
EQUIVALENT FRAME METHOD
• Equivalent frame method (EFM) is described in 

ACI 13.7.
• It is a general method for design of two-way 

column supported slab systems, without the 
restrictions of the direct design method. 

• However, this method is only applicable in case 
of gravity loads and all general provisions for 
two-way slabs, except those of ACI 13.6, are also 
applied in this method. 



• The three-dimensional slab systems are first 
divided into two-dimensional design frames by 
cutting at the panel centerlines.  

• The removal of the torsional links between 
various design frames makes this method 
conservative in nature.  

• The longitudinal distribution of moments for 
these design frames is carried out by performing 
actual 2-D frame analysis.

• This requires some modifications before 
implementation. 



• Firstly, equivalent column stiffness is to be 
calculated combining the effects of actual column 
stiffness, unsupported edge of slab and the torsion 
member.  

• Secondly, the variation of moment of inertia of 
the horizontal member along its length between 
the column centerlines is to be considered.  

• Thirdly, the variation of moment of inertia of the 
column between the centerlines of horizontal 
members must be considered.  

• The horizontal member in the equivalent frame 
consisting of slab, beams (if present) and drop 
panels (if present) is termed slab-beam.  



• There are four main steps involved in the use of the 
equivalent frame method.

• Step 1: The 3−D slab system is represented by four or 
more 2−D frames, just like in DDM.  

These design strips (or design frames) are separately 
considered for analysis and design. 

• Step 2: The stiffness of frame elements is determined 
considering the facts that the slab is not supported along 
full width at the edge, torsion member is present but its 
effect can not be included directly in the 2-d analysis 
and the columns and the slab-beam are non-prismatic 
members. 



Torsional stiffness of transverse beams and the 
slab edge condition at the junction with the outer 
column are included in the column stiffness and 
thus the concept of an equivalent column is used.

ACI Code allows the analysis of a particular floor 
of the building by considering a free body of that 
floor with the columns below and the columns 
above (if present), with the far ends of these 
columns taken as fixed.  

This simplification is very useful for hand 
calculations.



• Step 3: The 2-D frames obtained in the above 
step are analyzed for full gravity loads (pattern 
loading is not considered if live load is within 
certain percentage of the dead load).  

This is equivalent to the longitudinal distribution 
of total static moment in the direct design 
method.

• Step 4: The negative and positive moments (M−

and M+) are distributed laterally to column strips 
and middle strips using coefficients of DDM if 
the following limitation is satisfied:
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Figure 12.36 graphically represents the variation of 
moment of inertia along the length of the slab-beams.

For hand calculations, the non-prismatic slab-beam 
member may approximately be converted into a 
prismatic member by modifying the fixed end moments, 
flexural stiffness and carryover factors as under:

FEM =  m × q l2w l1
2

Ksb =  k × EIsb / l1
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Fig. 12.36.  Stiffness Variation in Case of Slab-Beams.



α =
slab ofdepth 

panel dropat depth 

c1 =  larger of column or capital width at the 
top in the direction of calculation of 
moments.

c2 =  larger of column or capital width at the 
top perpendicular to the direction of 
calculation of moments.
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Moment of inertia of a column from the top of slab-
beam to its bottom is considered equal to infinity. 

The variation of column stiffness along the height for 
some typical cases is shown in Fig. 12.37.

lc =  c/c height of the columns
lu =  unsupported height of column

= lc − ta − tb
t =  vertical distance starting from the slab centerline 

up to inner end of slab, inner end of drop 
panel or mid-height of column capital (Fig. 12.37)
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Fig. 12.37.  Stiffness Variation of Columns Along Their Heights.



a-end =  column end near the slab to be analyzed
b-end =  column end away from the slab to be analyzed
ta =  t-value at a-end of column
tb =  t-value at b-end of column
Kc,a =  ka × EIc / lc
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Detailed 3−D analyses of various slab systems suggest 
that an approximate value of the torsional stiffness can 
be obtained by assuming a torque distribution along the
torsional member that varies linearly from a maximum 
at the center of the column to zero at the middle of the 
panel, as shown in Fig. 12.38(a).

The distance from centerline of the panel to the edge of 
column is calculated as under:

Cantilever slab distance =  l2 / 2 − c2 / 2
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(a)  Section of Design Strip

Total applied torque 
or area of diagram is 
T= 1

tan β × x = 
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(b)  Torque Distribution Diagram



T = 

at x = 

= area of diagram (b) on left of section

T= ½
Half 
torque is 
applied on 
each arm.

(c)  Resultant Torque At Each Section

(d)  Angle Change Per Unit Length
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(e)  Total Rotation At Sections Considering Free 
End As The Reference Point
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Fig. 12.38.  Calculation of Slab Rotation Due to Applied Torque.

Resultant torque at distance x
=  area of diagram-b from end up to distance x
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Total rotation at distance x
=  area of diagram-d in distance

=  dxx
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For poisson’s ratio approximately considered equal to 
zero, G = E / 2.  Considering x = 0, the total rotation of the 
free end with respect to the column may be calculated as 
follows:
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The average rotation, θav, of the slab end may be found by 
evaluating the area of diagram-e and dividing by the 
length, l2.
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θav =  

=    assuming c2 ≈ l2 / 9
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Finally, the torsional stiffness of one arm is calculated as

Kt (one arm) =    =    =  
av
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In general, for cases where the arm is present on both 
sides, the total torsional stiffness is calculated as 
summation of the torsional stiffness for each arm.
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According to ACI 13.7.5.2, where beams frame into 
columns in the direction of moments (1-direction), the
torsional stiffness shall be multiplied by the ratio of 
moment of inertia of slab with such beam (Isb in Fig. 
12.39) to moment of inertia of slab without such beam 
(Is in Fig. 12.39).

Is

Isb

l2

Fig. 12.39.  Modification of Torsional Stiffness, Kt, Due to Beam.
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θEC = θC + θav

whereθEC =  rotation of equivalent column
θC =  rotation of actual column
θav =  average rotation of slab edge

also, let,
KEC =  stiffness of equivalent column
∑KC =  sum of actual stiffness of columns 

above and below the slab
KT =  sum of torsional stiffness of the 

perpendicular torsion members



From the basic stiffness equation, we have,

K = M / θ ⇒ θ =  M / K

The above equation for θEC may be written as follows:
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If no torsion member is considered, 1 / KT becomes infinity 
and KEC is reduced to zero (or near a roller support).



Pattern Loading
According to ACI 13.7.6, the analysis may be simplified 
under the following conditions by avoiding pattern 
loading:

• If the live load is not exceeding three-fourth of the dead 
load, no pattern loading is required and the analysis is 
carried out for full load on all the panels.

• In cases where pattern loading is required, three-fourth 
of the actual live load is used for analysis.  However, the 
factored moments calculated in this way should not be 
less than those occurring with full factored live load on 
all panels.



Correction Of Moments To 
Face Of Supports

• For design, the negative moments must be 
evaluated at the critical sections defined in 
ACI 13.7.7.  

• These critical sections in case of columns, 
drop panels and column capitals are shown 
in Fig. 12.40.



Critical sections for M−

α/2

α

0.175l1

l1

c1 > 0.35l1

M1 M2

M3

l1

ln

(b)

Fig. 12.40.  Critical Sections For Negative Bending Moments.



If the slab system to be designed meets the requirements 
of the Direct Design Method, the total design moments in 
a panel can be reduced so that the absolute sum of the M+

and the average M− does not exceed the statical moment, 
Mo.

Referring to Fig. 12.40(b), the computed moments M1, M2
and M3 are multiplied by ‘F’ where:
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Example 12.5
Find the properties of frame taken from a slab 
system and shown in Fig. 12.41 required for design of 
an interior design panel, having frames 8.5m on 
centers and columns of size 450mm × 250mm.  

Service live load is to be 200 kg/m2 for rooms and 
ordinary balconies, while it is to be considered 300 
kg/m2 for public balconies.

Center-to-center story height is 2.75m.  Separate 
floor finish and permanent partition wall load is 150 
kg/m2.
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Fig. 12.41.  Frame Dimensions For Example 12.5.



Solution:

Slab Loads:

200mm slab: qD =  200/1000 (2400) + 150 =  630 kg/m2

qu =  [1.2(630) + 1.6(200)] × 9.81 / 1000 = 10.55 kN/m2

190mm slab: qD =  190/1000 (2400) + 150 =  606 kg/m2

qu =  [1.2(606) + 1.6(300)] × 9.81 / 1000 = 11.83 kN/m2

180mm slab: qD =  180/1000 (2400) + 150 =  582 kg/m2

qu =  [1.2(582) + 1.6(200)] × 9.81 / 1000 = 9.98 kN/m2

For left balconies:
L.L. / D.L. =  200 / 583  =  0.345 < 0.75

For right balconies:
L.L. / D.L. =  300 / 606  =  0.495 < 0.75



∴ Pattern loading is not required to be considered.

9.98×8.5
=84.8kN/m

10.55×8.5
=89.7kN/m

89.7kN/m 11.83×8.5
=100.6kN/m

2.5m 6.75m 6.75m 1.75m

2.75m

2.75m

Fig. 12.42.  Isolated 2-D Frame For Analysis.

The frame may be simplified for analysis by replacing the 
cantilevers with the corresponding determinate moments, 
as shown in Fig. 12.43.



89.7 kN/m
265.0
kN-m

6.75m 6.75m

=154.0 kN-m

( )( )
2

75.16.100 2

Fig. 12.43.  Simplified Analysis Model.

The stiffness parameters for the slab-beam of Fig. 12.44 
may be calculated as under:



l1=6750mm

t=200mm

450mm

A B

450mm

Fig. 12.44.  Moment of Inertia Diagram For Slab-Beam.
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Fig. 12.45.  Torsion Member For Example 12.5.

The torsion member 
may be considered 
equal to a width of slab 
equal to the column 
dimension as shown in 
Fig. 12.45 and the 
relevant parameters are 
calculated as under:



C =

= =  86400 × 104 mm4

3
63.01

3 yx
y
x








−

( ) ( )
3

450200
450
20063.01

3















−

Kt =

=  (2) =  2001 E kN-mm/rad

∑








−

3

2

2
2 1

9

l
l

c

CEcs

( )
( ) 1000

1

8500
25018500

10864009
3

4

×





 −

×csE

The properties of equivalent prismatic column may be 
found by using Fig. 12.46.
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Fig. 12.46.  Column Properties For Example 12.5.



Kec = 1545 E

Considering the frame of Fig. 12.47, the distribution 
factors are calculated as under:

DFBD = DFFD = = 0.68EE
E
215102

215
+

DFDB = DFDF = = 0.404EEE
E

102215215
215

++

After analysis of frame of Fig. 12.47, perform the 
following steps and design the system:



• Correct moments to face of the supports.
• Distribute into column strips and middle strips by 

using the expression of the direct design method.
• Design the column and middle strip slabs.
• Carry out detailing of the reinforcement.
• The column moments may be evaluated by 

satisfying the equilibrium at their junction with 
the slab.  The unbalanced slab moments are 
distributed into the top and bottom columns 
according to ratio of their stiffness.
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Fig. 12.47.  Final Analysis Frame For Example 12.5.


