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Response to General Dynamic Loading 
and Transient Response
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Introduction

 The analysis of response to general dynamic loading is comparatively 
more complex

 For linear systems the response to general dynamic loading can be 
obtained by dividing the force into a series of impulses and the total 
response is obtained by superposing the response to individual impulse.

 The superposition process involves the evaluation of an integral called the 
convolution integral or Duhamel’s integral.

 Short duration non-periodic loads are known as Impulsive loads or shock 
loads. Blast load, dynamic loads in automobiles, traveling crane and other 
mobile machinery may be categorized as shock loads

 The response to these loads is transient in nature and decay rapidly.
 However, from structural engineering point of view the displacement and 

stresses induced are more important than the duration
 Because of the short duration of response, damping does not have a 

significant influence and can reasonably be ignored in the analysis
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Response to Impulsive Force

 A large force acting for a very short duration of time is 
known as impulsive force

 The magnitude of the force may be infinitely large but its 
time integral (impulse of the force) is finite.

Where ε is very small interval of time during which the 
impulsive force is acting.

 Mathematically, an impulsive force can be expressed in 
terms of a delta function, δ(t). The function is centered at 
t = 0 with an infinitely large value at t = 0 and zero at all 
other location

 The impulsive force centered at t = 0 and having an 
impulse equal to I is represented by Iδ(t).

 Analogously the impulsive force centered at t = τ of 
impulse I is Iδ(t- τ)
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Response to Impulsive Force (Cont..)

 The impulse I will change the velocity of a system with mass m by:

 The response to impulse is a initial velocity problem. For undamped 
system:

 The response to I=1.0 is called unit impulse response. It is denoted by h(t)
and is given by:

 For an damped system, the response to a unit impulse is:
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Response to General Dynamic Loading

 The response of a linear system to general dynamic 
loading is obtained by dividing the load into a series of 
impulses and superposing the response to individual impulse.

 From the figure, the undamped incremental response 
(du) at any time t = τ where the impulse is, I = p(τ)dτ
is given by:

 The total response at time t is obtained by superposing 
the impulses from τ = 0 to τ = t, giving:

 Similarly for a damped system:
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Response to General Dynamic Loading (Cont..)

 The response to general dynamic loading for both damped and undamped 
system can me expressed in terms of unit impulse response:

 The above integral is known as Convolution integral or Duhamel’s 
integral. It provides a general method for the analysis of linear system 
subjected to any arbitrary loading and form the basis for the development 
of Fourier transform method.

 For simple function of p(τ) closed form solution can easily be obtained; in 
other cases, numerical technique must be used.

 For a system with non-zero initial condition, the total response is:
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Response to a Step Function Load

 A suddenly applied load which remains constant after 
application. The governing equation of motion is:

 The particular solution can be obtained by the methods of 
trials. We assume for our trial solution u = C (constant). 
Putting in the above equation results in u = C = Po/k.

 The complimentary solution is:

Where A and B are arbitrary constants depend on initial 
conditions 

 The total solution is thus:

 For zero initial conditions:

oPkuucum  

t

p(t)

Po

 tBtAeu dd
t  sincos  

 
k

P
tBtAeu o

dd
t    sincos

k

P
A o

21 






k

P
B o

Dynamics of Structures 9

Response to a Step Function Load (Cont..)

 The resulting solution becomes:

 The maximum value of dynamic load factor, u/(Po/k) is 2.0 when damping  is 
negligible. For finite damping it is always less than 2.0
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Response to a Step Function Load (Cont..)

 The time at which the peak response occurs 
is obtained by differentiating the above 
equation and equating to zero:

 The first peak occurs when n=1 i.e. tp=π/ωd. 
The peak response is given by:

 Thus the peak response is a function of 
damping only.

 The response to step function can also be 
obtained using the Duhamel’s integral
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Response to a Ramp Function Load (Cont..)

 A ramp function load is a load that increases 
linearly with time. Mathematically, it can be 
expressed as:

 The Duhamel’s integral for ramp function load is:

 For undamped system Duhamel’s integral 
simplifies to:

 The undamped response to ramp function load is 
shown in figure on right 
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Response to a Step Function Load with Rise Time

 The response to such a load is obtained from the 
superposition of the following two ramp functions:
 A ramp function load applied at t = 0.0 given by:

 An equal but negative ramp function applied at t = t1

given by:

 The total response is given by;
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Response Spectrum

 Response spectrum is a curve drawn for any response quantity of SDOF 
system against natural period or frequency.
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Example 7.1: Suddenly Applied Load that decays 
Exponentially

 A suddenly applied load with exponential decay is 
given by:

 The governing equation of motion for undamped 
SDOF system is given by:

 The solution to this equation for zero initial condition, 
is obtained by Duhamel’s Integral:

 For high value of t, e-at becomes very small and the 
system vibrates with steady state amplitude of:
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Example 7.2: Blast Induced Pressure

 Natural frequency of the system is given by:

 The force applied to the floor level is obtained by 
multiplying half of the area subjected to wind pressure:

 The applied force has two exponential decay 
components. Therefore the total response is obtained by 
summing the response to each component.

srad
m

k
/16.59

1.0

350


     tttt eeeep
A

tP 1001010010 2.71000/100
2

144

2
 



6

Dynamics of Structures 16

Example 7.2: Blast Induced Pressure (Cont..)
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 For t ≤ t1, the response is obtained from the step 
function equation:

 For t > t1, the response is obtained from superposition 
of above step function applied at t = 0 and equal but 
negative step function applied at t = t1,

 Or in the 2nd era the response is obtained from the free 
vibration response due to velocity and displacement at 
time t = t1.

Response to Shock/Impulsive Loading: Rectangular Pulse
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 The peak response will either be in the first era or the 2nd era of free vibration

 Assuming the peak is in the first era, the time at peak, tp is obtained by 
differentiating equation (1) and equating to zero. We get: tp = π/ω

 The solution is valid only when: tp = π/ω < t1 or t1/T > 1/2

 The peak response is given by: umax = 2Po/k

 If t1/T<1/2, then the peak falls in the free vibration phase. The time at peak in the 
2nd era is obtained by differentiating equation (2):

 The peak response is given by:

Rectangular Pulse (Cont..)
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 The triangular pulse can be represented as the 
superposition of three ramp function shown in figure

 For t < t1/2 the solution of the first ramp function is the 
solution of the first era. For t1/2 < t < t1, summation of the 
solution of 1st and 2nd ramp functions is the solution of the 
2nd era. Similarly for t > t1, summation of the three ramp 
functions gives the solution for the 3rd era. The solution for 
the 3rd era can also be obtained from the free vibration 
using the initial conditions at t = t1.

Triangular Pulse
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 The peak response may occur in any of three eras, depending upon the ratio t1/T.

 The peak in each era may be obtained by differentiating and equation to zero the 
respective equation. For the first era, the time at peak and the peak response (the 
equations are valid when tp < t1) are:

 Similarly one can get peak

response for the 2nd and 3rd eras

 The response spectrum for the

triangular pulse is shown in figure

Triangular Pulse (Cont..)
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 The sine pulse can be represented as the superposition of 
two sine waves as shown in figure

 For t < t1 the solution of the sine force is the solution for 
the first era. For the 2nd era (free vibration era) the solution 
is obtained as summation of two sine waves:

 If the peak response occurs in the 1st era then the time for 
peak response is:

 The smallest value of tp other than zero is obtained for n=1 
and using the negative sign
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 The equation is valid only when:

 The peak response for the first era is:

 For the 2nd era the peak response is:

 The shock spectrum is shown in the figure

Sinusoidal Pulse (Cont..)
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Response to a Ground Motion Pulse

 The governing equation of motion is:

 The total solution is obtained by summing the Duhamel’s 
Integral and the free vibration response with initial 
conditions:
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Response to a Ground Motion Pulse (Cont..)

 Shock Spectrum


