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LOCALLY UNSTABLE 
MEMBERS IN COMPRESSION
INTRODUCTION

The design of locally unstable sections, at 
least with respect to overall buckling (local 
instability does not occur before the 
chances of overall buckling), is discussed 
earlier.  



Sometimes, thin / slender elements are 
used in the compression members, which 
may carry substantial loads even after this 
local instability.  

In fact, the thin plate cold-formed sections 
are always made such that the individual 
elements are not locally stable.



ELASTIC STABILITY OF PLATES

The buckling of a plate section, having a 
size of b × t, depends on the equivalent 
slenderness ratio.  

This equivalent slenderness ratio is equal to 
the width / thickness ratio denoted by λ, 
equal to b / t.



DIFFERENTIAL EQUATION FOR
BENDING OF HOMOGENEOUS PLATES

The general forces acting a 3-d element are 
shown in Figure 11.1.  

Following nomenclature is used for various 
force effects:
Mx =  Bending moment per unit length on x-face.

My =  Bending moment per unit length on y-face.

Mxy =  Twisting moment per unit length on x-face.



Mx =  Bending moment per unit length on x-face.

My =  Bending moment per unit length on y-face.

Mxy =  Twisting moment per unit length on x-face.

Myx =  Twisting moment per unit length on y-face.

Qx =  Shearing force per unit length in z-direction 
acting on x-face.

Qy =  Shearing force per unit length in z-direction 
acting on y-face.

q =  Intensity of continuously distributed load in 
z-direction.



Nx =  Normal force per unit length on x-face.

Ny =  Normal force per unit length on y-face.

w = Deformation in z-direction load “q”.

= Slope in x-direction.

= Slope in y-direction.
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=  Curvature in x-direction, proportional to 
moment Mx.

=  Curvature in x-direction, proportional to 
moment My.

=  Change of x-direction slope 
measured in y-direction or vice versa, 
showing torsional shear curvature 
proportional to torsional moments Mxy
and Myx.
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=  First derivative of x-direction curvature 
with respect to x-axis (indicating rate of 
change of moment in x-direction), 
proportional to the shear force Qx.

=  First derivative of y-direction curvature 
with respect to x-axis (indicating rate of 
change of moment in y-direction), 
proportional to the shear force Qy.

=  Second derivative of x-direction 
curvature with respect to x-axis 
(indicating rate of change of shear force 
in x-direction).
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=  Load change along x-axis.

=  Second derivative of y-direction curvature       
with respect to y-axis (indicating rate of 
change of shear force in y-direction).

=  Load change along y-axis.

=  Second derivative of y-direction curvature 
with respect to y-axis (indicating rate of 
change of shear force in y-direction).

=  Thickness of plate.
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D = Flexural rigidity of the plate.
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The differential equation for bending of a 
plate element may be written by adding the 
load resistance by flexure and shear in the 
two directions (the related derivatives along 
with the constant of proportionality equal to 
the flexural rigidity of the plate, D) and 
equating it to the applied load.  



The D-term may be taken on the right 
hand of the equation.
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After solving this equation for the deflection 
function w(x), analytically for some simple 
cases or numerically, the corresponding load 
effects may be calculated by using the 
following expressions:
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BUCKLING OF UNIFORMLY 
COMPRESSED PLATE

The buckling of a uniformly compressed plate 
may be studied by considering a thin plate, 
just at the stage of buckling, with free to 
rotate edges and subjected to compressive 
force uniformly distributed at the edges.
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Considering a thin plate element of size a
× b, subjected to a critical buckling stress 
on the edges denoted by Fcr, the applied 
axial force per unit length on the edges 
will become Fcr t =  Nx in our general 
nomenclature for the plate element.  

Now considering a differential element of 
size dx × dy, a component of the force Nx
after buckling acts as the transverse load 
q on the element.  



The magnitude of this load may be 
estimated by considering the equilibrium of 
the element in the z-direction after buckling 
as follows:
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Where Nxdy is the total inclined force, ∂w/∂x
is the slope or tangent of the angle and Nxdy
∂w/∂x is the z-direction component of this 
load.  



Remember that for small angles in 
radians, the angle itself, its sine and 
tangent are almost equal.  

The second term in the equation is the 
same expression developed for the right 
end of the element.  

After opening the brackets, the following is 
obtained:
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Neglecting the product of infinitesimal terms, 
the expression simplifies to:
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Using his load, the D.E. of plate bending may 
provide all the required results.  The form of 
this equation will become as under:
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This is a partial differential equation involving 
two variables.  For its solution, a deflection 
function to be fitted may be assumed to be a 
product of a x-function F1(x) and a y-function 
F2(y).

w =  F1(x) F2(y)



Further assuming that the buckling will yield a 
sinusoidal variation along the x-axis, following 
function may be tried:

F1(x)=  sin (m π x / a), 

where a is the length of the plate and m is 
an integer number.

This function satisfies the boundary 
conditions as shown below:

x =  0  ⇒ F1(x)  =  0  ⇒ w =  0 (BC #1)
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x =  a ⇒ F1(x)  =  mπ ⇒ w =  0 (BC #3)

x =  a ⇒ =  0 (as above)  (BC #4)w∂
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Substituting the trial function into the governing 
differential equation, the following result is obtained:



)(sin)(sin2)(sin 24

4

22

22

2

4

yF
dy
d

a
xmyF

dy
d

a
xm

a
myF

a
xm

a
m πππππ

+





−








= a
xmyF

a
m

D
N x ππ sin)(2

2









)()(2)( 2

24

22

22

24

4

yF
a

m
D
N

a
myF

dy
d

a
myF

dy
d x


















−






+






−

πππ =  0

This is an ordinary fourth order 
homogeneous differential equation in terms 
of only one variable, that is, y.  The solution 
of this equation is:



F2(y)=  C1 sinh αy +  C2 cosh αy
+  C3 sinh βy +  C4 cosh βy
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The complete solution for the plate deflection 
function is:



w =  [sin (m π x / a)] (C1 sinhαy
+  C2 cosh αy +  C3 sinhβy
+  C4 coshβy)

This function must satisfy all the boundary 
conditions.  

However, sine and sinh functions are not 
symmetrical about x = 0 line.  

For identical support conditions along the 
two edges parallel to the direction of loading 
(y = ± b / 2), the odd function coefficients 
must be zero.



y = cosh x =  (ex + e−x) / 2
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C1 =  C3 =  0
w =  (C2 cosh αy +  C4 coshβy) 

x sin (m π x / a)
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The boundary conditions are that the 
edges, y = ± b / 2, are simply supported.
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Which give the following results:

C2 cosh α +  C4 coshβ =  0b b
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For a non-trivial solution, C2 and C4 
must be non-zero and the determinant 
of the coefficients matrix must be zero:
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The condition that α2 = − β2 represents a 
trivial solution giving Nx = 0 and cosh(αb/2) 
can not be zero (it is always greater than or 
equal to 1.0).



The only way in which the above 
equation may be satisfied for a real 
problem is the following:
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or =  π / 2, 3π / 2, 5π / 2, etc.bβ

The first mode of buckling along the width 
(quarter wave in b / 2 distance) is usually 
the most critical, which is represented by 
the least values out of the above solutions.
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or Fcr =  

The term in the brackets is called the plate-
buckling coefficient (k), m is the number of 
half sine waves in the buckled shape along 
the x-axis (or along the length) and D is the 
plate rigidity defined earlier.
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The buckling coefficient depends on the 
type of stress (uniform compression or 
otherwise), edge conditions (value of m will 
be different), and the aspect ratio a / b.  



For a larger value of a / b and if m also 
becomes larger, the k-curve becomes 
flatter and approaches a constant value 
of 4.0.  For example for a / b of 15, the 
value of k becomes:
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m = 1 ⇒ k =  227
m = 4 ⇒ k =  16.1
m = 1 ⇒ k =  5.8
m = 1 ⇒ k =  4.02



It is to be noted that the less value of k gives 
less buckling strength and is more critical.  

Hence for simply supported ends, a value of 4.0 
is taken.  

For the other end conditions, the critical values 
are listed below:
kmin value for two edges simply supported = 4.00
kmin value for two edges fixed = 6.97
kmin value for one edge fixed and other simply supported = 5.42
kmin value for one edge fixed and other free = 1.277
kmin value for one edge free and other simply supported = 0.425

The form of equation for Fcr may be modified as 
under in order to study the factors affecting the 
buckling strength:



222

2 1
)/)(1(12 cy

cr

tb
Ek

F
F

λν
π

=
−

=

The square root of the ratio of yield strength to the 
elastic critical buckling strength may be denoted by 
the parameter λc, while the b / t ratio may be 
denoted by the parameter λ.

The Poisson’s ratio for steel may be taken equal to 
0.3 to simplify the above equation to the following:
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A graph between the parameter λ (b / t ratio) and 
the ratio Fcr / Fy is shown in Figure.  This graph 
shows distinct phases of strength under the action 
of edge compression as described below:

Strain Hardening
No Buckling

Elastic Buckling
Transition Curve Showing Inelastic 
Buckling And Effect of Residual Stresses

Post-Buckling 
Strength

A B C

λ = b / t

y

cr

F
F



a. For very low values of λ, the strength 
becomes higher than Fy due to strain 
hardening, without any buckling.  

In such cases, post-buckling strength is absent 
but the entire plate reaches strain hardening 
after undergoing all the yielding.

Hence, Fcr / Fy may become greater than unity.  

The value λo is an equivalent elastic value of λc
at which chances of inelastic buckling just start 
corresponding to the yielding stress.  

Some typical values of λo are as under:



λo =  0.455 for long hinged flanges.
λo =  0.461 for fixed flanges.
λo =  0.588 for hinged webs.
λo =  0.579 for fixed webs.

An average value of 0.5 may be considered for 
the general discussion.

b. The value of λc is equal to one at the point 
where no elastic buckling occurs up to Fy stress.

c. Inelastic buckling occurs for values of λc less 
than approximately1.45.

d. The point B indicates a situation where the 
elastic buckling formula gives strength equal to Fy.



e. Elastic buckling according to the 
derived formula when the value of λc is 
greater than or equal to 1.45.

f. Post buckling strength with stress 
redistribution and large deformations results 
after λc equal to 1.45.

Point A

Fcr / Fy =  1.0 according to the inelastic buckling 
formula

Corresponding λc for elastic formula  ≈ 0.5

λ for elastic λc of 0.5  ≈
yF

Ek475.0



Point C

λc ≈ 1.45

Fcr / Fy =  0.476 according to the elastic 
buckling formula

λ ≈ using the elastic formula

Slope of straight line between A and C =  
yF

Ek378.1

Ek
Fy58.0

Point B

λc on the elastic curve  =  1.00

Fcr / Fy =  1.00 on the elastic curve

λ ≈ using the elastic formula
yF

Ek951.0



Corresponding value of Fcr / Fy calculated 
using the inelastic straight line = 0.724

The values of the factor λ for the three points are 
listed below for different critical values of k-factor:

For k = 0.425 For Overhanging Flanges

=  0.310           :               =  0.620     :  

=  0.898
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AISC Table B4.1:

Flexure in flanges of rolled I-shaped sections:   

Uniform compression in flanges of rolled I-
shaped sections:   
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=  2.756
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AISC Table B4.1:

Flexure in webs of doubly symmetric I-shaped 
sections: 

(Half of the web is in compression and that 
compression also varies along the member.)

Uniform compression in webs of doubly 
symmetric I-shaped sections:   
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Any plate with no residual stresses develops 
uniform axial stresses up to the stage when the 
portions away from the side supports buckles in 
out-of-plane direction (Figure).  

After buckling, the stresses become non-uniform 
and post-buckling strength is available near the 
relatively stable ends.  

The post-buckling strength becomes larger as the 
width-to-thickness ratio is increased.

Stress Distribution 
Before Buckling

Stress Distribution 
After Buckling



The AISC values are in general excessively 
conservative because of the presence of 
residual stresses and imperfections.

For design, the local buckling of a column 
component must be prevented if it occurs 
before achieving full strength of the column 
based on its overall slenderness ratio KL / r.  

This means that the acceptable b / t ratios vary 
depending on the overall slenderness ratio of 
the column.

Fcr component ≥ Fcr overall column



Steel Structures

Design of Compression Members With Some Parts 
Locally Unstable
AISC 2005 – E7

• Plate elements in compression, either “stiffened” 
or “unstiffened” have post buckling strength.

• Stiffened elements have large post buckling 
strength while unstiffened elements have little. 



Steel Structures

Post Buckling Strength

f (y)

Stiffened

fmax

b

Stress 
Distribution

y

fmax

≅ be/2

b

Stiffened Elements
Plate elements under axial compression, showing actual stress distribution and 
an equivalent system



Steel Structures

Post Buckling Strength (contd…)

Nominal strength of a stiffened elements

∫=
b

n dyyftP
0

)(

maxfbtP en ××=

maxfAP effn ×=

be = Effective width over which the maximum stress may be considered 
uniform and still gives almost correct answer.



Steel Structures

Post Buckling Strength (contd…)

fmax favg

b

≅Free

b

Unstiffened Elements

Plate elements under axial compression, showing actual stress distribution and 
an equivalent system



Steel Structures

Post Buckling Strength (contd…)

Nominal strength of an unstiffened element

avgn fbtP ××=

avggn fAP ×=

Unstiffened elements have less post-buckling 
strength.  They may be idealized as not buckled 
but subjected to a reduced equivalent stress.



Steel Structures
Post Buckling Strength (contd…)

Nominal strength of the member having both stiffened and unstiffened 
elements (W-section)

g
g
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n A

A
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f
f
f

P ×××= max
max

effavgn AfP ×=

gcrgn AFAQfP == maxgasn AfQQP ×××= max

A compression member consisting of both stiffened and 
unstiffened elements may be treated as unstiffened for 
establishing the stress favg, while effective area is 
determined after deducting the ineffective area out of 
the stiffened elements.



Steel Structures
Post Buckling Strength (contd…)

Q = Full reduction factor for slender compression 
elements, 1.0 for members with compact and 
non-compact elements

Qs = Reduction factor for slender unstiffened 
elements, 1.0 if no slender unstiffened element 
is present

Qa = Reduction factor for slender stiffened 
elements , 1.0 if no slender stiffened element is 
present



Steel Structures

Critical/Ultimate Compressive Strength, φcFcr

2

2

)/( rKL
EFe

π
=

ye
y

QFFor
QF

E
r

KL 44.071.4 ≥≤

ycrF QF0.658 e

y

F
QF














=

ye
y

QFFor
QF

E
r

KL 44.071.4 <>

FeFcr 877.0=

For 

For 



Steel Structures

Reduction Factor Qs for Unstiffened Elements 

For columns
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platecr

columncr
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For compression flanges of beams

y

platecr

flangebeamcr

platecr
s F

F
F

F
Q ,

..,

, ≥=



Steel Structures

Reduction Factor Qs for Unstiffened Elements (contd…)

a)   For single angles and double angles with separators

yF
E

t
b 45.0≤ Qs =  1.0For 

E
F

t
b76.0340.1Q y

s 





−=

yy F
E91.0

t
b

F
E45.0 <<For 

12.8 < b / t < 25.8 for A-36 steel 

( )2y

s

t
bF

E53.0Q =
yF

E91.0
t
b
≥For 

b / t ≥ 25.8 for A-36 steel 



Steel Structures

Reduction Factor Qs for Unstiffened Elements (contd…)

b)   For flanges, angles and plates projecting from rolled 
beams or columns

yF
E

t
b 56.0≤ Qs =  1.0For 

E
F

t
bQ y

s 





−= 74.0415.1

yy F
E

t
b

F
E 03.156.0 <<For 

15.8 < b / t < 29.1 for A-36 steel 

( )2
69.0

t
bF

EQ
y

s =
yF

E
t
b 03.1≥

b / t ≥ 29.1 for A-36 steel 

For 



Steel Structures

Reduction Factor Qs for Unstiffened Elements (contd…)

c)   For flanges, angles and plates projecting from built-up 
columns or other compression members

y

c

F
Ek

t
b 45.0≤ Qs =  1.0For 

c

y
s Ek

F
t
bQ 





−= 65.0415.1

y

c

y

c

F
Ek

t
b

F
Ek 17.164.0 <<For 

( )290.0
t

bF

EkQ
y

c
s =

y

c

F
Ek

t
b 17.1≥For 

76.035.0
/

4
≤≤= c

w
c k

th
k



Steel Structures

Reduction Factor Qs for Unstiffened Elements (contd…)

d)   For Stem of Tees

yF
E

t
d 75.0≤For Qs =  1.0

( )
E
F

t
dQ y

s 22.1908.1 −=⇒<<
yy F

E03.1
t
d

F
E75.0For

( )2
69.0

t
dF

EQ
y

s =⇒≥
yF

E
t
d 03.1For

d =  the full nominal depth of tee



Steel Structures

Reduction Factor Qa for Stiffened Elements (contd…)

a)   For flanges of square and rectangular sections of uniform 
thickness

For ⇒≥
f
E

t
b 04.1 








−=

f
E

tbf
Etbe

38.0192.1

g

eff
a A

A
Q =

bbe =Otherwise

f = Computed elastic compressive stress in the stiffened element 

= Pn/Aeff (may conservatively be taken equal to Fy.



Steel Structures

Reduction Factor Qa for Stiffened Elements (contd…)

b)   For other uniformly compressed elements.

f
E

t
b 49.1≥For 









−=

f
E

tbf
Etbe

34.0192.1

bbe =Otherwise 

f is taken as Fcr with Fcr calculated based on Q = 1.0.



Steel Structures

Reduction Factor Qa for Stiffened Elements (contd…)

c)   For axially loaded circular sections 

yy F
E

t
D

F
E 45.011.0 <<For 

( ) 3
2038.0

+==
t

DF
EQQ

y
a

D =  Outside diameter , mm

t =  Wall thickness, mm 



Steel Structures
Example: Design a double equal leg angle compression 
member of width 416 mm connected by 10 mm gusset plate and 
stay plates.  Steel with Fy = 420 MPa is to be used

kNPu 1700=
mKL 6=

416 mm

MPaFy 420=
Solution 10 mm

Assume Slenderness ratio R = 90

⇒≥ ye FF 44.0

2

2

)/( rKL
EFe

π
= MPa69.243

)90(
200000

2

2

=
×

=
π



Steel Structures

Solution (contd…)

74.183
100017000 ×

==
crc

u
req F

PA
φ

ycrc F F0.6589.0 e

y

F
F














×=φ

4200.6589.0 243.69
420

×







×=

⇒≥ ye FF 44.0

=  183.74 mm2

416 mm

10 mm

29252 mm= For 2Ls

24626
2

9252 mm== For single angle



Steel Structures

Solution (contd…)

416 mm
Trial Section - 1: 2Ls 203 x 203 x 12.7

25000 mmA = For single angle

mmrr x 5.63angle single of ,min ==
10 mm

95
5.63

6000

min

≅==
r
KLR

MPa 72.218
95
200000

2

2

=
×

=
π

eF

( ) MPa 21.169420658.09.0 72.218/420 =××=crc Fφ



Steel Structures

Solution (contd…)

416 mm

1000/5000221.169 ××=nc Pφ

kN1.1692= Based on assumption that 
member is locally stable

φcPn <  Pu Revise the section
10 mm

Trial Section - 2: 2Ls 203 x 203 x 14.3

25600 mmA = For single angle

mmrr x 5.63angle single of ,min ==



Steel Structures

Solution (contd…)

416 mm

95
5.63

6000

min

≅==
r
KLR

MPa 72.218
95
200000

2

2

=
×

=
π

eF
10 mm

( ) MPa 21.169420658.09.0 72.218/420 =××=crc Fφ

1000/5600221.169 ××=nc Pφ
Based on assumption that 
member is locally stablekN 1895=nc Pφ



Steel Structures

Solution (contd…)

8.945.014.2
14.3
203

t
bλ r ==>===

Fy
Eλ

rλλ >

416 mm
Check Local Stability

10 mm
section is locally unstable

9.1991.0λ r ==
yF

E

yy F
E

t
b

F
E 91.045.0 <<For unstiffened elements, if



Steel Structures

Solution (contd…)

E
F

t
b76.0340.1QQ y

s 





−==

( )
000,200

4202.1476.0340.1 −=

846.0= 15.4 % reduction

y
Fe

QFy

crc QFF 







= 658.090.0φ

420845.0658.090.0 72.218
420845.0

×







=

×

MPa  96.161=

So 



Steel Structures

Solution (contd…)

1000/2560096.161 ××== gcrcnc AFP φφ

unc PP >= kN  1814φ O.K.



Steel Structures

Example: Calculate the factored axial load capacity of the shown 
300 mm x 300 mm non-standard structural tube having a thickness of 
5mm and an effective length of 5.5 m. Use Fy = 345 MPa. 

Solution:

mKL 5.5=

MPaFy 345=
t = 5mm

222 5900290300 mmA =−≅

y

x

r = 2tNeglecting chamfer 

44
44

108560
12

290
12

300 mmII yx ×≅−≅=



Steel Structures

Solution: (contd…)

mm
A
Irr yx 120≅==

b( ) mmb 280522300idth Straight w =××−=

56
5

280
t
bλ ===

7.3340.1λ r ==
yF

E

rλλ > Stiffened, locally unstable element

The section does not have unstiffened elements



Steel Structures

Solution: (contd…)

as QQQ ×= For stiffened elements Qs = 1.0

aQQ =⇒

Overall Stability 

83.45
120

10005.5

min

=
×

==
r
KLR

Assume f =  Fy =  345 MPa









−= f

E
tbf

Etbe
38.0192.1



Steel Structures

Solution: (contd…)









−×=

345
000,200

56
38.01

345
000,200592.1eb

mmbe 4.193=
Ineffective width 

mm6.864.193280 =−=

546.865900 ××−=effA
86.6

24168mm=



Steel Structures

Solution: (contd…)

70.0
5900
4168

===
g

eff
a A

A
Q

MPa 79.939
83.45

200000
2

2

=
×

=
π

eF

( ) MPa 19.1953457.0658.09.0 79.939/3457.0 =×××= ×
crc Fφ

1000/590019.195 ×=nc Pφ

kN 6.1151=



Steel Structures

Solution: (contd…)

If we ignore local buckling

( ) MPa 27.266345658.09.0 79.939/345 =××=crc Fφ

1000/590027.266 ×=nc Pφ

kN  1571=Φ ncP



Steel Structures

Example: Determine the compression capacity of the given built-
up I-section for an effective length of 2.5m. Fy = 345 MPa. Ignore the 
residual stresses. 
Solution

5 x 280 mm Plate
12
250102

3×
×=yI

10 x 250 mm Plate44102604 mm×= h

2805250102 ×+××=A
26400mm=

mmA
Ir y

y 8.63==



Steel Structures

Solution
Local Stability Check

5.12
102

250
2t
bλ

f

f =
×

==For flange

w
c th

k 4
= 0.35 to 0.76

534.0
5280

4
==

y

c

F
Ek64.0λ r = 26.11

345
534.0000,20064.0 =

×
=



Steel Structures

Solution
rλλ > Flange is locally unstable

Now for the built-up sections

26.1164.0 =
y

c

F
Ek 6.2017.1 =

y

c

F
Ekand

6.20λ26.11 <<As

( ) 953.065.0415.1 =−= Ek
F

t
bQ

c

y
s

So

Local Stability Check For Web

56
5

280
t
hλ
w

===



Steel Structures

Solution

9.3549.1λ r ==
yF

E

rλλ > Web is locally unstable

Assume 0.1=Q

MPa 6.1284
2.39

200000
2

2

=
×

=
π

eF

2.39
8.63

2500

min

==
r
KL

( ) MPa 3.308345658.0 6.1284/345 =×== crFf



Steel Structures

Solution









−=

f
E

tbf
Etbe

34.0192.1









−×=

3.308
000,200

56
34.01

3.308
000,200592.1

mm7.206=

mm3.737.206280 =−Ineffective width = 

2603353.736400 mmAeff =×−=



Steel Structures

Solution
943.0

6400
6033

==aQ

898.0953.0943.0 =×=×= sa QQQ

( ) MPa 06.252345898.0658.09.0 6.1284/345898.0 =×××= ×
crc Fφ

1000/640006.252 ×=nc Pφ

kN 1613=



Concluded
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