Seismic design of structures Response spectra Dr. Irfan-ul-Hassan | A 12.0-long vertical carativer, a 4-in-nominal diameter standard ovel pipe, supports a 5300-b region of tables at the same part and the same considerable and the same and the same considerable and the same at 500 in, lond dismostrate, a 4.000 in same dismostrate, a 4.000 in same same same and second moment of cross-sectional area, I = 7.2 in (state modulus E = 20,000 ks; and weight = 10.90 fixed tength between the peak deformand and bending stress in the cancilever due to the BI Centro ground motion. Assume that $\xi = 26$. | | |--|---| | | | | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | | | | 1 | | Elastic designs generating a b b a c c c c c c d d d d d d d d | | | Plot the three dashed lines corresponding to the peak values of ground acceleration
ū_{μν}, velocity <u>ψ_{μν}</u>, and displacement <u>ψ_μ</u> for the design ground motion. Obtain from Table 6.9.1 or 6.9.2 the values for _{d_k}, α_ν, and α_ρ for the ζ selected. | | |--|---| | Multiply ū_p, by the amplification factor α_p to obtain the straight line b-c representing a constant value of pseudo-acceleration A. Multiply ū_p, by the amplification factor α_p to obtain the straight line c-d representation and the straight line c-d representation are constant to the straight line c-d representation. | | | senting a constant value of pseudo-velocity V . 5. Multiply $u_{\mu\nu}$ by the amplification factor e_D to obtain the straight line d - e representing a constant value of deformation D . 6. Draw the line $A = \hat{u}_{\mu\nu}$ for periods shorter than T_a and the line $D = u_{\mu\nu}$ for periods longer than T_c . 7. The transition lines a - b and e - f complete the spectrum. | | | | | | | | | | l | TABLE 6.9.1 AMPLIFICATION FACTORS: ELASTIC DESIGN SPECTRA Median (50 percentile) Damping, ζ (%) α_A α_V α_D α_A α_V α_D | | | | | | 20 1.17 1.08 1.01 1.26 1.37 1.38 | | | Source, N. M. Newmark and W. J. Hall, Eurthquake Spectra and Design,
Earthquake Engineering Research Institute, Berkeley, Calif., 1982, pp. 35
and 36. | 1 | | | | | | | | TABLE 6.9.2 AMPLIFICATION FACTORS: ELASTIC DESIGN SPECTRA* Median (50 percentile) One Sigma (84.1 percentile) α _A 3.21 = 0.68 ln ξ 4.38 = 1.04 ln ξ α _V 2.31 = 0.41 ln ξ 3.38 = 0.67 ln ξ α _D 1.82 = 0.27 ln ξ 2.73 = 0.45 ln ξ Source: N. M. Newmark and W. J. Hall, Eurhapuske Spectra and Design, Eurhapuske Englenering Research Institute, Berkeley, Calif., 1982, pp. 35 and 36. *Damping ratio in percent. | | | | | | | | | | | | and the second s | | | | | | | | | Mean and mean + 1σ spectra Probability distributions for V Mean + 1g | | |--|--| | |] | | Design Spectra | | | Construction of elastic design spectrum | | | Elevelis reages of Trinsip Tri | | | | I and the second | Please read the text book for further clarification |] | |---| |