ 12.5
2t 2x10
4
k. = 0.35 to 0.76
hit,
. S 0.534
\/280/5
Ek 200,000%0.534

=11.26

A, =0.64 |—= =O.64\/
345

Fy
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Solution 7\, > 7\”r Flange is locally unstable

Now for the built-up sections

0.64 |%5e 1126 and 117 [FXe 2206
Fy Fy
As 11.26 <A <20.6

o Q, :1.415—0.65(%L/]%E =0.953

Local Stability Check For Web
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Solution

A =1.49 /£ ~35.9
Fy

A > kr Web is locally unstable

KL 2500

Assume =1.0 = =39.2
¢ r. 638
2
Fo= 72200900 _ 1584 6 MPa
39.2

f=F, =(0.658*/7%)x 345 = 308 .3 MPa



Steel Structures

Solution

b, =1.92z\ﬁ 1
/

0.34

b/t

200,000

:1.92><5\/

=206.7mm

308.3

1

7

0.34

200,000

56

J

308.3

Ineffective width = 280 —206.7 =73.3mm

A,y = 6400—73.3x5 = 6033mm’




Steel Structures

Solution

0 =295 _ (043

6400
0=0 x0. =0.943x0.953 =0.898

$,F, =0.9x(0.658 “55343/13%.0 ), 0 898 x 345 = 252 .06 MPa

C cr

6 P =252 .06 x 6400 /1000
= 1613 kN



Concluded
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