
VIRTUAL WORK METHOD

1.   A suitable yield line pattern is assumed according to 
the given loads, dimensions and edge conditions.

2.   The slab is given a unit virtual displacement at the 
yield line joining the two plate segments to apply the 
principle of virtual work.

3.   Due to the above displacement, rotation (θ ) is 
calculated at each hinge.  The rotation at each yield line 
is calculated by considering the geometry of the section 
taken perpendicular to the yield line.



4.   Rotation multiplied with the constant moment at 
the hinge gives the internal work.

Wi = Σ θ mp

5.   External work is calculated as the product of load 
and displacement.

We = Σ F d

6.   External work done is equated to the internal 
work done to solve for the unknown.  Differentiation 
may be used to minimize the collapse load.

Example 13.2: Solve slab system of Example 13.1 
using the virtual work method.



Data: A one way, uniformly loaded and continuous 
slab panel of 4m span having a positive flexural 
capacity of 30 kN-m/m and negative flexural capacities 
of 30 kN-m/m and 40 kN-m/m at the left and the right 
supports, respectively.  Calculate the ultimate load 
capacity of the slab.

Solution:

Give a unit virtual displacement to yield line-B for the 
slab system shown in Fig. 13.14.
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Fig. 13.14. Solution of One-Way 
Continuous Slab by 
Virtual Work Method.



θB = θB1 + θB2

= =
xx −

+
4

11
( )xx −4

4
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1. A suitable yield line pattern is assumed according 
to the given loads, dimensions and edge conditions.

2. The slab is given a unit virtual displacement at the 
yield line joining the two plate segments to apply the 
principle of virtual work.

3.   Due to the above displacement, rotation (θ ) is 
calculated at each hinge.  



4.   The rotation at each yield line is calculated by 
considering the geometry of the section taken 
perpendicular to the yield line.

5.   Rotation multiplied with the constant moment at the 
hinge gives the internal work.

Wi = Σ θ mp

6.   External work is calculated as the product of load 
and displacement.

We = Σ F d

7.   External work done is equated to the internal work 
done to solve for the unknown.  Differentiation may be 
used to minimize the collapse load.



Example 13.2: Solve slab system of Example 13.1 
using the virtual work method.
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Fig. 13.14.  Solution of One-Way Continuous Slab by Virtual Work Method.



Give a unit virtual displacement to yield line-B for the 
slab system shown in Fig. 13.14.
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To determine the minimum value of the load w, this 
expression is differentiated with respect to x and is 
equated to zero.
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Example 13.3: A square slab is simply supported 
along all the sides and is to be isotropically reinforced.  
Determine the resisting moment m = φ mn per linear 
width required to sustain a uniformly distributed factored 
load of w kN/m2.  Solve by using both the methods by 
ignoring the corner lever effects.



Solution:

Segment Equilibrium Method:

The slab along with the possible yield line pattern 
without the corner levers is shown in Fig. 13.15.  

The collapse load w is treated as a known, the moment 
capacity m is the only one unknown and there is one 
segment type (giving one equation).  

The free body of the slab segment is also shown in the 
same figure.
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Fig. 13.15.  Isotropic Square Simply Supported Slab of Example 13.3.



For sum of moments about the top support line of the 
free body diagram to be zero:

Load on one 
segment

Total moment on 
one diagonal edge

To find component of 
moment along the top 
edge.
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The moment about any line may always be considered 
equal to the projected length of inclined edge along that 
line multiplied with the moment capacity per unit length 
along the projected direction.



From above relation:
m =   per unit width of slab

24

2wL

Alternatively speaking, greater resisting moment is to 
be provided to carry a given load when corner levers are 
incorporated in the analysis.  

The moment capacity required in this case becomes:

m =      4.21

2wL

ACI moment value is as under:

m =  (23.0% lesser)
78.27

2wL



If deflections are equated in both direction strips, as is 
done by the British Codes, the value of required moment 
is as follows:

m =   (33.7% more, safe but uneconomical)
16

2wL

The elastic solution obtained by solving the governing 
differential equation considering homogeneous isotropic 
material with ν = 0.3 is as follows:

m =   (2.4% more)
9.20

2wL



Virtual Work Method:

The assumed yield line pattern is shown in Fig. 13.16.  
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Fig. 13.16.  Analysis of Square Simply Supported slab by Virtual Work Method.
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Example 13.4: A two-way slab 7m × 4m is simply 
supported on all four sides and carries an ultimate UDL 
of w kN/m2.  Determine the ultimate moment of 
resistance required for the slab if it is to be isotropically
reinforced.  Solve by both virtual work and segment 
equilibrium method by ignoring the corner levers.



Virtual Work Method:

1.   The slab and the expected yield line pattern are 
shown in Fig. 13.17.  Rotation of yield line BE can take 
place along a line perpendicular to it (GH in this case).

2.   The yield line EF is given a unit virtual 
displacement.

3.   The unknowns are w or m and x. 

4.   Rotation at yield line BE can be found by 
considering the rotation of two perpendicular lines GE 
and EH at E.
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Fig. 13.17.  Solution of Slab of Example 13.4 By Virtual Work Method.
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Fig. 13.18.  Section GH For Slab of Fig. 13.17.

Considering a section along GH as shown in Fig. 13.18:
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Trial method for minimizing the above value is 
presented in Table 13.1.



m
w

Table 13.1. Trial Method to Calculate Collapse Load.

x

2.0 0.97059

2.2 0.96112

2.4 0.95679

2.5 0.95625

2.55 0.95634

2.52 0.95626



Hence,    x ≈ 2.51 m

and ≈ 0.95625
m
w

∴ m = 1.046 w

Segment Equilibrium Method:  

There are two unknowns and two distinct segments in 
this example.  

These slab segments are shown in Fig. 13.19.  

Considering equilibrium of segment AEB, we get,

12 m =
32

4 xwx
× m = (I)

6

2wx
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Fig. 13.19.  Free Body Diagrams For Slab of Example 13.4.

Considering equilibrium of segment BEFC,

7 m = 2 × × 2 × x × w + (2)(7 – 2x) w
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7 m = – 8/3 w x + 14 w (II)



Using the value of m from Eq. II in Eq. I, we get:

7x2 + 16x – 84 = 0, x =   2.505 m 

From Eq. (I), m =  1.046 w

SPECIAL CONDITIONS AT 
EDGES AND CORNERS

Positive yield lines in some of the patterns shown 
earlier, where these have to intersect free edges not at 
right angles as shown in Fig. 13.25b, are assumed to go 
straight and intersect the edges at angles different from 
the right angle.
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Fig. 13.25.  Positive Yield Line at a Free Edge.



This is just a simplification at an edge.  

At a free edge, both the bending moment and the 
twisting moment should be zero. 

The major principal direction is perpendicular to the 
edge, the bending moment having moment vector in 
this direction should be the maximum and yield line 
must be formed in this direction.  

Consequently, the yield lines should enter an edge 
perpendicular to it, as shown in Fig. 13.25a.  

This is a contradiction with the original statement that 
the yield lines must be straight, and is to be treated as a 
special case.  



Tests confirm that yield lines change their angle very 
close to the edge and enter the edge in a perpendicular 
position.  

The distance ‘x’ in the figure is usually much small 
compared to the other slab dimensions.

The calculation procedure may be simplified by still 
considering straight yield lines, as shown in Fig. 13.25a, 
which increases the collapse load due to the use of wrong 
assumption.  

This collapse load may artificially be may made smaller 
equal to the actual collapse load by introduction of an 
applied twisting moment at the edge.  



This twisting moment not only overload the slab but 
also creates the condition of maximum bending moment 
along the inclined direction of the yield line.  

Further, in place of applying this twisting moment, a 
shear force V acting downward at the acute corner 
(circled cross in the figure) and the force V acting 
upward at the obtuse corner (circled dot in the figure) 
together are applied as the static equivalent of twisting 
moment.  

The magnitude of this fictitious shearing forces V is 
given by the following expression:

V =  m cot α



Where ‘m’ is the resisting moment per unit length along 
the yield line and ‘α’ is the acute angle between 
simplified yield line and the edge of the slab.

This pair of equal and opposite forces does not enter the 
virtual work calculations as the work done by both of 
them cancels each other.  

However, when free body diagram of each segment is 
separately considered in the equilibrium method, the 
forces V enter in to the calculations.



To simplify the calculations at corners, it is commonly 
assumed that yield line enters the corner as a single 
straight line passing between the two intersecting sides.  

In reality, the yield lines fork or divide into two branches 
to form a Y before reaching the corners.  

The resulting slab segment formed near the corner is 
called a corner lever or corner pivot, as shown in Fig. 
13.26.  

If the corner is not held down, the triangular element adbc
will pivot about the axis ab and lift off the supports.  

If the corner is held down, the line ab becomes a negative 
yield line and the segment abd rotates about it. 
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Fig. 13.26.  Formation of Corner Levers.



Consider the free body of the corner lever formed 
shown in Fig. 13.27.
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x

Fig. 13.27.  Free Body Diagram of Corner Lever.



If no shear force acts at the apex of the segment, we get,

ΣMab =  − 1.414 x m′ – 1.414 x m
+ 0.5 (1.414 x)(w)(h)(h/3)  =  0

∴mmwh ′+=
6

2
wmmh /)(6 ′+=

Hence, the distance of junction of the Y from the pivot, 
h, is independent of the distance x and the width of the 
segment.  

It increases as both the positive and negative moment 
capacities increase with respect to the load intensity.  



Although yield line patterns with corner levers are 
generally more critical than those without them, they are 
often neglected and only approximate adjustment is 
made for their effect.  

In square panels, the maximum effect of the corner 
segments is slightly less than 9%.  

Further, if sufficient corner steel is separately provided, 
these can be eliminated in the strength calculations.

Example 13.8: For the isotropically reinforced slab 
shown in Fig. 13.28, find the collapse load in terms of 
the moment using virtual work method.
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Fig. 13.28.  Triangular Slab For Example 13.8.

Solution:

The selected yield-line pattern is shown in Fig. 13.29, 
which involves two unknowns in the form of collapse 
load and the angle α.

A unit vertical deflection is applied at the point ‘d’.
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Fig. 13.29.  Yield Line Pattern For Slab of Example 13.8.

We = w × area of ∆A × 1/3 +  w × area of ∆B × 1/3
= w/3 × total area
= w/3 (base)(height) ½
= [w/6] (7)(5.5 Sin 70°)
= 77/12 w sin 70°



Consider a section perpendicular to the Y.L, shown as ef
in Fig. 13.29(b).

ed = ad tan (70 - α)
df = ad tan (α)
θe = 1/ed
θf = 1/df
θd = rotation all along the yield line

= θe + θf

= ( ) αα tan
1

70tan
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−

= ( )( )αα cot70cot1
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ad



Wi = moment capacity at Y.L.×length of 
Y.L.×rotation at Y.L.

= m × ad × ( )[ ]αα cot70cot1
+−

ad

= m ( )[ ]αα cot70cot +−

We = Wi

⇒ 77/12 w sin 70° =  m[cot (70 – α) + cot α]

Trigonometric Relation:     cot A + cot B =
( )

BA
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sinsin
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∴ 77/12 w sin 70° = m ( )
( ) αα

αα
sin70sin 
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+−

or = 77/12 sin (70 – α)(sin α) (I)
w
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To maximize        , we have the relation              =  0
w
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77/12 [ – cos (70 – α) sin α + sin(70 – α) cos α] =   0

sin α cos (70 – α) = sin (70 – α) cos α

tan α = tan (70 – α) α = 70 – α

⇒ 2α = 70° ⇒ α =  35°



From Eq. I: = 77/12 sin2 35°w
m

w = 0.4737 m

Example 13.9: For the orthotropically reinforced 
slab shown in Fig. 13.30, find the collapse load using 
segment equilibrium method.

A B

C

90°

mx=60
kN-m/m

mx=40 kN-m/m

6 m

5 m

Fig. 13.30.  Triangular Slab For Example 13.9.



Solution: The selected yield-line pattern is shown in 
Fig. 13.31 along with the free body diagrams of the two 
segments formed.
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V

Fig. 13.31.  Yield Line Pattern For Slab of Example 13.9.

Let x = distance of point of intersection of yield 
line with free edge measured from point B.

and α = acute angle of yield line with respect to the 
free edge.
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Along the yield line CD, the following may be calculated:

m = mn = mx cos2α +  my sin2α

= 60               + 40              =  22
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Segment ACD
It is to be noted that the horizontal and vertical 
moments at the yield line may directly be resolved 
along the line about which moment sum is to be taken, 
as shown in Fig. 13.32.
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Resolution of Vertical Moment

Resolution of Horizontal 
Moment

Fig. 13.32.  Resolution of Horizontal and Vertical Moments At Y.L. About Line AC.



Referring to Fig. 13.32, we have,

DE =  (6 – x) sinθ

sinθ =  BC / AC =  5 / AC : tanθ =  5/6

Σ MAC =  0 ⇒

w =( ) DEVDEACDE ×−×
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Segment DBC

The bending moment at the yield line is already 
resolved into horizontal and vertical components and 
moment is to be taken about the vertical line.  Hence, 
there is no need to further resolve the moments.



ΣMBC = 0 ⇒

w × + V × x =  200
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By solving Eqs. I and II simultaneously using trial 
method, as in Table 13.2, we get,

w =  37.07 kN/m2



Table 13.2.  Solution of Example 13.9.

x
(m)

w from Eq. I
(kN/m2)

w from Eq. II
(kN/m2)

3.0 66.34 15.80

2.5 44.77 27.84

2.0 30.93 49.74

2.2 35.79 39.21

2.25 37.14 37.00



Example 13.10: Estimate the collapse concentrated 
load acting on a large size slab causing fan pattern failure.

Solution:
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Single Element of Fan

Fig. 13.33.  Fan Type Yield Line Pattern And Free Body Diagram of One Segment.



Total load = P

Load per unit angle in radians =
π2
P

Load per angle equal to β = βπ2
P

In Fig. 13.33, the projected length of positive yield lines 
AC and CB is the length AB (or rβ) and hence the total 
component of positive moment about XX-axis is m rβ.

The total negative moment about axis-XX is m–rβ.

Both the negative and the positive moments are counter-
clockwise.



m + m

X

X

r

Fig. 13.34.  Sectional Front View of a Radial Strip Through Fan Pattern.

Referring to Figs. 13.33 and 13.34, we have,  

ΣMXX = 0 ⇒

m– rβ + m rβ = r

P = 2 π (m + m– )
π
β

2
P



The collapse load P is seen to be independent of the fan 
radius r.  

With only concentrated load acting, a complete fan of 
any radius could form with no change in collapse load.  

A fan pattern will be controlling failure mechanism if the 
collapse load for this mechanism is the minimum of 
collapse loads for all other possible yield lines.

AFFINITY RULES
Affine slab is an idealized slab considered for analysis in 
place of an orthotropic (different moment capacities in 
two perpendicular directions) and/or skew (sides of the 
slab or reinforcement not at right angles) slab.



The affine slab is obtained by transforming the shape and 
loading of the orthotropic slab according to certain rules, 
given below:

m

α mγ
γ

Actual Slab Affine Slab

First Coordinate Axis

Second Coordinate
Axis

Fig. 13.35. Orthotropic And Corresponding Affine Slab.



1. The original slab must have reinforcement in two 
directions parallel to the edges of the slab 
(separated by an angle γ), such that the ratio of the 
ultimate moments due to each set of reinforcement 
taken separately is constant throughout the slab.

2. The deflections at the corresponding points of the 
skew and affine slabs are considered equal.

3. The strength of the equivalent isotropic slab at a 
point corresponding to the actual slab is considered 
equal to m in all directions.



4. The affine slab is drawn such that all distances 
measured in the direction of the m-
reinforcement (perpendicular to the m moment 
vector) remain the same.  This direction forms 
one co-ordinate axis for both slabs called the
first coordinate axis.

5. The second direction in the skew slab, 
corresponding to the α m– reinforcement 
direction, is taken at right angles to the first 
coordinate axis in the affine slab, and is called 
the second coordinate direction.



6. All distances in the affine slab in this coordinate 
direction are obtained by dividing corresponding 
lengths in the skew slab by         .α

7. All loads in the affine slab are obtained by 
modifying the original loads as under: -

a.   Uniformly distributed load wu remains wu in 
the affine slab.

b.   Point load Pu is replaced by                  in the 
affine slab. γα Sin

Pu

×


