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DYNAMICS OF STRUCTURES

Dynamics of Structures 2

Single Degree of Freedom System:

Free Vibration Response

Dynamics of Structures 3

Free Vibration: Viscous Damping

 The free vibration response an damped (viscous) system is governed by:

 A possible solution of the above equation is:

 Substituting the solution into equation of motion:
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Free Vibration: Viscous Damping (Cont..)

 Based on the value of the 
discriminant, three different 
cases arise:

 Critically damped system 
(discriminant is zero)

 Overdamped system 
(discriminant is positive)

 Underdamped system 
(discriminant is negative)
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Critically Damped System

 For critically damped system

The roots of the differential equation are:

Therefore the solution of equation of motion is:

The arbitrary constants are determined from the initial condition. The 
general solution thus becomes:
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Critically Damped System (Cont..)

 Thus the free vibration of a 
critically damped system is 
not oscillatory

 After the initial disturbance 
the system will come back to 
its original position without 
oscillation in maximum time.

 Examples:

Recoiling Gun and Weighing 
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Overdamped System

 For overdamped system, damping is greater than critical damping

 The ratio of damping of a system to its critical damping is called damping 
ratio and is given by:

 The roots of characteristic equation may be written as:

 The general solution of equation 

of motion is of the form:

Examples are: Automatic door closer

1_

1

2

2









where




 mc
m

c

c

c

cr

2__
2



 tBtAeu t  sinhcosh  
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10 12 14 16

Critically Damped

Overdamped

Dynamics of Structures 8

Underdamped System

 For underdamped system, damping is less than the critical damping, i.e. 
the damping ratio is less than one

 The roots of characteristic equation may be written as:

ωd is known as the damped circular frequency

 The general solution of equation

of motion is of the form:
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Underdamped System (Cont..)
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Phase Plane Diagram
 Under-damped system
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Logarithmic Decrement

 It is the natural log of the ratio of displacement at any time t1 and 
t1+2π/ωd

 It represent decay in the magnitude during one cycles

 Logarithmic Decrement is used to calculate the damping ratio of a system
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Logarithmic Decrement (Cont..)
 For many practical cases:

 For lightly damped system, the decay of motion is slow, it is desirable to relate 
amplitudes several cycles apart:
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Logarithmic Decrement (Cont..)
 The number of cycles in which the 

amplitude will decay to half its value at he 
beginning is given by:

 Since acceleration is easy to measure and 
also acceleration is proportional to the 
displacement in case of free vibration, the 
damping ratio is therefore determined 
from:
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