
1

DYNAMICS OF STRUCTURES

Dynamics of Structures 2

Single Degree of Freedom System:

Free Vibration Response
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Solution of Equation of Motion

 For a single degree of freedom system the equation of motion is a linear 
second order differential equation:

 Various methods for the solution of equation of motion are:
 Classical Solution

 Duhamel’s Integral

 Frequency Domain Method

 Numerical Methods
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Free Vibration

 The vibration of a system excided by initial disturbances (initial 
displacement or velocity) without any external force is called free 
vibration

 The equation of motion becomes a homogenous 2nd order linear 
differential equation

 The study of free vibration response is important because:
 Many practical systems are excited by initial disturbances

 The complete solution of force vibration also include free vibration 
component. 
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Undamped Free Vibration

 The free vibration response an undamped system is governed by:

 In reality there is no existence of undamped system, however the its 
response gives an insight into the nature of damped system.

 A possible solution of the above equation is:

 Substituting the solution into equation of motion:
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Undamped Free Vibration

 The general solution of the equation of motion now becomes:

 The arbitrary constants A and B are determined from the initial conditions 
i.e. At t = 0,  

 The solution of undamped free vibration response of single degree of 
freedom system is, therefore:
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Undamped Free Vibration

 The solution may be written as:

 It can be shown that:

 Thus the vibration repeats itself after               and is the natural period of 
system

 The reciprocal of T is call the natural frequency of system;
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Undamped Free Vibration
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Phase Plan Diagram
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Phase Plan Diagram (Initial Displacement)
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Phase Plan Diagram (Initial Velocity)
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Phase Plan Diagram (Impulse)
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Phase Plan Diagram (Ground Motion)
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