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DYNAMICS OF STRUCTURES

Dynamics of Structures 2

Single Degree of Freedom System:

Forced Harmonic Vibration (Cont..)

Dynamics of Structures 3

Resonance Response: Undamped System
 The harmonic vibration response of undamped system is given by:

 For a simple case of uo = vo = 0

 For β = 1.0, the numerator and the denominator are both zero and the 
displacement becomes indeterminate. In the limiting case, the problem can be 
solved by L’Hospital’s rule
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Resonance Response: Undamped System (Cont..)
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 The response is periodic with period of 
T = 2π/ω.

 Peak response is obtained by 
differentiating: 

 The difference between two successive 
peaks is given by
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Damped Harmonic Vibration
 Damped Harmonic Vibration is governed by:

 The particular solution (steady state response) is of the form:

 On putting in eq.1 we get values of G1 and G2 the particular solution is thus

 The complimentary solution (transient response) is:
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Damped Harmonic Vibration (Cont..)
 The complete solution is thus:

where A and B are arbitrary constants determined from the initial conditions:

 The transient response is given by:
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 Undamped Harmonic Vibration
 The transient response does 

not decay with time

 Damped Harmonic Vibration
 The transient response decay 

with time

Damped Harmonic Vibration (Cont..)
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Damped Harmonic Vibration (Cont..)
 The steady state response (Eq.3) of a damped harmonic vibration can be written in 

the alternative form as:

 Where ρ is the amplitude of steady state response and Φ is the phase angle by 
which the response lags the exciting force.
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Damped Harmonic Vibration : Magnification

 Dynamic load factor, i.e. the ratio of dynamic 
to static displacement, is given by:

 The amplitude of dynamic load factor called 
the dynamic magnification factor is:

 The plot between β and AD shows that AD is 
not maximum at β =1.0. The value of β to 
maximize AD is obtained as:
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 At resonance, i.e. β =1.0, all the curves pass 
through a single point (Φ = 90).

 For β < 1.0 the phase angle is less than 90o.

 For β > 1.0 the phase angle is between 90o

and 180o.

 For undamped system the steady state 
response is in phase (Φ = 0) with the 
exciting force when β < 1.0.

 For undamped system the steady state 
response is in out-of-phase (Φ = 180) with 
the exciting force when β > 1.0.

Damped Harmonic Vibration : Phase Angle
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Resonance Response: Damped System
 At resonance (β =1.0 )the steady state 

and transient responses are:

 In the initial phase the transient response 
will minimize the total response.

 When the transient response diminish, 
the system vibrates with the exciting 
force but lagging by 90o.

 For small damping, the total response is:
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Resonance Response: Damped System (Cont..)
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