DYNAMICS OF STRUCTURES

Single Degree of Freedom System:
Forced Harmonic Vibration (Cont..)
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Resonance Response: Undamped System

o The harmonic vibration response of undamped system is given by:

u(t)=uucusa)t+£sinmt+& 1,(sith—ﬁsinmt)
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o Forasimple case of u,=v,=0
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o For B = 1.0, the numerator and the denominator are both zero and the
displacement becomes indeterminate. In the limiting case, the problem can be
solved by L Hospital s rule
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Resonance Response: Undamped System (Cont..)

o The response is periodic with period of

T= 2w, wk 1, Modifical
. . —:7(5111 wtfwtcoswt) of last
O Peak response is obtained by P, 2 equation
differentiating:
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o The difference between two successive RN
peaks is given by 0 T T T
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oo o) 2k k value with Omega causes difference.
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Damped Harmonic Vibration

o Damped Harmonic Vibration is governed by:

mii+ci+ku=p, sinQf ————————— [6))

o The particular solution (steady state response) is of the form:

u=G, cosQt+G,sinQf ————————— ?2)

o On putting in eq.1 we get values of G, and G, the particular solution is thus

_D 1 {1-8)si
w=to o {1- p)sinCu ~2¢B cos U} ——— - 3
k(-p) +gpy
o The compli y solution ( ient response) is:
U, =€ " (Acosw,t + Bsinw,t)————————— (4)
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Damped Harmonic Vibration (Cont..)

o The complete solution is thus:

u= e"""”(A cosw,t + Bsin wdt)+ G, sinQt + G, cos Qt ——————| (5)
Transient Steady State

where 4 and B are arbitrary constants determined from the initial conditions:

abe B p 0 280 BI-F) veruel
k(1-pF +(2zpy ko (1-pf+0g8)

o The transient response is given by:

e v, +u,0f .
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Damped Harmonic Vibration (Cont..)
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o Undamped Harmonic Vibration oo
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e The transient response does ) Resporse
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Damped Harmonic Vibration (Cont..)

o The steady state response (Eq.3) of a damped harmonic vibration can be written in
the alternative form as:

u=psin(Qt-g)-———————-—- © |

O Where p is the amplitude of steady state response and @ is the phase angle by
which the response lags the exciting force.
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e ——tang= 5
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Damped Harmonic Vibration : Magnification

O Dynamic load factor, i.e. the ratio of dynamic
to static displacement, is given by:
D(r)= . sin(Qr —¢)

1
Vi-p) + gpy

o The amplitude of dynamic load factor called
the dynamic magnification factor is:

Magnification

1
Ap=————
Ji-pF + 2y
o The plot between 8 and A, shows that 4, is
not maximum at  =1.0. The value of # to
maximize 4, is obtained as:
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Damped Harmonic Vibration : Phase Angle

O Atresonance, i.e.  =1.0, all the curves pass
through a single point (@ = 90).

O For B < 1.0 the phase angle is less than 90°.

o For B> 1.0 the phase angle is between 90°
and 180°.

o For undamped system the steady state
response is in phase (@ = 0) with the
exciting force when < 1.04? Zeta (0)

o For undamped system the st€ady state
response is in out-of-phase (& = 180) with
the exciting force when > 1.0.

tan ¢ =

208
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Phase Angle

1 2
Beta Frequency Ratio
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Resonance Response: Damped System

o At resonance (f =1.0 )the steady state
and transient responses are:
P
2

Transient

cos Qt

u,

steady =

o
=2 coswdt+w—§sinwdt ) \
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O In the initial phase the transient response
will minimize the total response. Steady State
O When the transient response diminish, N N\ N
the system vibrates with the exciting /AN AN AN AN
[ AN N N V]
\J \/ \

force but lagging by 90°.

o For small damping, the total response is:

Uy = %i (e”"” - l)cos ot
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Resonance Response: Damped System (Cont..)

Envelope curve  Steady-state amplitude (p,/2Ck)
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