DYNAMICS OF STRUCTURES

Single Degree of Freedom System:
Free Vibration Response
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Solution of Equation of Motion

o  For asingle degree of freedom system the equation of motion is a linear
second order differential equation:

mii +cu+ku = p(t)

o Various methods for the solution of equation of motion are:
e Classical Solution
e Duhamel’s Integral
e Frequency Domain Method 7

e Numerical Methods c I
— p(t)
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Free Vibration

o The vibration of a system excided by initial disturbances (initial
displacement or velocity) without any external force is called free
vibration

mii+cu+ku=0

O The equation of motion becomes a homogenous 2™ order linear
differential equation

O The study of free vibration response is important because:
e Many practical systems are excited by initial disturbances

e The complete solution of force vibration also include free vibration
component.
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Undamped Free Vibration

O The free vibration response an undamped system is governed by:

u

mii+ku=0
o In reality there is no existence of undamped system, however the its
response gives an insight into the nature of damped system.
O A possible solution of the above equation is:
u=Ge"
O Substituting the solution into equation of motion:
GAme" +Gke" =0= Zm+k=0
>2+0’ =0 A=tio

where _w = E called circular frequency of system
m
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Undamped Free Vibration

O The general solution of the equation of motion now becomes:
u=G,e" +Ge™ = Acos wt + Bsin ot

O The arbitrary constants A and B are determined from the initial conditions
ie Att=0, u(0)=u, _and _i(0)=v,

A=u0_and_B=v—"
)

O The solution of undamped free vibration response of single degree of
freedom system is, therefore:

v, .
u =u, coswt +—=sin wt
@

Dynamics of Structures 6

Undamped Free Vibration

O The solution may be written as:
u= psin(mt+¢)

“h::p=m _and_tang= ”;:”
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o It can be shown that: u(1)= u[f; +27:]

O Thus the vibration repeats itself after 7 =27 and is the natural period of
system @ ©

O The reciprocal of T is call the natural frequency of system; S "
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Undamped Free Vibration
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Phase Plan Diagram
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Phase Plan Diagram (Initial Displacement)
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Phase Plan Diagram (Initial Velocity)
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Phase Plan Diagram (Impulse)
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Phase Plan Diagram (Ground Motion)
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