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Instructional Objectives 
On completion of this lesson, the student shall be able to learn: 
 

1. The physical dynamics of water movement in open channels and rivers 
2. The mathematical description of flow processes in the above cases 
3. Different types of free surface flows: uniform, non uniform, etc. 
4. Different channel shapes and cross sections and their representations 
5. Computation steps for gradually varied water surface profiles 

 
 

2.8.0 Introduction 
It is common for water resources engineers to design a water system involving 
flow of water from one place to another, usually passing a variety of structures on 
the way some of them meant for controlling the flow quantity. Rivers and artificial 
channels, like canals, convey water with a free surface, that is, the surface of 
water being exposed to air as opposed to flow of water in pipes. It is easy to 
visualize that for any such open channel flow, as they are called; the presence or 
absence of a hydraulic structure controls the position of the free surface of water. 
Knowing the mathematical description of flowing water, it is possible to compute 
the water surface profile, which is important for example in designing the height 
of the channel walls of the water conveying system. 
 
Another example, the case of river flow obstruction by the presence dam may be 
mentioned. The water level of the river increases on construction of the dam and 
it is essential to know the maximum possible rise, perhaps during the maximum 
flood, in order to know the degree of submergence of the land behind the dam. 
Barrages are low height structures, and hence, the rise of water will not be 
occurring uniformly across the river, again due to the difference of gate 
operation. 
 
In this lesson, the behavior and corresponding mathematical description of flow 
in open channels are reviewed in order to utilize them in designing water 
resources systems. 
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2.8.1 Flow in natural rivers 
 Figure1 shows a river carrying a low discharge.  
 
 

 
 
 
When the water surface of the river just touches its banks, the discharge flowing 
through the river at this stage is called the “bank full discharge”. It is also 
sometimes called the “dominant discharge”. If the discharge in the river 
increases, the water will overflow the banks and would spill over to the adjacent 
land, called the flood plains (Figure 2). 
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Though the amount of discharge flowing through the river is of interest to the 
water resources engineer it cannot be measured directly by any instruments. 
Rather, an indirect method is used which requires knowledge of the velocity 
distribution in a river or an open channel. 
 
If we plot the velocity profile across a river, as shown in Figure 1, it would actually 
vary in three dimensions. Figure 3 shows the variation of velocity at the water 
surface.  
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It may be observed that velocity is highest at the center of the river but is zero at 
the banks. If a velocity profile were plotted on another horizontal plane at certain 
depth of the river, there too the velocity profile would be found to be similar in 
shape, but smaller in magnitude (Figure 4).  
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Similarly the velocity profile of the river flowing in flood would be as shown in 
Figure 5, showing that the velocities over the flood plains is smaller compared to 
the main stream flow. 
 

 
 
If we now take a look at the variation of velocity in a vertical plane within a river, 
and we plot them along different vertical lines across the river, then we may find 
the velocity profiles similar to those shown in Figure 6. 
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In order to measure the discharge being conveyed in a river, the velocity profile 
or the average velocity at a number of equally spaced sections are measured, as 
in Figure 6. The total discharge is then approximately taken equal to the sum of 
the discharges passing through each segment. 
 
Another way of depicting the velocity variation across a river cross-section is to 
plot “Isovels”, which are actually the locus of points having equal velocity (Figure 
7). 
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It has been observed through experiments that a plot of velocity in the vertical 
plane would show that the maximum velocity occurs slightly below the surface 
(Figure 8) for a typical river flow. 
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It has further been observed that an equivalent average velocity is almost equal 
to the actual velocity measured at 0.6 depth. 
 
 

2.8.2 Variation of discharge with river stage 
The water level in a river is sometimes called the “stage” and as this varies, 
there is a proportional change in the total discharge conveyed. For each point of 
a river, the relation between stage and discharge is unique but a general form is 
found to be as shown in Figure 9. 
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The general mathematical description for the stage-discharge relation is given 
as: 
 

mhhkQ )( 0−=        (1) 
 
Where h is the gauge corresponding to a discharge Q and h0 is the 
corresponding to zero discharge k and m are constants. If the variables (Q and 
H) are plotted on a log-log graph, then it generally plots in a straight line as: 
 

khhmQ log)(loglog
0
+−=      (2) 

 
 

2.8.3 Flow variation along river length 
It may be interpreted from Figures 4 or 6 that the velocity in a river cross section 
actually varies from bank to bank and from riverbed to free water surface and 
hence, can be called a two dimensional variation in a vertical plane. However, for 
engineering purposes it is, sufficient, generally, to use an equivalent velocity in 
the direction of river motion (perpendicular to river cross section) which may be 
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obtained by dividing the total discharge by the cross sectional area. In a natural 
river, therefore, these flow velocities may vary from section to section (Figure 
10). 
 
 

 
 
 
If we now consider an axis along the length of the river, the total energy (H) is 
given as: 
 

g
VhZH
2

2

++=      (3) 

 
We may plot the total energy as shown in Figure 11, where the variables are as 
follows: 
 

• Z: Height of riverbed above a datum 
• h: Depth of water 
• V: Average velocity at a section 
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• 
g

V
2

2

: Kinetic energy head 

 

 
 
Since the cross section, bed slope and flow resistance vary along a river length, 
the depth and velocity would vary correspondingly. However, if a short stretch of 
a river section is taken, then the variations in riverbed, water surface and the total 
energy may be considered as linear (Figure 12). 
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In Figure 12, three slopes have been marked, which are: 
 

• S0: Riverbed slope 
• S: Water surface slope 
• Sf: Energy surface slope 

 
Since the total energy of flowing water reduces along the river length due to 
friction the “energy surface slope” is generally termed as the “friction slope”. The 
energy loss in a river or an open channel occurs mostly due to the resistance at 
the channel sides, as the turbulent characteristics of the flowing water implies a 
smaller loss internally within the water body itself. 
 
It has been nearly 200 years when scientists first attempted to mathematically 
express (or “model”) the friction slope in terms of known variables like average 
velocity, cross section properties and riverbed slope. One of the earliest models 
for friction slope Sf or, in effect, the channel resistance was derived from the 
considerations of “uniform flow” (Figure 13) where the flow variables and cross 
section are supposed to remain constant over a short reach. 
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If we take small volume of fluid from these two sections we may make a free 
body diagram of the forces acting on it (Figure 14). 
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 The variables represented in the figure are as follows 
 

• W: Weight of water contained in the control volume 
• V: Inflow velocity, which is the same as the outflow velocities 
• θ: Angle of slope river bed, which is also equal to that water surface and 

friction slopes 
• 0τ : Shear stress due to friction acting on the control volume of fluid from 

the river bed and all along the periphery, though in Figure 14 only the 
resistance due to the riverbed is shown. 

 
Equating the forces and noting that the inflowing and out flowing momenta are 
equal as well as the pressure forces at either end of the control volume one 
obtains: 
 

0τ P L = W sinθ = ρ g A L sinθ     (4) 
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Where the remaining variables are: 
• P: wetted perimeter 
• A: Cross section of flow area 
• L: Length of control volume 

 
Assuming θ to be very small and nearly equal to bed slope, we have 
 

0τ  = ρ g R S0      

 (5) 
 

Assuming a state of rough turbulent flow, as is the case for natural rivers and 
channels, one may write  
 

τ0 α V2 
          or       τ0 = kV2     

 (6) 
 
Substituting into (4), 

V = 0SR
k
gρ       (7) 

This may be written as 
 

V = C SR       (8) 
 

This is known as Chezy equation after the French hydraulic engineer. Antoine 
Chezy who first proposed the formula around 1768 while designing a canal for 
Paris water supply. The constant C in equation (8) actually varies depending on 
Reynolds number and boundary roughness. 
 
In 1869, Swiss engineers, Ganguillet and Kutter proposed an elaborate formula 
for Chezy’s C which they derived from actual discharge data from the river 
Mississippi and a wide range of natural and artificial channels in Europe. The 
formula, in metric units, is given as  
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Where n is a coefficient known as Kutter’s n, and is dependent solely on the 
boundary roughness. 
 
In 1889, Robert Manning’s, an Irish engineer proposed another formula for the 
evaluation of the Chezy coefficient, which was later simplified to: 
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n
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6
1

=        (10) 

 
From Equation (8), the Manning equation may be written as: 
 

2
1

0
3

21 SR
n

V =       (11) 

 
Where the Manning n is numerically equivalent to Kutter’s n. 
 
Many research workers have experimentally found the value of n, and for natural 
rivers, the following books may be consulted: 
 

1. Chow, V T (1959) “Open Channel Hydraulics”, McGraw Hill. 
2. Chaudhry, M H (1994) “Open Channel Flow”, Prentice Hall of India. 

 
 

2.8.4 Uniform flow in channels of simple cross section 
For problems concerning the steady uniform flow in rivers and open channels, 
the Manning’s equation is commonly used in India. The depth of water 
corresponding to a discharge in a channel or river under uniform flow conditions 
is called “normal depth”. By combining the continuity equation with that of 
Mannings, one obtains 
 

2
1

3
21 SRA

n
Q=        (12) 

 
Where the variables have been defined in the earlier sections. 
 
One may also write equation (12) as follows 
 

SKQ =        (13) 
 

Where K =
n
RA 3

2

, also called Conveyance, is often necessary to find out the 

normal depth of flow corresponding to a discharge Q, flowing in a channel for 
which equation (11) may be rearranged as 
 

3
2

RA = 
2

1
S

Qn       (14) 
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In equation (14), the right hand side terms are known where as those in left hand 
are unknown and are functions of water depth. For a few commonly encountered 
sections the parameters A and R are given in the table below. 
    

 Rectangle Trapezoid Circle 

b.h (b+my).y )sin(
8
1 φφ −  Flow Area, A 

b +2h b +2h. 21 m+  Dφ
2
1  Wetted Perimeter, P 

hb
bh

2+
 

2m12h+ b
my).y(b
+

+  D)sin1(
4
1

φ
φ

−  Hydraulic Radius, R 

b b +2mh D)
2

(sin φ  Free surface width, B 

 
In the table, m stands for the side slope of a trapezoidal channel and � stands 
for the angle subtended at the centre by the water surface chord line. 
 
As seen from the above table except for the very simple rectangular section it is 
not possible directly to evaluate h, corresponding to Q as the left hand side of 
equation 13 is nonlinear in terms of h. One way of solving is by Newton’s 
method, where equation (14) is written as  
 

0)(
2

1
3

2
=−=

S

nQARhf     (15) 

 
For using Newton’s method the derivative of the function is required 
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)(' hf  = 
dh
dPRBR 3
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3
2

3
5

−       (18) 

 

Where we have used B
dh
dA

= .Similarly the expression 
dh
dP  may be evaluated for 

any section. 
Starting with a realistic value hi the iteration may be carried out as given below: 
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h i+1 = h i -
)(
)(

' i

i

hf
hf       (19) 

 
Where h i+1 is the value of h at next iteration, which is an improvement of initial 
guess hi. The iteration may be continued till a desired accuracy is achieved. 
 
 

2.8.5 Uniform flow in channels of compound cross section 
A compound section may be defined as a section in which various portions of the 
cross-section have different flow properties, like surface roughness or channel 
depth. (Figure 15) 
 

 
 
In order to use the uniform flow formula in compound channels one way may be 
to divide the flow section into sub areas (Figure 16) and treat the flow in each 
area separately. 
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However, it has been found that this method may lead to errors by as much as 

 or even more (Chadwick et al 2004). The error is largely due to the 
neglecting of mass and momentum interchange between adjacent sub-areas. 
The current solution would however be more complex by using a two or even 
three-dimensional model. 

%20±

 
In another method, the energy coefficient (α) and friction slope Sf are 
evaluated in terms of conveyance K of the sub areas. With these expressions, 
the flow in compound section may be computed without knowing the individual 
flows in each sub area. For a compound channel divided into N sections. (For 
example N = 3 in Figure 15). The energy coefficient,α, is found out as:  

∑

∑

=

== N

i
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i
ii

AV

AV

1

3

1

3

α       (20) 

Where Vm is the mean flow velocity in the entire section and is given as follows 
 

i

ii
m A

AV
V

∑
∑

=       (21) 

 
Where Vi = Qi /Ai and Ai is the area of its ith sub-area. Equation (18) now can be 
written as  
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Now, the flow in sub-areas i may be written as  
 

2
1

ifii SKQ =      (23) 

2
1

ifS = 
i

i

K
Q

------------- (21) 

 
Here, an assumption has been made that Sf has the same value for all sub-
areas, which is not quite correct since the velocities of each of these areas being 
different, would not give equal velocity heads. Where as, the water surface is 
almost level over the entire cross section. 
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It follows from equation (23) that  
 

1Q = 1K
n

n
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       (25) 
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Adding all the above equation yields  
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By substituting this expression for = iQ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

n

n
i K

Q
K into equation (27) and simplifying 

the equation, one obtains  
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Elimination of 
n

n

K
Q

from equations (24) and (26) and squaring both sides give  

 
2
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fS = 2
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Q
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        (30) 

 
Thus, expressions for α and Sf have been evaluated for any given stage without 
explicitly determining the flow in each sub areas, Qi. In addition, equation (30) 
may be used in the procedure for determining varied flow profiles as discussed in 
Section 2.8.6. 
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2.8.6 Non uniform in channels 
There are quite a few examples of non-uniform flow in rivers or open channels 
that may be encountered by a water resources engineer. Some of these have 
been illustrated in Figure 17. 
 
 
 

 
 
In this lesson we shall discuss the procedure to evaluate water surface profiles 
for steady, gradually varying flow situations. For steady, rapidly varying and 
unsteady flow situations, reference may be made to following or similar texts on 
hydraulics of open channel flow, like Ranga Raju (2003) or Subramanya (2002). 
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2.8.7 Non-uniform gradually varied flow calculation 
A representative non-uniform gradually varied flow is shown in Figure 18. 
 

 
 
Over the incremental distance Δx, the depth and velocity are known to change 
slowly. The slope of the energy grade line is designated as α in contrast to 
uniform flow, the slopes of the energy grade line, water surface, and channel 
bottom are no longer parallel. Since the changes in the water depth h and 
velocity V are gradual, the energy lost over the incremental Δx can be 
represented by manning equation. This means that equation 11, which is valid for 
uniform flow can also be used to evaluate S for a gradual varied flow situation, 
and that the roughness coefficients discussed in Section 2.8.3 are applicable. 
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Additional assumption includes a regular cross section, small channel slope, 
hydrostatic pressure distribution and one-dimensional flow. 
 
Applying the equivalence of energy between locations 1 and 2, and assuming the 
loss term as hL given by one obtains  xS f Δ⋅

 

xS
g

V
hZ

g
V

hZ f Δ+++=++
22

2
2

22

2
1

11 αα      (31) 

 
In the above equation, Δx is the distance between two consecutive sections x1 
and x2 such that Δx=x2- x1. 

The energy coefficient α has been used along with the 
g

V
2

2

term, as it may be 

much different from 1.0 for natural sections. The term  in equation (31) may be 
evaluated by the expression for uniform flow, equation (11), where S

fS

0 may be 
replaced by . Since equation (31) relates the energy between the sections,  
may be taken either of the following: 

fS fS

Arithmetic mean: ( 21
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 (32) 

Geometric mean: 21

____

fff SSS =     (33) 

Harmonic mean: 
21

21
____ 2

ff

ff
f SS

SS
S

+
=      (34)     

 
 
 Where  and  are the friction slopes evaluated at section 1 and 2 by using 
the Mannings formula equation (12). 

1fS 2fS

 
Equation (29) may be used by starting from one end of the channel where the 
flow depth and velocity are known and working backward or forward in steps. 
Here, two, methods are used of which we shall discuss one, called the standard 
step method. Avery popular computer program called HEC-2 developed by 
hydrologic engineering center of the US Army Corps of Engineers is based on 
this method. It may be freely downloaded from the website: 
www.hec.usace.army.mil/software/ legacysoftware/hec2/hec2-download.htm. 
 
In the standard step method, for any given discharge the depth of flow would be 
known at the control section. It is then required to calculate the depth of flow at 
the section immediately next to the control section. Two examples are illustrated 
in Figure 19. 
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The distance between the two successive sections (i and i+1) is taken as 
constant, say Δx. It may be observed from the Figure 19a since the water is 
flowing above the dam the water depth above the dam crest can be found out for 
the given discharge. Hence the water level at the control section just upstream of 
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the dam is known. Similarly, in Figure 19b, since the water is flowing down from 
the reservoir into the steep channel critical depth corresponding to the given 
discharge would exist at the control section. Here two, the water level at the 
control section is then known.  
 
Starting at the control section (i =1), the total energy of water is found out to be  
 

H1 = g
VhZ
2

2
1

11 α++       (35)     

 
Next, consider the first reach, that is, between sections i =1 and i =2. A depth of 
flow is assumed at section 2 and the energy there, that is, 
 

       H2 = g
V

hZ
2

2
2

22 α++       (36) 

 

is evaluated. Now, one of the equations for finding  (the average friction 
slope) in the reach is found out by, say equation 31. 

____

fS

 
As may be observed from Figure 18 the numerical value of H2 found from 
equation (33) should be equal to that of h1 found from equation (33) + . If the 
depth at the section 2 has been correctly assumed if the two don’t match, a new 
depth h

fS

2 is assumed and the calculations are repeated till the two values match. 
 
Once a correct depth is found at section 2, a similar procedure is used to find the 
depth at section 3, and so on. 
 
These are the two other methods to find out water surface profiles of gradually 
varied flow situations, namely; method of direct integration and method of 
graphical integration. Interested reader may refer to standard textbooks on 
Hydraulics of open channel flow, like the following for details about these 
methods. 

1. Ranga Raju (2003) 
2. Subramanya (2002)  

 
 

2.8.8 Gradually varied flow profiles 
In many flow problems it is enough to make a qualitative sketch of water surface 
profile for a given flow that is taking place between two locations. It is not 
necessary therefore to find out the exact level of water at different points but the 
general shape of the free surface has to be drawn as accurately as possible. An 
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analysis of water surface profile may be done by studying the governing 
equation, which can be derived from the sketch in Figure 20. 
 

 
 
The total energy H at a channel section is given as 
 

    H =
g

V
hZ

2

2

α++       (37)     

Where  
 

• H: Elevation of energy line above the datum 
• Z: Elevation of channel bottom above datum 
• h: Flow depth 
• V: Mean flow velocity 
• α: Velocity head coefficient 

 
Considering x as the space coordinate, taken positive in the direction of flow one 
obtains by differentiating both sides of the equation (36) with respect to x and 
expressing V in terms of discharge Q. 
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Again, we know by definition: 
 

dx
dH = - Sf        (39)    

And 
dx
dZ = - So        (40)   

 
In which  
 

• Sf: Slope of the energy grade line  
• So: Slope of the channel bottom. 

 
The negative sign of Sf and So indicates that both H and Z decrease as x 
increases. In equation (37) an expression for the derivative of A-2 may be found 
out as follows: 
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 Since B
dh
dA

=  

 
By substituting equations (39), (40) and (43) into equation (38), and rearranging 
the resulting equation one obtains  
 

32
0

/)(1 gAQB
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dx
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−
=            (44)    

 
If the channel is not prismatic, then the cross sectional area A changes with 
distance, and may be expressed as: 
 

dx
dA = 

x
A
∂
∂

+ y
A
∂
∂

dx
dh           (45)    

 
The above change would modify equations (40) and (43) accordingly. 
 

Version 2 CE IIT, Kharagpur 
 



We may express equation (43), which describes the variation of h with x, in 
terms of the Froude Number (Fr) if we note the following: 
 

( ) 2
2

3

2

)(/)(
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BAg
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QB

==
α

α         (46) 

 
Hence, equation (39) may be written as  
 

2
0

1 Fr
SS

dx
dh f

−

−
=          (47) 

 
Equation (47) can give a general idea about the nature of the curve if one knows 
the relative inclinations of the channel bed slope and friction slope (Sf) and the 
Froude Number (Fr). This may be done by observing the water flow depth (h) 
with respect to normal depth (hn) and critical depth (hc) for a given discharge, 
the following figures show the relative changes of hn and hc as channel bed slope 
is increased gradually from horizontal. It may be observed that the for a given 
discharge hc does not change but hn goes on decreasing starting from an infinite 
value for a flat slope. 
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In water resources projects, one generally encounters slopes of channels that 
are either of the following: 
 

• Mild, where hn > hc     (Figure 22)  
• Steep, where hn < hc     (Figure 24) 
• Critical, where hn = hc    (Figure 23)  
• Flat, where hn = ∞    (Figure 21) 
• Adverse, where the slope is reversed  (Figure 25) 

 
For each of these slopes, the actual water surface would vary depending upon a 
control that exist either at the upstream or downstream end of the channel. Some 
examples of controls are given below 
 

• Weir or spillway    (Figures 26 and 27) 
• Gate      (Figure 28) 
• Free overfall     (Figure 29) 
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Apart from the above a normal depth may be assumed to exist within a very long 
channel, for which the conditions at the far end may be neglected (Figure 30). 
 

 
 
The situation shown in Figure 30 is used often while analyzing flow in, say, at the 
tail end of long irrigation channels or in a long river. Examples illustrating the use 
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of equation (42) and a known control section in determining flow profiles where 
for a mildly slope channel. Similar profiles may be qualitatively sketched for other 
channels too. 
 
 
2.8.9 Downstream control raising the water level above 
normal depth   
 

 
 
This situation is common for spillways of large dams. The flow profile in a mildly 
sloped channels where h > hn > hc as shown in Figure 31 is known as the M1 
curve. Now, for uniform flow, Sf =S= So when h = hn. Hence it is clear from 
Mannings formula (equation 11), that for a given discharge, Q, 
 

             Sf < So if h > hn
 
Thus, in equation (47) i.e., 

2
0

1 Fr
SS

dx
dh f

−

−
=       (47) 
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The numerator is positive Fr<1 since h>hc. Therefore, the denominator of 
equation (47) is positive as well. Hence, it follows from this eqn that 
 

2
0

1 Fr
SS

dx
dh f

−

−
= = +=

+
+       

 
This means that h increases with distance x. 
 
Comparing with Figure 29 it may be inferred that quite some distance upstream 
of the spillway the flow depth nearly equals normal depth. And, since dh/dx for 
this profile is positive which means that the water depth goes on increasing 
towards the spillway, the flow depth becomes nearly horizontal. However very 
close to spillway the flow profile again changes which is due to the fact that the 
flow here is not really one-dimensional (Figure 32). 
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2.8.10 Downstream controlled raising water level above 
critical depth but below normal depth  
 

 
 
The flow profile in a mildly sloping channel where hn>h>hc, has been shown in 
Figure 33 is known as the M2 curve. In this case Sf>So since h<hn (from 
Mannings formula). Thus the numerator in equation (46) is negative. However, 
the denominator is positive, since Fr<1 because h>hc hence it follows from 
equation 46 that 
 

    2
0

1 Fr
SS

dx
dh f

−

−
= = −=

−
−  

 
Thus h decreases as x increases for upstream of this spillway control section the 
flow depth would be asymptotic to normal depth hn. 
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2.8.11 Upstream control causing water depth to be less than 
both normal and critical depths 
 
This situation is shown in Figure 34 for flow taking place below a sluice gate. The 
reader is advised to check the trend of water surface profile using equation (47) 
in this case. 
 

 
 
 

2.8.12 Important terms, definitions and procedures 
This lesson has used certain terms, which are discussed to some detail here. 
 
Newton’s Method 
This method is useful in finding a simple root of the function f(x) = 0, when the 
derivative of f(x) is easily obtainable. The iteration formula used in the method 
can be derived by the Taylor’s series expansion of f(x) about x=x0 , the 
approximate value of the desired root. We have  
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Where h is the small correction to the root. 
Now if h is relatively small, we may neglect terms containing n2 and higher 
powers of h. Then, we get 
 

)()( 0
'
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This gives 
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0

xf
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Thus, we can take the improved value of the root as  

01 xx =
)(
)(

0
'

0

xf
xf

−  

 
The Newton-Raphson iteration can thus be written as  

nn xx =+1 ,.....2,1,0,
)(
)(

' =− n
xf
xf

n

n  

 
The sequence { }, if it converges, gives the root. nx
 
Froude Number 
 This measures the ratio of inertia to gravity forces. In problems where there is an 
interface between two immiscible fluids the gravity forces are of importance. 
Froude number is defined by the relation 

Dg
V

=Fr  

 
Normal depth 
For given values of channel roughness n, discharge Q, and the channel slope S, 
there is only one depth possible at which uniform flow occurs. It is known as 
normal depth. 
 
Critical depth 

The depth of flow at which the specific energy ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

g
Vy
2

E
2

attains a minimum 

value is called critical depth. 
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