
Chapter 2

Three-Hinged Arches

This chapter is devoted to the analysis of statically determinate three-hinged arches,

subjected to fixed and moving loads. Analysis of an arch in the case of fixed loads

implies determination of reactions of supports and construction of internal force

diagrams. Analysis of an arch in the case of moving load implies construction of

influence lines for reactions, thrust, and internal forces.

Some important concepts are discussed. Among them are a reference beam,

thrust, nil points of influence lines, etc. Analytical formulas for computation

of internal forces as well as for construction of influence lines for reactions

and internal forces are developed. Special types of arches are considered; among

them are arches with simple and complex ties, arches with support points on

different levels. Analysis of the multispan arched structure and truss enforced by

arched chain are discussed.

Fundamental investigation in the area of static analysis of arches is attributed to

Bresse [Bre59], Kirchhoff [Kir76], and Winkler [Tim53] to name a few.

2.1 General

Idealized design diagram of the arch without overarched members is shown in

Fig. 2.1a. This diagram contains two curvilinear members which are hinged

together at the crown; connections of curvilinear members with abutment are also

hinged. These three hinges are distinguishing features of the three-hinged arch.

Design diagram also contains information about the shape of the neutral line of the

arch. Usually, this shape is given by an expression of the form y ¼ f ðxÞ.
Expressions for some characteristic shapes are presented in Tables A.1 and A.2.

Degrees of freedom of the arch in Fig. 2.1a, according to Chebushev formula

[Kar10], are determined by the formula

W ¼ 3D� 2H0 � S0 ¼ 3� 2� 2� 1� 4 ¼ 0; (2.1)
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where D, H0, and S0 are the number of rigid discs, the number of simple hinges, and

the number of constraints of support, respectively. SinceW ¼ 0, this structure does

not have redundant constraints, while all existing constraints constitute the geo-

metrically unchangeability. Indeed, two rigid discs AC and BC are connected with

the ground by two hinges A and B and line AB does not pass through the inter-

mediate hinge C.
This structure has four unknown reactions, i.e., two vertical reactions RA, RB

and two horizontal reactions HA, HB. For their determination, three equilibrium

equations can be formulated considering the structure in whole. Since bending

moment at the hinge C is zero, this provides additional equilibrium equation.

It means that the sum of the moments of all external forces, which are located on

the right (or on the left) part of the structure with respect to hinge C is zero

X
left

MC ¼0 or
X
right

MC ¼0 (2.2)

These four equations of equilibrium determine all four reactions at the supports.

Therefore, three-hinged arch is a geometrically unchangeable and statically deter-

minate structure.

The fundamental feature of arched structure is that horizontal reactions appear

even if the structure is subjected to vertical load only. These horizontal reactions

HA ¼ HB ¼ H called as a thrust; such types of structures are often called as thrusted
structures.

It will be shown later that at any cross section of the arch, the bending moments,

shear, and axial forces arise. However, the bending moments and shear forces are

considerably smaller than corresponding internal forces in a simply supported beam

covering the same span and subjected to the same load. This is the fundamental

property of the arch thanks to thrust. Thrusts in both supports are oriented toward

each other and reduce the bending moments that would arise in beams of the same

span and load. Therefore, the height of the cross section of the arch can be much less

then the height of a beam to resist the same loading. So the three-hinged arch is

more economical than simply supported beam, especially for large-span structures.

Introducing a tie into the system increases the number of constraints by one and

therefore, in order for the arch with a tie to remain statically determinate, one of the
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Fig. 2.1 (a, b) Design diagram of three-hinged arch without tie and with elevated tie
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pinned support must be replaced by a rolled support. A tie changes the distribution

of internal forces in arch. The tie may be located at the level of the supports or

above them. Arch with an elevated tie is shown in Fig. 2.1b. If tie is connected with

arch by means of hinges, then the tie is subjected only to a tensile internal force.

In the case of vertical loads, which act on the arch with a tie, the horizontal

reactions of supports equals zero while an extended force (thrust) arises in a tie.

Let us have a quick look at the structure shown in Fig. 2.2. Is this an arch? The

arch is characterized by two fundamental markers such as a curvilinear axis and

appearance of the thrust. Therefore, the structure in Fig. 2.2 presents the curvilinear

trustless simply supported element, i.e., this is just a member with a curvilinear axis,

but not an arch.

It is obvious that, unlike the beam, in this structure the axial compressed forces

arise; however, the distribution of bending moments for this structure and for a

beam of the same span and load will not differ, while the shear forces are less in this

structure than that in beam. Thus, the fundamental feature of the arch (decreasing

of the bending moments due to appearance of the thrust) for structure in Fig. 2.2

is not observed.

2.2 Reactions of Supports and Internal Forces

Let us consider a three-hinged symmetrical arch with intermediate hinge C at the

highest point of the arch and with supports A and B at one elevation. Design

diagram of the corresponding three-hinged arch is presented in Fig. 2.3; the span

and rise of the arch are labeled as l and f, respectively. Equation of central line of

the arch is y ¼ yðxÞ.

Reactions of Supports

The stress analysis, and especially, construction of influence lines for internal

forces of the three-hinged arch may be easily and elegantly performed if the

conception of the “reference (or substitute) beam” is introduced. The reference
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Fig. 2.2 Simply supported thrustless curvilinear member
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beam is a simply supported beam of the same span as the given arch and subjected

to the same loads, which act on the arch (Fig. 2.3).

The following reactions arise in arch: RA; RB; HA; HB. The vertical reactions of

three-hinged arches carrying the vertical loads have same values as the reactions of

the reference beam

RA ¼ R0
A; RB ¼ R0

B: (2.3)

The horizontal reactions (thrust) at both supports of three-hinged arches

subjected to the vertical loads are equal in magnitude and opposite in direction

HA ¼ HB ¼ H: (2.4)

Bending moment at the hinge C of the arch is zero. Therefore, by definition of

the bending moment

MC ¼ RA
l

2
� P1

l

2
� x1

� �
� P2

l

2
� x2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M0
C

�HA � f ¼ 0:

Underlined set of terms is the bending moment acting over section C of the

reference beam (this section is located under the hinge of the arch). Therefore, last

equation may be rewritten in the form

M0
C � HA � f ¼ 0;
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Fig. 2.3 Three-hinged arch. Design diagram and reference beam
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which immediately allows us to calculate the thrust

H ¼ M0
C

f
: (2.5)

Thus, the thrust of the arch equals to bending moment at section C of the

reference beam divided by the rise of the arch.

Internal Forces

In any section k of the arch, the following internal forces arise: the bending moment

Mk, shear Qk, and axial force Nk. The positive directions of internal forces are

shown in Fig. 2.4.

Internal forces acting over a cross section k may be obtained considering the

equilibrium of free body diagram of the left or right part of the arch. It is convenient

to use the left part of the arch. By definition

Mk ¼ RAxk �
X
left

Piðxk � xiÞ � Hyk;

Qk ¼ RA �
X
left

P

 !
cos’k � H sin’k;

Nk ¼ � RA �
X
left

P

 !
sin’k � H cos’k;

where Pi are forces which are located at the left side of section k; xi are

corresponding abscises of the points of application; xk and yk are coordinates

of point k; and ’k is the angle between the tangent to the center line of the arch at

point k and a horizontal.
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Fig. 2.4 Positive internal forces at any section k
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These equations may be represented in the following convenient form

Mk ¼ M0
k � Hyk;

Qk ¼ Q0
k cos’k � H sin’k;

Nk ¼ �Q0
k sin’k � H cos’k; (2.6)

where expressions

M0
k ¼ RAx�

X
left

Piðx� xiÞ; and Q0
k ¼ RA �

X
left

P;

represent the bending moment and shear force at section k for the reference beam

(beam’s bending moment and beam’s shear).

Analysis of (2.5) and (2.6)

1. Thrust of the arch is inversely proportional to the rise of the arch.

2. In order to calculate the bending moment in any cross section of the three-hinged

arch, the bending moment at the same section of the reference beam should be

decreased by the value Hyk. Therefore, the bending moment in the arch less

than that of in the reference beam. This is the reason why the three-hinged arch

is more economical than simply supported beam, especially for large-span

structures.

In order to calculate shear force in any cross section of the three-hinged arch,

the shear force at the same section of the reference beam should be multiplied

by cos ’k and this value should be decreased by H sin ’k.

3. Unlike beams loaded by vertical loads only, there are axial forces, which arise

in arches loaded by vertical loads only. These axial forces are always

compressed.

Example 2.1. Design diagram of the three-hinged circular arch subjected to fixed

loads is presented in Fig. 2.5a. The forces P1 ¼ 10 kN, P2 ¼ 8 kN, q ¼ 2 kN/m.

It is necessary to construct the internal force diagrams M, Q, N.

Solution. Reference beam. The reactions are determined from the equilibrium

equations of all the external forces:

X
MB ¼ 0 ! �R0

A � 32þ P1 � 24þ q� 8� 12þ P2 � 4 ¼ 0 ! R0
A ¼ 14:5 kN;X

MA ¼ 0 ! R0
B � 32� P1 � 8� q� 8� 20� P2 � 28 ¼ 0 ! R0

B ¼ 19:5 kN:

The bending moment M0 and shear Q0 diagrams for reference beam are pre-

sented in Fig. 2.5b. At point C (x ¼ 16 m), the bending moment isM0
C ¼ 152 kN m.

Three-hinged arch. The vertical reactions and thrust of the arch are

RA ¼ R0
A ¼ 14:5 kN; RB ¼ R0

B ¼ 19:5 kN; H ¼ M0
C

f
¼ 152

8
¼ 19 kN:
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For construction of internal forces diagrams of the arch, a set of sections has to be

considered and for each section internal forces should be calculated. All computa-

tions concerning geometrical parameters and internal forces of the arch are presented

in Table 2.1. The column 0 contains the numbers of sections. For specified sections A,
1–7, and B, the abscissa x and corresponding ordinate y (in meters) are presented in

columns 1 and 2, respectively. Radius of curvature of the arch is

R ¼ f

2
þ l2

8f
¼ 8

2
þ 322

8� 8
¼ 20m:

Coordinates y are calculated using the following expression

yðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � l

2
� x

� �2
s

� Rþ f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
400� ð16� xÞ2

q
� 12 ðmÞ:
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Fig. 2.5 (a) Design diagram of three-hinged circular arch and (b) reference beam and

corresponding internal forces diagrams
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Columns 3 and 4 contain values of sin ’ and cos ’, which are calculated by the

formula

sin’ ¼ l� 2x

2R
¼ 32� 2x

40
; cos’ ¼ yþ R� f

R
¼ yþ 12

20
:

Values of bending moment and shear for reference beam, which are presented

in columns 5 and 7, are taken directly from the corresponding diagrams in Fig. 2.5b.

Values for Hy are contained in column 50. Columns containing separate terms

for Q0 cos’; Q0 sin’; H cos’; H sin’ are not presented. Values of bending

moment, shear, and normal forces for three-hinged arch are tabulated in columns 6,

8, and 9. They have been computed using (2.6). For example, for section A we have

QA ¼ Q0
A cos’A � H sin’A ¼ 14:5� 0:6� 19� 0:8 ¼ �6:5 kN;

NA ¼ �Q0
A sin’A � H cos’A ¼ �14:5� 0:8� 19� 0:6 ¼ �23 kN:

The final internal force diagrams for the arch are presented in Fig. 2.6. Bending

moment diagram is shown on the side of the extended fibers, thus the signs of

bending moments are omitted. As for beam, the bending moment and shear

diagrams satisfy to Schwedler’s differential relationships. In particularly, if at any

point a shear changes its sign, then a slope of the bending moment diagram equals

zero, i.e., at this point the bending moment has local extreme (e.g., points 2, 7, etc.).

It can be seen that the bending moments which arise in cross sections of the arch are

much less than that of in a reference beam.

It is obvious that for supports R2
A þ H2 ¼ Q2

A þ N2
A and R2

B þ H2 ¼ Q2
B þ N2

B.

2.3 Rational Shape of the Arch

The shape of the arch, which is subjected to a given fixed load, is called rational if

the bending moments in the cross section of the arch equal to zero. An example of a

rational arch could be in the form of a circular arch which is loaded by uniform

radial (hydrostatic) load [Rzh82].

2.3.1 Vertical Load Does Not Depend on the Shape of the Arch

In this case, the reactions of the arch and bending moments for reference beam

do not depend on the shape of the arch. Thus, for a rational arch, we have the

condition

Mk ¼ M0
k � Hyk ¼ 0; (2.7)
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where M0
k is a bending moment in the reference simply supported beam; H is a

thrust of the arch; yk is a vertical coordinate of the point on the axis of the arch.

Therefore, the shape of the rational arch is determined by its y coordinate

yk ¼ Mo
k

H
: (2.8)

It is easy to prove the following statement: if a three-hinged arch is subjected to

a vertical load and the vertical ordinates y of the arch, measured from the support

line AB, are proportional to corresponding ordinates of the bending moment

diagram of the reference beam, then the bending moments at all sections of the

arch are equal to zero. This statement is true for any position of the intermediate

hinge C [Rab60].
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Fig. 2.6 Design diagram of three-hinged circular arch. Internal forces diagrams
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Indeed, let for any section k of the arch, the y-ordinate of the axis and bending

moment of the reference beam be related by the formula yk ¼ nM0
k , where n is an

arbitrary number. Bending moment at section k is

Mk ¼ M0
k � Hyk ¼ M0

k � HnM0
k ¼ M0

kð1� nHÞ:

For crown hinge C, the bending moment MC ¼ M0
Cð1� nHÞ ¼ 0: Since

M0
C 6¼ 0, then ð1� nHÞ ¼ 0.

Thus, the bending moment at any section equals to zero.

Example 2.2. Three-hinged symmetric arch of span l and rise f is loaded by a

uniformly distributed load q within the entire span. Origin is placed on the left

support and the axis x is directed to right. Expression for bending moment of the

reference beam is M0
x ¼ qxðl� xÞ=2.

The thrust of the arch is H ¼ M0
C=f ¼ ql2=ð8f Þ. Therefore, the required equation

of the axis of the arch becomes

yðxÞ ¼ M0
x

H
¼ 4f

l2
xðl� xÞ:

Thus, if a uniformly distributed vertical load acts within the entire span of the

three-hinged parabolic arch, then the bending moments do not arise in the arch.

Note, if a given load is governed by the law qðxÞ ¼ q0 þ kx, then the bending

moment diagram and the rational axis of the arch are characterized by third-order

polynomials [Kis60].

2.3.2 Vertical Load Depends on Arch Shape

Let us consider a three-hinged arch load as shown in Fig. 2.7. We can see that a

shape of the arch determine the value of load. According to the definition, in the

case of a rational arch, only axial forces arise in the cross sections.

Free body diagram for infinitesimal element i–j is shown in Fig. 2.7; horizontal

projection of this element is dx. Equilibrium equation

X
X ¼ N cos’� ðN þ dNÞ cosð’þ d’Þ ¼ 0;

leads to d(N cos’Þ ¼ 0. It means that

N cos’ ¼ const ¼ H; (2.9)

where H is the thrust of the arch.
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Equilibrium equation

X
Y ¼ N sin’þ qðxÞdx� ðN þ dNÞ sinð’þ d’Þ ¼ 0 leads to

d

dx
ðN sin’Þ ¼ qðxÞ:

(2.9a)

Since N ¼ H cos’= , (2.9a) can be rewritten as follows

d

dx
ðH tan’Þ ¼ qðxÞ or d

dx
H
dy

dx

� �
¼ H

d2y

dx2
¼ qðxÞ:

Thus, the equation of the rational axis of the arch in the case of a load, which

depends on the shape of the arch obeys the differential equation [Kis60]

d2y

dx2
¼ qðxÞ

H
: (2.10)

For each specified load, the problem of determining the rational shape of the arch

comes down to integration of (2.10).

Example 2.3. Symmetrical three-hinged arch of span l and rise f is subjected to

vertical load q(x), which consists of two parts. One part of load, q0, is uniformly

distributed within the entire span of the arch. The second part of load depends on the

shape of the arch. Assume that this part of the load is proportional to coordinate у.
Thus, the total load becomes qðxÞ ¼ q0 þ g� y. Design diagram of right-hand part

of the arch and location of the x and y axis are shown in Fig. 2.8.

Differential equation (2.10) becomes

d2y

dx2
¼ q0 þ g� y

H
or

d2y

dx2
� k2y ¼ q0

g
k2; k2 ¼ g

H
:

Its solution and first derivative are

y ¼ A sinh kxþ B cosh kx� q0
g
;
dy

dx
¼ Ak cosh kxþ Bk sinh kx:

j 
i 

N 

N+dN

q(x)dx

j+dj

j

B A
y

x
C

dx
q(x)

j 
i 

y(x)

Fig. 2.7 Three-hinged arch subjected to load which depends on the shape of the arch
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Constants of integration are found from the boundary conditions for symmetrical

arch:

1. At x ¼ 0 (indeterminate hinge C), dy/dx ¼ 0. This condition leads to A ¼ 0.

2. At x ¼ 0 y ¼ 0, so B ¼ q0 g= .

Equation of the axis of the rational shape of the arch becomes

yðxÞ ¼ q0
g
ðcosh kx� 1Þ:

This curve is called a catenary [Kis80]. Some data for catenary arch with the

given span l and rise f and parameter of the load d ¼ qmax=q0 are presented below.

Equation of the shape of the arch is

y ¼ f

d� 1
ðcosh kx� 1Þ;

where relationship between parameters k and d is

d ¼ cosh
kl

2
; so k ¼ 2

l
arc cosh d:

The slope of the axis of the arch is

tan’ ¼ f

d� 1
k sinh kx:

The thrust H of the arch, axial force N in any cross section of the arch, and

maximum axial force Nmax are:

H ¼ q0ðd� 1Þ
fk2

; N ¼ H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2’

p
; Nmax ¼ H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2f 2

dþ 1

d� 1

r
:

Vertical component of the reaction of support is

V ¼ H
f

d� 1
k sinh

kl

2
:

q0

B
y

x

C
y(x)

g.y

qmax

l /2

f

Fig. 2.8 Load change according to the shape of the arch, q(x) ¼ q0 + gy
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2.3.3 Radial Load

Let us consider an arch with arbitrary equation for the central axis. The arch is

loaded by a radial load. It means that the load is directed along the radius of

curvature at each infinitesimal element of the arch. Design diagram of such element

of length ds, central angle 2da, and radius of curvature r is shown in Fig. 2.9. The

load q is directed to the center of curvature; the load q should be treated as

uniformly distributed within the portion ds. Since the arch is rational, then bending

moments are absent.

From the equilibrium equations

X
MO ¼ Nr� ðN þ dNÞr ¼ 0;

we get dN ¼ 0. It means that in the case of a radial load, the axial force in arch is

constant.

Since sin da ffi da and ds ¼ r� 2da, then the equilibrium equation in projec-

tion of all forces onto the normal axis

X
n ¼N sin daþ ðN þ dNÞ sin da� qds ¼ 0;

leads to the following expression for the radius of curvature r ¼ N q= . Curvature

of the axis of the rational arch is proportional to the intensity q of the external load.
In the case of a uniformly distributed radial load (q ¼ const), the axis of the rational

arch presents a circle [Kis60].

The simplest problems of optimal three-hinged and redundant uniform arches

are presented in [Gol80]: in these problems, it is necessary to find the shape of the

arch which minimize its volume. Different types of loading are considered. Among

them are fixed, moving, and wind loads.

2.4 Influence Lines for Reactions and Internal Forces

This section is devoted to construction of influence line for reactions, thrust, and

internal forces. Three precise approaches are considered. They are the analytical

approach, the nil points of influence lines, and fictitious beam methods. Influence

N 

N+dN

da r

ds

n 

0

q

Fig. 2.9 Infinitesimal element subjected to radial load and axial force
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lines method for structural analysis was developed by Winkler (1835–1888) and

independently by Mohr (1835–1918) in 1868.

2.4.1 Analytical Approach

Equations (2.3), (2.5), and (2.6) can be used for deriving the equations for influence

lines. The equations for influence lines for vertical reactions of the arch are derived

from (2.3). Therefore, the equations for influence lines become

ILðRAÞ ¼ IL RO
A

� �
; ILðRBÞ ¼ IL RO

B

� �
: (2.11)

The equation of influence lines for thrust is derived from (2.5). Since for a given

arch, a rise f is a fixed number, then the equations for influence lines becomes

ILðHÞ ¼ 1

f
� IL MO

C

� �
: (2.12)

Thus, influence line for trust H may be obtained from the influence line for

bending moment at section C of the reference beam, if all ordinates of the latter will

be divided by parameter f.
The equations for influence lines for internal forces at any section k may be

derived from (2.6). Since for a given section k, the parameters yk, sin ’k, and cos ’k

are fixed numbers, then the equations for influence lines become

ILðMkÞ ¼ IL MO
k

� �� yk � ILðHÞ;
ILðQkÞ ¼ cos’k � IL QO

k

� �� sin’k � ILðHÞ;
ILðNkÞ ¼ � sin’k � IL QO

k

� �� cos’k � ILðHÞ: (2.13)

In order to construct the influence line for bending moment at section k, it is
necessary to sum two graphs: one of them is influence line for bending moment at

section k for reference beam and second is influence line for thrust H with all

ordinates of which have been multiplied by a constant factor (�yk).
Equation of influence lines for shear also has two terms. The first term presents

influence line for shear at section k in the reference beam, all the ordinates of which

have been multiplied by a constant factor cos ’k. The second term presents the

influence line of the thrust of the arch, all the ordinates of which have been

multiplied by a constant factor ð� sin’kÞ. Summation of these two graphs leads

to the required influence line for shear force at section k. Similar procedure should

be applied for the construction of influence line for axial force. Note that both terms

for axial force are negative.
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Figure 2.10a presents the arched structure consists of the arch itself and

overarched construction, which includes the set of simply supported beams and

vertical posts with hinged ends. Unit load, which moves along the horizontal

beams, is transmitted over the posts on the arch at discrete points. Thus, this design

8=
l

ba cc

Inf. line MC
0(m)

+

Inf. line RA

0.5
0.751

0.25 0.125
+

Inf. line RB

1.00.5 
0.25 

0.75

+

7/8

0.125 

acbc

lf
= 1

Inf. line H

0.5
0.25 

0.5 

+
0.25 

Inf. line Qk
0

1.0

1.0 
+

RA RB

A

C

B
H H

1

53
2

k

7

6

P=1

bC=16maC=16m

ak=10m bk=22m

6.875=
l

akbk

Inf. line Mk
0(m)

+

5.0 
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b

c

Fig. 2.10 Three-hinged arch. (a) Design diagram; (b) influence lines for reactions of the arch; and
(c) influence lines for internal forces at section k for reference beam
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diagram corresponds to indirect load application. Parameters of the arch are same as

in Fig. 2.5a.

It is required to construct the influence lines for vertical reactions, thrust and for

bending moment Mk, shear Qk, and normal force Nk for section k.

Influence Lines for Reactions

According to (2.11), influence lines for vertical reactions RA and RB of the arch do

not differ from influence lines for reaction of supports of a simply supported beam.

Influence line for thrust may be constructed according to (2.12); the maximum

ordinate of influence line for bending moment at section C of the reference beam

equals to acbc l= ¼ 8m. Therefore, the maximum ordinate of influence line for

thrust H of the arch becomes ð1=f Þ � ðacbc=lÞ ¼ l=4f ¼ 32=4� 8 ¼ 1. Influence

lines for reactions of supports of the arch and internal forces for reference beam are

shown in Fig. 2.10b, c. Indirect load application is taken into account [Kar10].

Influence Lines for Internal Forces at Section k

Section k is characterized by the following parameters: ak ¼ 10 m, bk ¼ 22 m, yk ¼
7.0788 m, sin ’ ¼ 0.30, cos ’ ¼ 0.9539 (Table 2.1). Algorithms for the construc-

tion of influence lines of internal forces for arch are described in Sect. 2.4.1.

Bending moment. Influence line forM at section k may be constructed according to

(2.13).

ILðMkÞ ¼ IL M0
k

� �� yk � ILðHÞ: (2.13a)

Step 1. Influence line for bending moment at section k of reference beam M0
k

presents the triangle with maximum ordinate akbk l= ¼ 10� 22 32= ¼ 6:875m at

sections k and 5.0 m at section C (Figs. 2.10 and 2.11).

Step 2. Influence line for thrust H presents triangle with maximum ordinate

l ð4f Þ= ¼ 1 at section C. Term yk � ILðHÞ presents the similar graph; the maximum

ordinate is yk � 1 ¼ 7:0788m. So the specified ordinates of graph yk � ILðHÞ at
section k and C are 4.42425 and 7.0788 m, respectively (Fig. 2.11).

Step 3. Procedure (2.13a) is presented in Fig. 2.11, construction of influence line

Mk. Since both terms in (2.13a) has different signs, then both graphs, IL M0
k

� �
and

yk � ILðHÞ should be plotted on the one side on the basic line. The ordinates of

required ILðMkÞ will be located between these both graphs. Specified ordinates of

final influence line (2.13a) at section k and C are

6:875� 4:42425 ¼ 2:45075m and 5:0� 7:0788 ¼ �2:0788m:
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Step 4. Influence line between joins 2 and 3 presents a straight line because of

indirect load application [Kar10]; this connected line is shown by solid line. Final

influence line ILðMkÞ is shown in Fig. 2.11.

Shear force. This influence line may be constructed according to equation

ILðQkÞ ¼ cos’k � IL Q0
k

� �� sin’k � ILðHÞ: (2.13b)

Step 1. Influence line for shear at section k for the reference beam is shown in

Fig. 2.10c; the specified ordinates at supports A and B equal to 1.0. The first term

cos’k � IL Q0
k

� �
of (2.13b) presents a similar graph with specified ordinates

cosfk ¼ 0:954 at supports A and B, so ordinates at the left and right of section k
are � 0:298 and 0.656, while at crown C is 0.477.

Step 2. Influence line for thrust is shown in Fig. 2.10b; the specified ordinates at

crown C equals to 1.0. The second term sin’k � ILðHÞ of (2.13b) presents a

similar graph with specified ordinates 0:3� 1:0 ¼ 0:3 at crown C. Specified ordi-

nate at section k is 0.1875.

7.0788 6.875 

4.42425 

5.0 
IL(Mk

0)

yK•IL(H)
+ –

Construction
Inf. line Mk (m)

A

RA

C
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H H
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1

3
2

k

P=1

bk=22mak=10m

 yk

+
–*

2.0788 

ak= 10m 2.4507 

Inf. line Mk (m)
Connected line 

Fig. 2.11 Three-hinged arch. Design diagram and construction of influence line for bending

moment at section k of the arch
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Step 3. Procedure (2.13b) is presented in Fig. 2.12. As in case for bending moment,

both terms in (2.13b) has different signs, therefore both graphs cos’k � IL Q0
k

� �
and sin’k � ILðHÞ should be plotted on the one side on the basic line. Ordinates

between both graphs present the required ordinates for influence line for shear.

Specified ordinates of final influence line (2.13b) at left and right of section k are

0:298þ 0:1875 ¼ 0:4855 and 0:656� 0:1875 ¼ 0:4685:

At crown C, ordinate of influence line Qk is 0:477� 0:3 ¼ 0:177.

Step 4. Influence line between joins 2 and 3 presents a straight line; this connected

line is shown by a solid line. Final influence line ILðQkÞ is shown in Fig. 2.12.

Axial force. This influence line may be constructed according to the following

equation

ILðNkÞ ¼ � sin’k � IL Q0
k

� �� cos’k � ILðHÞ: (2.13c)
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0.1875 

jk

Fig. 2.12 Three-hinged arch. Design diagram and construction of influence line for shear at

section k of the arch
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Step 1. Influence line for shear at section k for the reference beam is shown in

Fig. 2.10c. The first term sin’k � IL Q0
k

� �
of (2.13c) presents a similar graph with

specified ordinates sin’k ¼ 0:30 at supports A and B, so at the left and right of

section k ordinates are 0.09375 and � 0:20625, while at crown C is � 0:15.

Step 2. Influence line for thrust is shown in Fig. 2.10b; the specified ordinates

at crown C equals to 1.0. The second term cos’k � ILðHÞ of (2.13c) presents a
similar graph with specified ordinates 0:9539� 1:0 ¼ 0:9539 at crown C. Specified
ordinate at section k is 0.59618.

Step 3. Procedure (2.13c) is presented in Fig. 2.13. Both terms in (2.13c) has same
signs; therefore, both graphs, sin’k � IL Q0

k

� �
and cos’k � ILðHÞ, should be

plotted on the different sides on the basic line. Ordinates for required ILðNkÞ
are located between these both graphs. Specified ordinates of final influence

line (2.13c) at left and right of section k are � ð0:59618� 0:09375Þ ¼
�0:50243 and � ð0:59618þ 0:20625Þ ¼ �0:80843:
At crown C, ordinate of influence line Nk is � ð0:9539þ 0:15Þ ¼ �1:1039.

Step 4. Influence line between joins 2 and 3 presents a straight line; this connected

line is shown by a solid line. Final influence line ILðNkÞ is shown in Fig. 2.13.

Properties of the Influence Lines for Internal Forces

1. Influence line for bending moment has significantly less ordinates than for

reference beam. This influence line contains the positive and negative ordinates.

It means that at section k, extended fibers can be located below or above the

neutral line depending on where the load is placed.
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Fig. 2.13 Three-hinged arch. Design diagram and construction of influence lines for axial force at

section k of the arch
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2. Influence line for shear, as in the case of reference beam, has two portions with

positive and negative ordinates; all ordinates are significantly less than that of in

the reference beam.

3. Influence line for axial force has only negative ordinates. So in case of arbitrary

load, the axial forces in arch are always compressed.

2.4.2 Nil Points Method

Each influence lines shown in Figs. 2.11–2.13 has the specified point labeled as (*).

These points are called as nil (or neutral) point of corresponding influence line.

Such points of influence lines indicate a position of the concentrated load on the

arch, so internal forcesM, Q, and N in the given section k would be zero. Nil points
may be used as simple procedure for the construction of influence lines for internal

forces and checking the influence lines which were constructed by the analytical

approach. This procedure for three-hinged arch of span l is discussed below.

Bending Moment

Step 1. Find nil point (NP) of influence lineMk. If load P is located on the left half of

the arch, then reaction of the support B pass through crown C. Bending moment at

section k equals zero, if reaction of support A pass through point k. Therefore, NP
(Mk) is the point of intersection of line BC and Ak (theorem about three concurrent

forces). The nil point (*) is always located between the crown C and section k
(Fig. 2.14).
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Fig. 2.14 Construction of influence line Mk using the nil point method
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Step 2. Lay off along the vertical passing through the support A, the abscissa of

section k, i.e., xk.

Step 3. Connect this ordinate with nil point and continue this line till a vertical

passing through crown C and then connect this point with support B.

Step 4. Take into account indirect load application; connecting line between joints 2
and 3 is not shown.

Location of NP(Mk) may be computed by the formula

uM ¼ l f xk
ykl2 þ xk f

: (2.14)

Shear Force

Step 1. Find nil point (NP) of influence line Qk. If load P is located on the left half of

the arch, then reaction of the support B pass through crown C. Shear force at section
k equals zero, if reaction of support A will be parallel to tangent at point k.
Therefore, NP(Qk) is point of intersection of line BC and line which is parallel to

tangent at point k. For a given design diagram and specified section k, the nil point
(*) is fictitious one (Fig. 2.15).

Step 2. Lay off along the vertical passing through the support A, the value cos’k.

Step 3. Connect this ordinate with nil point. A working zone of influence line is

portion between section k and vertical passing through crown C – right-hand portion
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Fig. 2.15 Symmetrical three-hinged arch. Construction of influence line Qk using the nil point

method. The case of fictitious nil point
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1 (RHP-1). Then connect the point under crown Cwith support B – right-hand portion
2 (RHP-2).

Step 4. Left-hand portion (LHP) is parallel to right-hand portion 1 and connects two
points: zero ordinate at support A and point under section k.

Figure 2.16 presents a nonsymmetrical three-hinged arch with real nil point for
influence line Qk; this point is located within the span of the arch. Therefore, we

have one portion with positive shear and two portions with negative shear.

Location of NP(Qk) for cases in Figs. 2.15 and 2.16 may be computed by the

formula

uQ ¼ l tan b
tan bþ tan’k

: (2.15)

Axial Force

The nil point of influence line Nk is point of intersection of line BC and line passing

through support A perpendicular to tangent at section k.

Step 1. Find nil point (NP) of influence line Nk. If load P is located on the left half of

the arch, then reaction of the support B pass through crown C. Axial force at section

k equals zero, if reaction of support A will be perpendicular to tangent at point k.
The nil point (*) is located beyond the arch span (Fig. 2.17).

Step 2. Lay off along the vertical passing through the support A, the value sin’k.
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Fig 2.16 Nonsymmetrical three-hinged arch. Construction of influence line Qk using the nil point

method. The case of real nil point
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Step 3. Connect this ordinate with nil point and continue this line till vertical passes
through crown C. A working zone is portion between section k and vertical passing
through crown C (first right-hand portion RHP-1). Then connect the point under

crown C with support B (second right-hand portion – RHP-2).

Step 4. LHP is parallel to RHP-1 and connects two points: zero ordinate at support A
and point under section k.

Location of NP(Nk) may be computed by the formula

uN ¼ l tan b
tan b� cot’k

: (2.16)

2.4.3 Fictitious Beam Method

Influence lines for internal forces of the three-hinged arch may be constructed as the

bending moment diagram for the fictitious beam subjected to the special type of

loads [Uma72-73].

Influence Line for Mk

Fictitious beam is loaded by two forces Pf
k ¼ 1 at section k and V f

C ¼ yk f= at

section C (Fig. 2.18). For arch in Fig. 2.5a and Table 2.1, we get V f
C ¼ yk=f ¼

7:0788=8 ¼ 0:88485.
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Fig. 2.17 Construction of influence line Nk using the nil point method
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Reactions of fictitious beam are

Rf
A ¼ 1� 22� 0:88485� 16

32
¼ 0:245075 ð"Þ; Rf

B ¼ 0:129925 ð#Þ:

All forces and reactions are dimensionless. Bending moment diagram is shown

on the extended fibers (positive ordinates are placed below the neutral line).

Bending moments at specified points of the fictitious beam are

Mf
k ¼ Rf

A � ak ¼ 0:245075� 10 ¼ 2:4507m;

Mf
C ¼ �Rf

B �
l

2
¼ �0:129925� 16 ¼ �2:0788 m:

These ordinates of influence line forMk have been obtained earlier and presented

in Fig. 2.11.

Influence Line for Qk

Fictitious beam is loaded by the couple Mf
k ¼ cos’k ¼ 0:9539 (clockwise) at

section k and force V f
C ¼ sin’k f= ð1/mÞ (upwards) at section C (Fig. 2.19). For

arch in Fig. 2.5a and Table 2.1, we get V f
C ¼ sin’k=f ¼ 0:3=8 ¼ 0:0375 ð1/mÞ.
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Fig. 2.18 Three-hinged arch. Fictitious beam for Mk is loaded by two forces Pf
k ¼ 1 at section k

and V f
C ¼ yk f= ; the bending moment diagram presents the influence line forMk for the entire arch
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Reactions of fictitious beam are

Rf
A ¼ 0:048559 ð1/mÞð#Þ and Rf

B ¼ 0:011059 ð1/mÞð"Þ:

Bending moments at specified points of the fictitious beam are

Mf ;left
k ¼ �Rf

A � ak ¼ �0:048559 � 10 ¼ �0:4855;

Mf ;right
k ¼ �R

f
A � ak þ 0:9539 ¼ �0:048559� 10þ 0:9539 ¼ 0:4684;

Mf
C ¼ Rf

B �
l

2
¼ 0:011059� 16 ¼ 0:177:

Fictitious bending moments are dimensionless. These ordinates of influence line

for Qk have been obtained earlier and presented in Fig. 2.12.

Influence Line for Nk

Fictitious beam is loaded by the couple Mf
k ¼ sin’k ¼ 0:30(counterclockwise)

at section k and force V f
C ¼ cos’k=f ¼ 0:9539=8 ¼ 0:11924 ð1/mÞ (upwards) at

section C (Fig. 2.20).
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Fig. 2.19 Fictitious beam for Qk. Bending moment diagram for fictitious beam presents the

influence line Qk for the entire arch
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Fig. 2.20 Fictitious beam for Nk. Bending moment diagram for the fictitious beam presents the

influence line Nk for the entire arch
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Reactions of fictitious beam are

R
f
A ¼ 0:05024 ð1/mÞð#Þ and R

f
B ¼ 0:06899 ð1/mÞð#Þ:

Bending moments at specified points of the fictitious beam are

Mf ;left
k ¼ �Rf

A � ak ¼ �0:050243� 10 ¼ �0:50243;

Mf ;right
k ¼ �Rf

A � ak � sin’k ¼ �0:50243� 0:30 ¼ �0:80243;

Mf
C ¼ �R f

B �
l

2
¼ �0:06899� 16 ¼ �1:1039:

Fictitious bending moments are dimensionless. These ordinates of influence line

for Nk have been obtained earlier and presented in Fig. 2.13.

2.4.4 Application of Influence Lines

Influence lines, which describe the variation of any function Z (reaction, bending

moment, shear, etc.) in the fixed section due to moving concentrated unit load

P ¼ 1 may be effectively used for calculation of this function Z due to arbitrary
fixed and moving loads [Dar89], [Kar10].

Fixed load. Three types of fixed loads will be considered: concentrated loads Pi,

uniformly distributed loads qj, and couples Mk (Fig. 2.21).

Any function Z as a result of application of these loads may be calculated by the

formula

Z ¼ �
X

Piyi �
X

qjoj �
X

Mk tan ak; (2.17)

where y is the ordinates of influence line for function Z at the point where force P is

applied;o is the area of influence line graph for function Z within the portion where

load q is applied; ak is the angle between the x-axis and the portion of influence line
for function Z within which M is applied.

y1 y2

w1 w2
a

q1
P1 P2 M

Inf. line for Z

q2

Fig. 2.21 Application of influence line for fixed loads
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The sign of Z due by load P depends on the sign of ordinate y of influence line.
The sign of the area o coincides with sign of ordinates of influence line; if the

influence line within the load limits has different signs, then the areas must be taken

with appropriate signs. If couple tends to rotate influence line toward base line

through an angle less than 90�, then the sign is positive.

Formula (2.17) reflects the superposition principle and may be applied for any

type of statically determinate and redundant structures.

Example 2.4. Assume that arch is subjected to fixed loads as shown in Fig. 2.5a.

Calculate the reactions and internal forces of the arch at section k using influence lines.

Solution. Reactions of supports. Ordinates of influence line for RA at the points

of application the loads P1 and P2 are 0.75 and 0.125, respectively (Fig. 2.10b).

The area of the influence line under the uniformly distributed load is

o ¼ 0:5þ 0:25

2
� 8 ¼ 3:0 ðmÞ:

Therefore, the reaction RA ¼ P1 � 0:75þ q� 3þ P2 � 0:125 ¼ 14:5 kN.
The thrust H of the arch, using influence line (Fig. 2.10b) equals

H ¼ P1 � 0:5þ q
1þ 0:5

2
� 8þ P2 � 0:25 ¼ 19 kN:

Internal forces in section k. The internal forces can be found in a similar way, using

the relevant influence lines (Figs. 2.11–2.13). They are following:

Mk ¼ P1 � 1:96� q
2:0788þ 1:0394

2
� 8� P2 � 0:5194 ¼ �9:500 kN m

Qk ¼ �P1 � 0:3883þ q
0:177þ 0:0885

2
� 8þ P2 � 0:04425 ¼ �1:405 kN;

Nk ¼ �P1 � 0:40194� q
1:1039þ 0:5519

2
� 8� P2 � 0:2759 ¼ �19:473 kN:

The magnitudes of just found internal forces Mk, Qk, and Nk coincide with those

computed in Example 2.1 and presented in Table 2.1.

These values of reactions coincide with those computed previously (Example 2.1).

Moving loads. Influence line for any function Z allows us to calculate Z for any
position of a moving load, and that is very important, the most unfavorable position

of the moving loads and corresponding value of the relevant function. Unfavorable

(or dangerous) position of a moving load is such position, which leads to the

maximum (positive or negative) value of the function Z. The following types of

moving loads will be considered: one concentrated load, a set of loads, and a

distributed load.

The set of connected moving loads may be considered as a model of moving

truck. Specifications for truck loading may be found in various references, for

example, in the American Association of State and Highway Transportation

Officials (AASHTO). This code presents the size of the standard truck and the
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distribution of its weight on each axle. The moving distributed load may be

considered as a model of a set of containers which may be placed along the loading

counter of the arch at arbitrary position.

Note that the term “moving load” with respect to influence line concept implies

only that position of the load is arbitrary, i.e. this is a static load, which may have

different positions along the beam. The time, velocity of the moving load, and any

dynamic effects are not taken into account. Thus, for convenience, in this section

we will use notion of “moving” or “traveling” load for static load, which may have

different position along the structure.

The most unfavorable position of a single concentrated load is its position at a

section with maximum ordinate of influence line. If influence line has positive and

negative signs, then it is necessary to calculate corresponding maximum of the

function Z using the largest positive and negative ordinates of influence line.

In case of set of concentrated moving loads, we assume that some of loads may

be connected. This case may be applicable for moving cars, bridge cranes, etc. We

will consider different forms of influence line.

Influence Line Forms a Triangle

A dangerous position occurs when one of the loads is located over the vertex of an
influence line; this load is called a critical load. (The term “critical load” for

problems of elastic stability, Chaps. 4 and 5, has a different meaning.) The problem

is to determine which load among the group of moving loads is critical. After a

critical load is known, all other loads are located according to the given distances

between them.

The critical load may be easily defined by a graphical approach. Let the moving

load be a model of two cars, with loads Pi on the each axle (Fig. 2.22). All distance

between forces are given.

Step 1. Trace the influence line for function Z. Plot all forces P1, P2, P3, P4 in order

using arbitrary scale from the left-most point A of influence line; the last point

is denoted as C.

P3

P3

P4

P4

P2

P2

C

B

P1

P1

y1 y2
y3

y4

A
D

a

B
q

A

a b

l
b

Fig. 2.22 Graphical definition of the unfavorable position of load for triangular influence line. (a)
Set of concentrated load and (b) uniformly distributed load of fixed length l
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Step 2. Connect the right most point B with point C.

Step 3. On the base line show point D, which corresponds to the vertex of influence
line and from this point draw a line, which is parallel to the line CB until it intersect

with the vertical line AC.

Step 4. The intersected force (in our case P2) presents a critical load; unfavorable

location of moving cars presented in Fig. 2.22a.

Step 5. Maximum (or minimum) value of relative function is Z ¼PPi � yi.

Influence Line Forms a Polygon

A dangerous position of the set of moving concentrated loads occurs when one or

more loads stand over vertex of the influence line. Both the load and the apex of the

influence line over which this load must stand to induce a maximum (or minimum)

of the function under consideration are called critical. The critical apex of the

influence line must be convex.

In case of uniformly distributed moving load, the maximum value of the function

Z corresponds to the location of a distributed load q, which covers maximum one-

sign area of influence line. The negative and positive portions of influence line must

be considered in order to obtain minimum and maximum of function Z.
The special case of uniformly distributed moving load happens, if load is

distributed within the fixed length l. In case of triangular influence line, the most

unfavorable location of such load occurs when the portion ab ¼ l and base AB will

be parallel (Fig. 2.22b).

Example 2.5. Simply supported beam with two overhangs is presented in Fig. 2.23.

Determine the most unfavorable position of load, which leads to maximum (posi-

tive and negative) values of the bending moment and shear at section k. Calculate
corresponding values of these functions. Consider the following loads: uniformly

distributed load q and two connected loads P1 and P2 (a twin-axle cart with different

wheel loads).

Solution. Influence lines for required functions Z are presented in Fig. 2.23.

Action of a uniformly distributed load q ¼ 1.6 kNm. Distributed load leads to

maximum value of the function if the area of influence lines within the distributed

load is maximum. For example, the positive shear at section k is peaked if load q
covers all portions of influence line with positive ordinates; for minimum shear in

the same section the load q must be applied within portion with negative ordinates.

QkðmaxþÞ ¼ 1:6� 1

2
ð0:3� 3þ 0:4� 4Þ ¼ 2 kN;

Qkðmax�Þ ¼ �1:6� 1

2
ð0:6� 6þ 0:3� 3Þ ¼ �3:6 kN;

MkðmaxþÞ ¼ 1:6� 1

2
10� 2:4 ¼ 19:2 kNm;

Mkðmax�Þ ¼ �1:6� 1

2
ð1:2� 3þ 1:8� 3Þ ¼ �7:2 kNm:
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Positive value of Mk max means that if load is located between AB, the tensile

fibers of the beam at section k are located below longitudinal axis of the beam.

If load is located within the overhangs, then bending moment at section k is

negative, i.e., the tensile fibers at section k are located above the longitudinal axis

of the beam.

Action of the set of loads P1 ¼ 5 kN and P2 ¼ 8 kN. Unfavorable locations of two

connected loads are shown in Fig. 2.23. Critical load for bending moment at section

k (triangular influence line) is defined by the graphical method; the load P2 is a

critical one and it should be placed over the vertex of influence line.

QkðmaxþÞ ¼ 5� 0:4þ 8� 0:2 ¼ 3:6 kN,

Qkðmax�Þ ¼ �ð5� 0:4þ 8� 0:6Þ ¼ �6:8 kN,

MkðmaxÞþ ¼ 5� 1:6þ 8� 2:4 ¼ 27:2 kNm,

Mkðmax�Þ ¼ �ð5� 0:6þ 8� 1:8Þ ¼ �17:4 kNm:

If a set of loads P1 and P2 modeling a crane bridge, then the order of loads is
fixed and cannot be changed. If a set of loads P1 and P2 is a model of a moving car,

then we need to consider the case when a car moves in opposite direction. In this

case, the order of forces from left to right becomes P2 and P1.

q

Inf. line Mk (m)

2.4

+

–

1.80.6

1.6

1.2

Inf. line Qk

1

1
0.6

0.4 0.2

0.4

0.3

0.3

P1

P1

P1 P2

P1

P1 P2

P2

P2

P2

3m

2m

6m 4m 3m
k

BAC D

Fig. 2.23 Design diagram of the beam, influence lines, and most unfavorable positions of two

connected loads
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2.5 Core Moments and Normal Stresses

This paragraph is devoted to simplifying the procedure to calculate the normal

stresses caused by the simultaneous action of M and N. The concept of the “core

moments” is introduced and their influence lines are constructed. We discuss the

most unfavorable loading of the influence line.

2.5.1 Normal Stresses

Let us consider an arbitrary section nm of the arch. Assume that the load acts in

the one of the main planes of the cross section. The point of application of the

resultant R is shifted from the axial line of the arch by a length e; magnitude of this

force, its direction, and point of application may be determined using a concept

“curve of pressure” as explained in Appendix “Pressure curve”. This force is

resolved into the normal N and shear force Q (Fig. 2.24a).

In the case of an eccentrically loaded bar, the maximum normal stresses, caused

by the bending moment M and compressed force N, arises at the extreme fibers of

the cross section

s ¼ �N

A
�M

W
; (2.18)

where N is the normal component of a force R and the bending momentM ¼ Ne; A,
W, Ix are the area, elastic section modulus, and moment of inertia of the cross

section of the arch, respectively. In the case of a nonsymmetrical section, the elastic

section moduli are Wn ¼ Ix a1= and Wm ¼ Ix a2= , where a1 and a2 are the distances
from the neutral line to an extreme fibers.

For determining the maximum normal stresses due to moving load, it is neces-

sary to load the influence lines for M and N. These influence lines have different

shapes and the influence lines forM can alternate in sign. Therefore, this procedure

becomes cumbersome. However, the two-termed formula (2.18) may be simplified.

n 

m 

axial line Km

Kn 

•

•

R 

e 

km 

a1

kn a2

N 

Q 

a

m 

n 

x

b

Km

km

kn

Kn

Fig. 2.24 (a) Internal forces at section n–m and (b) core of the cross section
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Figure 2.24b presents the core (kern) for rectangular cross section; determination of

its shapes and dimensions for arbitrary cross section may be found in the strength of

materials textbooks. The concept of the core of the cross section was introduced by

Bresse [Bre54], [Tim53], [Tod60]. The top and bottom points of the core are

denoted by Km and Kn.

If a force is applied at the bottom point Kn of the core, then M ¼ N � kn and

normal stresses at the top fibers n equals zero

sn ¼ �N

A
þ M

Wn
¼ �N

A
þ Nkn

Wn
¼ 0: (2.18a)

This equation leads to the formula kn ¼ Wn=A. Similarly, if a force is applied at

the top point Km of the core, then normal stresses at the bottom fibers m equals to

zero and we get km ¼ Wm=A.
If the compressed force N is applied as shown in Fig. 2.24a, then the normal

stress at the bottom point m is

sm ¼ �N

A
� M

Wm
¼ �N

A
� Ne

Wm
¼ � N

Wm

Wm

A
þ e

� �
¼ � N

Wm
ðkm þ eÞ:

The core moment presents the moment of the force N about the top core point Km

Mcore
Km

¼ Nðeþ kmÞ: (2.19)

This moment differs from the usual bending moment by a term Nkm. Finally,
for normal stress in the bottom fibers of the cross section, we get the formula

sm ¼ �Mcore
Km

Wm
: (2.20)

This formula shows that the maximal normal stresses caused by the moment M
and force N equal to the normal stress caused by the core moment only. Similarly,

the normal stress at the upper fibers n may be calculated by the formula sn ¼
Mcore

Kn
=Wn, where core moment

Mcore
Kn

¼ Nðe� knÞ;

presents the moment of the force N about the bottom core point Kn.

2.5.2 Influence Lines for Core Moments

For construction of the influence line for core moments at section k, we will use the
nil point method. This procedure will be the same as for construction of influence
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line for bending moment at section k (Figs. 2.14 and 2.25a, b); indirect load

application is not taken into account.

We show the top and bottom fiber points n and m at section k and denote the

top and bottom core points by Km and Kn (Fig. 2.25). These core points have

coordinates xm and xn. Influence lines for core moments contain additional areas

which are placed between two vertical lines; one of these lines passes through

point k laying on the axis of the arch, and other vertical line passes over the core

point (Fig. 2.25c). Additional areas of influence lines arise because in this section

of the arch the influence line of axial force has a jump. Ordinates of this additional

area of influence line are small and they may be neglected [Dar89]. However, it is

important that the location of the nil points for core moments do not coincides with

nil point for bending moment.

Influence lines for core moments allow us to answer the following question:

which part of influence lines should be loaded by a uniformly distributed load

(or any live load) in order for the tensile normal stresses at extrados (top) fibers of

section k to be maximum.

+
*

Inf. line for moment at core point Kn (m)

+ *
Inf. line for moment at core point Km (m)

Inf. line Mk (m)

xk

xm

xn

+
*uM

b

c

n

m
A

Axis of arch

A 

C 

B 

n

xk

P=1

m

xn 

xn 

Kn 

Km

xm 
xm 

k

NP(Mm)
NP(Mk)

NP(Mn)

a

–

–

Fig. 2.25 Three-hinged arch. (a) Design diagram; (b) influence lines for bending momentMk; and

(c) influence lines for core moments at section k
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The stresses at the top fibers n will be tensile if a resultant of all external

left-hand (or right-hand) forces will passes below the bottom core point Kn.

Given this, the moment about the core point Kn will be negative. Therefore, the

load should be placed over the negative ordinates of the influence line for bending
moment at core point Kn. If load will be placed over the positive ordinates of

the same influence line, then a compressed stresses at extrados fibers n of section k
will arise.

2.6 Special Types of Three-Hinged Arches

This paragraph contains analysis of the special types of three-hinged arch subjected

to fixed and moving loads. Among them are the circular arch with elevated simple

tie, parabolic arch with complex tie, and askew arch.

2.6.1 Arch with Elevated Simple Tie

Three-hinged arch with tie may be obtained from an ordinary three-hinged arch

without a tie, if the horizontal constraint at support B (or A), which prevents

horizontal displacement of the abutment hinge, is replaced by a tie. The tie

may be located on the level of the supported points (Fig. 2.26a) or above them

(elevated tie) (Fig. 2.26b). Application of complex tie is also possible. One type of

an arch with a complex tie is shown in Fig. 2.26c. Three-hinged arches with ties

represent geometrically unchangeable statically determinate structures and have

certain peculiarities of their analysis, which are presented below.

RA

b P

RB

BA

C

l

f

y

x

y

f0BA

C

l

f

j jy

x
RB

y

RA

Pa

Tie

C

HA

l

B
f0

f

RA RB

A

c

Fig. 2.26 Design diagrams of three-hinged arches with tie. (a) Simple tie on support level;

(b) arch with elevated simple tie; and (c) arch with complex tie
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In case (2.26a), the tensile force in the tie (thrust) is H ¼ MO
C f= , where MO

C

represent the bending moment at section C for the reference beam. Two forcesH act

at points A and B, as for an ordinary three-hinged arch without tie. Therefore,

internal forces in cross sections of the given arch will be exactly the same as for

arch without tie and may be calculated using (2.6). However, support B of the arch

with tie has a horizontal displacement due to the elastic properties of the tie, while a

three-hinged arch without tie has no a horizontal displacement.

In case (2.26b), the thrust in the tie is

H ¼ MO
C

f � f0
: (2.21)

Two forces H act above points A and B. Internal forces in cross sections of the

arch are obtained from modified (2.6); they depend on location of the section on the

arch (below or above the tie). If sections are located below the tie level then

Mx ¼ M0
x ; Qx ¼ Q0

x cos’; Nx ¼ �Q0
x sin’: (2.22)

If sections are located above the tie level, then

Mx ¼ M0
x � Hðy� f0Þ;

Qx ¼ Q0
x cos’� H sin’;

Nx ¼ �Q0
x sin’� H cos’; (2.23)

where M0
x ; Q

0
x are bending moment and shear force at section x for the reference

beam.

In the case of a complex tie, it is necessary to determine a thrust in the tie, then

internal forces in all the members of the tie and finally, internal forces in the arch

itself. The complex tie of the arch allows us not only to increase the strength of the

arch structure but also to distribute internal forces in the arch as required.

Example 2.6. Design diagram of three-hinged circular arch with elevated tie is

presented in Fig. 2.27. Geometrical parameters of the arch and loads are the same as

for a three-hinged arch without tie (Fig. 2.5a). We need to compute the internal

forces in the arch and compare results obtained for the same arch without tie.

Solution. The vertical reactions of supports, as in Example 2.1, are RA ¼ R0
A ¼

14:5 kN; RB ¼ R0
B ¼ 19:5 kN.

Horizontal reaction HA at the support A may be calculated from the equationP
X ¼ 0 !HA ¼ 0.

The force H in the tie may be determined using equilibrium condition for left

(or right) part of the arch (section 1–1)

H !
X

Mleft
C ¼ 0 ! RA � 16� P1 � 8� Hð f � f0Þ ¼ 0 ! H ¼ M0

C

f � f0
¼ 152

8� 2
¼ 25:33 kN:

Computations of the geometrical parameters and internal forces of the arch are

presented in Table 2.2.
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Fig. 2.27 Three-hinged arch with simple elevated tie. Design diagram, reference beam, and

internal force diagrams
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Radius of the circle, according to (1) is R ¼ ðf=2Þ þ l2=8f ¼ ð8=2Þ þ ½322=
ð8� 8Þ� ¼ 20m: Columns 1 and 2 contain ordinate x and corresponding ordinate y
(in meters) for specified sections. Ordinate yðxÞ is

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � l

2
� x

� �2
s

� Rþ f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
400� ð16� xÞ2

q
� 12 ðmÞ:

Columns 3 and 4 contain values of sin’ ¼ ðl� 2xÞ=2R ¼ ð32� 2xÞ=40 and

cos’ ¼ ðyþ R� fÞ=R ¼ ðyþ 12Þ=20:
Values of bending moment and shear for reference beam are tabulated in

columns 5 and 7 and taken directly from corresponding diagrams, which are pre-

sented in Fig. 2.27. Values of H(y � f0) are given in column 50. Sections A and B
have no entries for column 50, which means that force in the tie does not effect on

the bending moment at corresponding section of the arch. Values of bending

moment, shear, and normal forces for three-hinged arch are tabulated in columns

6, 8, and 9. They have been computed using (2.22) for sections which are located

below the tie. For example, for section A, we get

QA ¼ Q0
A cos’A ¼ 14:5� 0:6 ¼ 8:7 kN

NA ¼ �Q0
A sin’A ¼ �14:5� 0:8 ¼ �11:6 kN:

For sections above the tie, we need to use (2.23). For example, for section 3,

we get

Mx ¼ M0
x � Hðy� f0Þ ¼ 134� 25:33� ð7:596� 2Þ ¼ �7:7467 kNm;

Qx ¼ Q0
x cos’� H sin’ ¼ 4:5� 0:9798� 25:33� 0:2 ¼ �0:6569 kN;

Nx ¼ �Q0
x sin’� H cos’ ¼ �4:5� 0:2� 25:33� 0:9798 ¼ �25:718 kN:

Corresponding diagrams are presented in Fig. 2.27. Bending moment diagrams

for beam and arch are shown on the extended fibers; therefore, the signs of bending

moments are omitted. For convenience, different scales have been adopted for

different diagrams.

Verification. The vertical concentrated force P leads to value of discontinuity

P cos’ and P sin’ for diagram Q and N, respectively; the horizontal force H
leads to value of discontinuity H sin’ and H cos’ for same diagrams Q and N.

Values of discontinuity on shear and normal force diagrams due to concentrated

forces H and Pi are:

Shear force diagram point at M: 10.15 � (�7.938) ¼ 18.088 ¼ H sin ’,
Point 2: 3.1572 � (�6.0) ¼ 9.1572 ¼ P1 cos ’.

Normal force diagram point at M: �10.35 � (�28.08) ¼ 17.73 ¼ H cos ’,
Point 2: �25.01 � (�29.01) ¼ 4.0 ¼ P1 sin ’.
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Values of discontinuity on shear and normal force diagrams for points 7 and K
are verified in a similar manner.

Now we will compare the internal force diagrams for the arch without tie

(Fig. 2.6) and the arch with the elevated tie (Fig. 2.27). Unlike the arch without

tie, two horizontal forces H act at points M and K. Therefore, the shear and axial

force diagrams at points M and K have abrupt changes H sin’ for the Q diagram

and H cos’ for the N diagram. The axial force N for both arches remains

compressed.

The fundamental change occurs in the distribution of bending moments. For

example, for all sections of the left part of the arch without tie, the extended fibers

are located above the neutral line (Fig. 2.6), while for arch with the tie, the extended

fibers are located below the neutral line (Fig. 2.27) (portion A-2 and slightly

further). For the right part of the arch without tie, the bending moment diagram

changes the sign three times: in the neighborhood of point n and 7, the extended

fibers are located above and below the neutral line, respectively, while for arch with

tie, the entire right part of the arch has extended fibers below the neutral line.

2.6.2 Arch with Complex Tie

Analysis of such structure subjected to fixed and moving load has some features.

Design diagram of the symmetrical parabolic arch with complex tie is presented

in Fig. 2.28. The arch is loaded by vertical uniformly distributed load q ¼ 2 kN/m.

We need to determine the reactions of the supports, thrust, and internal forces at

section k (ak ¼ 18 m, yk ¼ 11.25 m, tan ’k ¼ 0.25, cos ’k ¼ 0.970, sin ’k

¼ 0.2425) as well as to construct the influence line for above-mentioned factors.

Reactions and Internal Forces at Section k

The vertical reactions are determined from the equilibrium equations of all the

external forces acting on the arch

y

x1

1 q=2kN/m

HH

D

12m

RA RB

E

F

HA B
A

C

f=12m

Parabolic
arch

f0=2m 

ak=18
l=48m 

k

A B

Fig. 2.28 Design diagram of the arch with complex tie
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RA !
X

MB ¼ 0 : �RA � 48þ q� 12� 6 ¼ 0 ! RA ¼ 3 kN;

RB !
X

MA ¼ 0 : RB � 48� q� 12� 42 ¼ 0 ! RB ¼ 21 kN:

Horizontal reaction at support A is HA ¼ 0.

The thrust H in the tie (section 1–1) is determined from the following equation

H !
X

Mleft
C ¼ 0 : �RA

l

2
þ Hðf � f0Þ ¼ 0 ! H ¼ M0

C=ðf � f0Þ ¼ 7:2 kN:

(2.24a)

Equilibrium equations of joint F lead to the axial forces at the members of AF
and EF of the tie.

Internal forces at section k for a reference simply supported beam are as follows:

M0
k ¼ RA � xk ¼ 3� 18 ¼ 54 kNm;

Q0
K ¼ RA ¼ 3 kN:

Internal forces at point k for three-hinged arch are determined as follows

Mk ¼ M0
k � Hðyk � f0Þ ¼ 54� 7:2� ð11:25� 2Þ ¼ �12:6 kNm;

Qk ¼ Q0
k cos’k � H sin’k ¼ 3� 0:970� 7:2� 0:2425 ¼ 1:164 kN;

Nk ¼ � Q0
k sin’k þ H cos’k

� � ¼ �ð3� 0:2425þ 7:2� 0:970Þ ¼ �7:711 kN:

(2.24b)

Note, that the discontinuity of the shear and normal forces at section E left and

right of the vertical member EF is NEF � cos’ and NEF � sin’, respectively.

Influence Lines for Thrust and Internal Forces (M, Q, N) at Section k

Influence lines for vertical reactions RA and RB for arch and for reference simply

supported beam coincide, i.e.,

ILðRAÞ ¼ IL R0
A

� �
; ILðRBÞ ¼ IL R0

B

� �
:

According to (2.24a), the equation of influence line for thrust becomes

ILðHÞ ¼ 1

f � f0
� IL M0

C

� �
:

The maximum ordinate of influence line for H at crown C is 1=ðf � f0Þ�
ðl=4Þ ¼ 48=½4� ð12� 2Þ� ¼ 1:2. Influence line for thrust H may be considered

as a key influence line (Fig. 2.29).
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Fig. 2.29 Three-hinged arch with complex tie. Design diagram and influence lines
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Bending Moment

According to (2.24b) for bending moment at any section, the equation of influence

line for bending moment at section k is

ILðMkÞ ¼ IL M0
k

� �� ðyk � f0Þ � ILðHÞ ¼ IL M0
k

� �� 9:25� ILðHÞ: (2.24c)

Influence line M0
K presents a triangle with maximum ordinate akbk l= ¼

18� 30 48= ¼ 11:25m at section k, so the ordinate at crown C equals to 9 m.

Influence line for thrustH presents the trianglewithmaximumordinate 1.2 at crownC.

Ordinate of the graph ðyk � f0Þ � ILðHÞ at crown C equals ð11:25� 2Þ � 1:2 ¼
11:1m, so ordinate at section k equals 8.325 m. Detailed construction of influence

line Mk is shown in Fig. 2.29. Since both terms in (2.24c) has different signs, they
should be plotted on the one side on the basic line and the final ordinates of

influence line are located between two graphs IL M0
k

� �
and 9:25� ILðHÞ.

Shear Force

According to (2.24b) for shear at any section, the equation of influence line for

shear at section k is

ILðQkÞ ¼ cos’k � IL Q0
k

� �� sin’k � ILðHÞ
¼ 0:970� IL Q0

k

� �� 0:2425� ILðHÞ: (2.24d)

Ordinates of the graph 0:970� IL Q0
k

� �
are 0.36375 and 0.60625 to the left and

to the right at section k, so ordinate at crown C is 0.485. Maximum ordinate of the

graph 0:2425� ILðHÞ ¼ 0:2425� 1:2 ¼ 0:291 is located at crown C, so ordinate

at section k is 0.21825.
Ordinate of influence line for shear at crown C equals 0.485–0.291 ¼ 0.194; the

left and the right of section k ordinates of influence line become

� ð0:36375þ 0:21825Þ ¼ �0:582 and 0:60625� 0:21825 ¼ 0:388:

Detailed construction of influence line Qk is shown in Fig. 2.29.

Normal Force

According to (2.24b) for normal force at any section, the equation of influence line

for normal force at section k is

ILðNkÞ ¼ � sin’k � IL Q0
k

� �� cos’k � ILðHÞ
¼ � 0:2425� IL Q0

k

� �þ 0:970� ILðHÞ� 	
(2.24e)
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Maximum ordinate of the graph 0:970� ILðHÞ is 0.970 � 1.2 ¼ 1.164; this

ordinate is located at crown C. Specific ordinates of the graph 0.2425 � IL(Qk
0) are

0.09094 and 0.1516 and located to the left and to the right of section k.
Detailed construction of influence line Nk is shown in Fig. 2.29. This figure also

represents the construction of influence lines using nil point method; note that

construction of the nil points must be done on the basis of conventional supports

A0 and B0.

2.6.3 Askew Arch

The arch with support points located on the different levels is called askew

(or rising) arch. Three-hinged askew arch is geometrically unchangeable and

statically determinate structure. Analysis of askew arch subjected to fixed and

moving loads has some features.

Design diagram of three-hinged askew arch is presented in Fig. 2.30. Let the

shape of the arch is parabola, span of the arch l ¼ 42 m and support B is D ¼ 3:5m
higher than support A. The total height of the arch at hinge C is 8m. The arch is

loaded by force P ¼ 10 kN. It is necessary to calculate the reactions and bending

moment at section k, construct the influence lines for thrust and bending moment

Mk, and apply influence lines for calculation of bending moment and reactions due

to fixed load.
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Fig. 2.30 Three-hinged askew arch. Design diagram and influence lines
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Equation of the axis of parabolic arch is

y ¼ 4ð f þ f0Þ � ðL� xÞ � x

L2
;

where span for arch A–C–B0 with support points on the same level is L ¼ 48 m.

For x ¼ 42 m (support B), ordinate y ¼ 3.5 m, so

tan a ¼ D
l
¼ 3:5

42
¼ 0:0833 ! cos a ¼ 0:9965 ! sin a ¼ 0:08304:

Other geometrical parameters are

f0 ¼ 24 tan a ¼ 2:0m ! f ¼ 8� 2 ¼ 6m ! h ¼ f cos a ¼ 6� 0:9965 ¼ 5:979m:

For x ¼ 6 m (section k), the ordinate yk ¼ 3.5 m.

Reactions and Bending Moment at Section k

It is convenient to resolve total reaction at point A into two components. One of

them, R0
A, has vertical direction and other, ZA, is directed along the line AB.

Similarly resolve the reaction at support B. These components are R0
B and ZB. The

vertical forces R0
A and R0

B represent a part of the total vertical reactions. These

vertical forces may be computed as for the reference beam

R0
A !

X
MB ¼ 0 : �R0

A � 42þ P� 12 ¼ 0 ! R0
A ¼ 2:857 kN;

R0
B !

X
MA ¼ 0 : R0

B � 42� P� 30 ¼ 0 ! R0
B ¼ 7:143 kN:

Since a bending moment at crown C is zero then

ZA !
X

Mleft
C ¼ 0 : ZA � h�M0

C ¼ 0 ! ZA ¼ M0
C

h
¼ 2:857� 24

5:979
¼ 11:468 kN;

ZA ¼ ZB ¼ Z;

where M0
C is a bending moment at section C for the reference beam.

Thrust H represents the horizontal component of the Z, i.e., H ¼ Z cos a ¼
11:468� 0:9965 ¼ 11:428 kN.

The total vertical reactions may be defined as follows

RA ¼ R0
A þ Z sin a ¼ 2:857þ 11:468� 0:08304 ¼ 3:809 kN;

RB ¼ R0
B � Z sin a ¼ 7:143� 11:468� 0:08304 ¼ 6:191 kN:
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Bending moment at section k:

Mk ¼ M0
k � Hy ¼ 3:809� 6� 11:428� 3:5 ¼ �17:144 kN:

Influence Lines for Thrust and Bending Moment Mk

Thrust. Since H ¼ Z cos a ¼ M0
C h=

� �
cos a, then equation of influence line for

thrust becomes

ILðHÞ ¼ cos a
h

� IL M0
C

� �
:

The maximum ordinate of influence line occurs at crown C and equals

cos a
h

� aCbC
l

¼ 0:9965

5:979
� 24� 18

42
¼ 1:71428:

Bending moment Mk. Since Mk ¼ M0
k � Hyk, then equation of influence line for

bending moment at section k becomes

ILðMkÞ ¼ IL M0
k

� �� yk � ILðHÞ:

Influence line may be easily constructed using the nil point method. Equation of

the line Ak is

y ¼ 3:5

6
x ¼ 0:5833x:

Equation of the line BC is

y� yC ¼ mðx� xCÞ ! y� 8 ¼ � 4:5

18
ðx� 24Þ ! y ¼ 14� 0:25x;

where m is a slope of the line BC.
The nil point NP(Mk) of influence line forMk is the point of intersection of lines

Ak and BC. Solving these equations leads to x0 ¼ 16:8m. Influence lines for H and

Mk are presented in Fig. 2.30. Maximum positive and negative bending moment at

section k occurs if load P is located at section k and hinge C, respectively. If load P
is located within portion x0, then extended fibers at section k are located below the

neutral line of the arch.

The thrust and bending moment at section kmay be calculated using the relevant

influence lines

H ¼ Py ¼ 10� 1:1428 ¼ 11:428 kN

Mk ¼ Py ¼ 10� ð�1:7143Þ ¼ �17:143 kNm:

These values coincide exactly with those calculated previously.
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As before, the influence line for thrust constructed once may be used for its

computation for different cases of arbitrary loads. Then, knowing the vertical

reactions and thrust, the internal forces at any point of the arch may be calculated

by definition without using influence line for that particular internal force.

2.6.4 Latticed Askew Arch

Design diagram of the modified askew arched structure with over-arch construction

is presented in Fig. 2.31a. Pinned supports A and B are located at different

elevations. Each half-arch itself (A-1–3 and B-2–4) represents the structure with

webbed members. Panel block 1–2–3–4 has no diagonal member, thus both half-

arches are connected by means of two parallel rods 1–2 and 3–4. Therefore, the

vertical relative displacement of two half-arches is possible (Fig. 2.31b), while in

b
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Fig. 2.31 Modified askew arched structure

2.6 Special Types of Three-Hinged Arches 101



the classic three-hinged arch only angular relative displacement of two half-arches

is possible. The vertical posts are used only to transmit loads directly to the upper

chord of the structure.

Degree of freedom equals

W ¼ 2 J � S� S0 ¼ 2� 27� 47� 7 ¼ 0;

where J, S, and S0 are the number of hinged joints, members of structure and

constraints of supports, respectively [Kar10]. Though the both part of arch represent

the simplest truss (or rigid disc), they are connected in a specific way, mainly by

members 1–2 and 3–4 as well as an imagine member AB (ground). These members

are not parallel. The structure is statically determinate and geometrically

unchangeable.

For analysis of this structure, we will apply the following procedure:

1. Replace the constraint of the support B, which prevents horizontal displacement,

by a diagonal member 2–3 (dotted line in Fig. 2.31a) and apply external forceHB

at point B (Fig. 2.31a, c). Such a substitution does not change the number of

degree of freedom.

2. Consider two positions x1 and x2 of a moving load P and determine thrust HA ¼
HB ¼ H in terms of x, l, and h, when the internal force in the substitute member

2–3 is zero.

Force P ¼ 1 is located at the left part of the structure. Thrust H !P
MA ¼ 0:

RBlþ Hh� Px ¼ 0 ! RB ¼ 1

l
ðPx� HhÞ:

Internal force in substitute member D23 section 1–1 is determined as follows

X
Yright ¼ 0 : RB � D23 cos’ ¼ 0:

Taking into account the previous result for reaction RB, internal force in diagonal

member becomes

1

l
ðPx� HhÞ � D23 cos’ ¼ 0:

However, diagonal member is absent, therefore D23 ¼ 0 and the expression for

thrust is

H ¼ Px

h
; so ILðHÞ ¼ x

h
:
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Force P ¼ 1 is located at the right part of the structure. ThrustH !P
MA ¼ 0:

RBlþ Hh� Pðl� xÞ ¼ 0 ! RB ¼ Pðl� xÞ � Hh

l

Internal force in the substitute member D23 !
P

Yright ¼ 0 : RB � D23

� cos’� P ¼ 0.

Taking into account the previous result for reaction RB, equation for internal

force in diagonal member becomes

� D23 cos’� Px

l
� Hh

l
¼ 0:

However, D23 ¼ 0 so the expression for thrust becomes

H ¼ �Px

h
; so ILðHÞ ¼ � x

h
:

Influence line for H represents two parallel lines with ordinates l/h at the support
points and connecting line within the panels 1–2. The sign of thrust H depends on

location of the moving load (unlike previously considered arched structures).

Influence line H is a fundamental characteristic of the system. Knowing the

influence line H allows us to calculate this reaction for any type of loadings.

Calculation of all other reactions and internal forces in any members presents no

difficulties.

Note if supports A and B will be located at the same level, then the system

becomes instantaneously changeable. Indeed, in this case, two rigid discs (the left

and right parts of the structure) are connected by three parallel members, mainly

1–2, 3–4 and AB [Kar10].

2.7 Complex Arched Structures

This paragraph contains analysis of the complex arched structures subjected

to fixed and moving load. Among them are the multispan three-hinged arched

structure and trusses with arched hinged chain.

2.7.1 Multispan Three-Hinged Arched Structure

Multispan three-hinged arched structure is a geometrically unchangeable structure,

which consists of three-hinged arches connected together by means of hinges.

Figure 2.32a presents the multispan arched structure which contains three-hinged

arch ACB with overhang BG, arch DIF with overhang HD, and central three-hinged
archGEH, which is connected with left and right arches by means of hingesG andH.

2.7 Complex Arched Structures 103



It is necessary to construct the influence lines for bending moment, shear, and

normal forces at sections k and n, using the nil point method. Indirect application of

the load on the arch system should not be taken into account.

Kinematical Analysis

Degrees of freedom of this arch structure, according to Chebushev formula, are

determined asW ¼ 3D� 2H0 � S0 ¼ 3� 6� 2� 5� 8 ¼ 0, where D, H0, and S0
are number of rigid discs, number of simple hinges, and number of constraints of

support, respectively [Kar10].

The whole structure may be presented as two main arched structures ACBG and

HDIF and a suspended arch GEH; corresponding interaction diagram is shown in

Fig. 2.32b. Each arched structures ACBG and HDIF present two rigid discs,

connected with the ground. Two curvilinear members GE and EH are connected

by hinge E and supported by two unmovable rigid discs, which can be considered

as ground. Thus, the entire structure is statically determinate and geometrically

unchangeable.

Influence line for bending moment Mk. There exist two nil points of influence line

for Mk as the points of intersection of two lines:

1. Lines AC and Bk: their intersection point is NP(Mk).

2. Lines BG and HE: their intersection point is NPB.

The nil point NPB possesses interesting properties. If moving load is traveling

along the horizontal portion GE, then reaction at H is passing through hinge E and

b
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Fig. 2.32 Multispan arched structure. (a) Design diagram, (b) interaction scheme, and

(c) influence lines for internal forces at sections k and n
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reaction at G might have various directions in accordance to the theorem about

three concurrent forces RH, P ¼ 1, and RG. The last reaction RG is transformed as

active force on the arch ACBG, in which reactions RA and RB arise. Reaction RG is

an active force for arch ACBG, passing through support B. This force is perceived
by support B and reaction RA is zero. Therefore, at all sections of the arch ACB, all
internal forces are zero. Thus, if load P is located at NPB, then all internal forces of
the arch ACB are zero.

Since arch GEH is suspended, the bending momentMk does not arise if load P is

traveling along the portion HF.

Influence line for Mn. There exist two nil points of IL(Mn) as the points of

intersection of two lines:

1. Lines FI and Dn: their intersection point is NP(Mn).

2. Lines DH and GE: their intersection point is NPD.

It is evident that point NPD possesses the same properties for arch DIF as point

NPB for arch ACB: if moving load is located on the vertical passing through

point NPD, then at all sections of the arch DIF all internal forces are zero.

Influence line for shear force Qn. There exist two nil points of influence line for Qn.

They are the point of intersection of line FI and the line which is parallel to tangent
at section n and point NPD.

Influence line for axial force Nn. There exist two nil points of influence line for Nn.

They are the point of intersection of line FI and line which is perpendicular to tangent
at section n and point NPD. Specific ordinates and positions of the nil points allow us

to easily construct the influence lines. Some of them are presented in Fig. 2.32c.

Note that the nil points NP1(Qn) and NP1(Nn) are not real; they only facilitate the

construction of influence lines Qn and Nn, respectively.

It is left to reader to construct influence lines of shear and normal force in section

k; construction of influence lines for internal forces for any section of central arch

GEH should present no challenge.

2.7.2 Arched Combined Structures

Some examples of arches combined structures are presented in Fig. 2.33. In all

cases, these systems consist of two trusses, AC and CB, connected by hinge C and

stiffened by additional structures called a hinged (or arched) chain. The hinged

chain may be located above or below the trusses. Vertical members connect the

hinged chain with the trusses. The connections between the members of the arched

chain and the hangers or posts are hinged. In case (c), all the hinges of the hinged

chain are located on one line. In cases (a) and (b), a load is applied to the truss

directly, while in case (c), the load is applied to the joint of the hinged chain and

then transmitted to the truss.
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Truss with Over-Truss Arched Chain

The typical truss with a hinged chain located above the truss is shown in Fig. 2.34.

Assume that the parameters of the structure are as follows: d ¼ 3 m, h ¼ 2 m,

f ¼ 7 m, L ¼ 24 m. We need to construct the influence lines for the reactions and

the internal forces in hanger, Vn�1.

As usual we start with the kinematical analysis of the structure. Since the

structure consist only members with hinges at the ends, then degrees of freedom
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of this complex arched structure is determined as W ¼ 2J � S� S0 ¼
2� 24� 45� 3 ¼ 0, so the structure is geometrically unchangeable and statically

determinate.

Reaction of Supports and Internal Forces

Reactions RA and RB for any load can be calculated using following equilibrium

conditions:

RA !
X

MB ¼ 0 : RB !
X

MA ¼ 0:

For calculation of the internal forces that arise in the members of the hinged

chain, we need to show the free body diagram for any joint n (Fig. 2.34). The

equilibrium condition
P

X ¼ 0 leads to relationship

Sn cos a ¼ Sn�1 cos g ¼ H: (2.25)

Thus, for any vertical load acting on the given structure, the horizontal com-

ponent of the forces, which arise in all the members of the hinged chain, is equal.

The horizontal component of the forces Sn, Sn�1 is called a thrust.

Now we will provide an analysis for the case of a moving load. The influence

lines for reactions RA and RB are the same as for a simply supported beam.

However, the construction of an influence line for thrust H has some special

features. Let us consider them.

Thrust H (section 1–1, the sectioned panel of the load contour – SPLC – is panel

7-C; Ritter’s point is C). Internal force S, which arises in the element m–k of the

hinged chain, is denoted as Sleft and Sright. The meaning of the subscript notation is

clear from Fig. 2.34.

If load P ¼ 1 is located to the left of joint 7, then thrust H can be calculated by

considering the right part of the structure. The active forces are reaction RB and

internal forces S7-C, S8-C, and Sright. The last force Sright can be resolved into two

components: a horizontal component, which is the required thrust H, and a vertical

component, which acts along the vertical line C–k. Now we form the sum of the

moment of all forces acting on the right part of the structure around point C, i.e.,

H !P
Mright

C ¼ 0. In this case, the vertical component of force Sright produces no

moment, while the thrust produces moment Hf.
If load P ¼ 1 is located right at joint C, then thrust H can be calculated by

considering the left part of the structure. The active forces are reaction RA and

internal forces S7-C, S8-C, and Sleft. The force Sleft, which is applied at joint m, can be
resolved into a horizontal component H and a vertical component. The latter

component acts along vertical line m–7. Now we find the sum of the moment of

all the forces, which act on the left part of the truss, around point C. In this case, the
vertical component of force Sright produce the nonzero moment around joint C and

thrust H has a new arm (m–7) around the center of moments C. In order to avoid
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these difficulties, we translate the force Sleft along the line of its action from joint m
into joint k. After that we resolve this force into its vertical and horizontal com-

ponents. This procedure allows us to eliminate the moment due to the vertical

component of S, while the moment due to the horizontal component of S is easily

calculated as Hf.
Construction of the influence line for H is presented in the table below.

P ¼ 1 left at SPLC P ¼ 1 right at SPLC

H !
X

Mright
C ¼ 0 : RB4d þ Hf ¼ 0

H ¼ � 4d

f
RB ! ILðHÞ ¼ � 4d

f
ILðRBÞ

H !
X

Mleft
C ¼ 0 : RA4d þ Hf ¼ 0

H ¼ � 4d

f
RA ! ILðHÞ ¼ � 4d

f
ILðRAÞ

The left portion of the influence line for H (portion A-7) presents the influence

line for RB multiplied by coefficient � 4d f= and the right-hand portion (portion

C–B) presents the influence line for RA multiplied by the same coefficient. The

connecting line is between points 7 and C (Fig. 2.34). The negative sign for thrust

indicates that all members of the arched chain are in compression.

Force Vn. Equilibrium condition for joint n leads to the following result:

X
Y ¼ 0 : �Vn þ Sn sin a� Sn�1 sin g ¼ 0 ! Vn ¼ Hðtan a� tan gÞ:

Therefore,

ILðVnÞ ¼ ðtan a� tan gÞ � ILðHÞ:
Since a < g andH is negative, then all hangers are in tension. The corresponding

influence line is shown in Fig. 2.34.

The influence line for thrust H can be considered as the key influence line, since

thrust H always appears in any cut-section for the entire structure. This influence

line allows us to calculate thrust for an arbitrary load. After that, the internal force in

any member can be calculated simply by considering all the external loads, the

reactions, and the thrust as an additional external force.

Discussion

For any location of a load, the hangers are in tension and all members of the chain

are compressed. The maximum internal force at any hanger occurs if load P is

placed at joint C.
To calculate the internal forces in different members caused by an arbitrary fixed

load, the following procedure is recommended:

1. Construct the influence line for the thrust.

2. Calculate the thrust caused by a fixed load.

3. Calculate the required internal force considering thrust as an additional external

force.

This algorithm combines both approaches: the methods of fixed and of moving

loads and so provides a very powerful tool for the analysis of complex structures.
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Example 2.7. The structure in Fig. 2.34 is subjected to a uniformly distributed load q
within the entire spanL. Calculate the internal forces T andD in the indicated elements.

Solution. The thrust of the arch chain equals H ¼ qoH ¼ �qð1=2ÞLð2d=f Þ ¼
�ðqLd=f Þ, where oH is area of the influence line for H under the load q. After
that, the required force T according to (a) is

T ¼ H

cos a1
¼ � qLd

f cos a1
:

We can see that in order to decrease the force T, we must increase the height f
and/or decrease the angle a1.

To calculate force D, we can use section 2–2 and consider the equilibrium of the

right part of the structure:

D !
X

Y ¼ 0 : D sin bþ RB þ T sin a1 ¼ 0 !

D ¼ � 1

sin b
qL

2
� qLd

f
tan a1

� �
:

Thus, this problem is solved using the fixed and moving load approaches:

thrust H is determined using corresponding influence lines, while internal forces

D and T are computed using H and the classical method of through sections.

Arched Chain with Over-Arch Trussed Structure

The typical arched chain with a truss located above the arched chain is shown in

Fig. 2.35. Assume that the parameters of the structure are as follows: d ¼ 2 m,

h ¼ 2 m, f ¼ 8 m, l ¼ 12d ¼ 24 m, aK ¼ 6 m. We need to construct the influence

lines for the reactions, thrust, and the internal forces in indicated membersU4 andD4.

Kinematical analysis shows that degree of freedom is W ¼ 2J � S� S0 ¼
2� 34� 61� 7 ¼ 0, so the structure is statically determinate and geometrically

unchangeable. The structure has the four support points: A1, A2, B1, and B2 and the

following reactions: RA1; RA2;RB1; RB2; HA; HB.

Reactions of Support and Internal Forces

Total vertical reactions of a structure as a whole are RA ¼ RA1 þ RA2;
RB ¼ RB1 þ RB2, where

RA !
X

MB ¼ 0 : � RAlþ Pðl� xÞ ¼ 0 ! RA ¼ Pðl� xÞ
l

! ILðRAÞ ¼ l� x

l
;

RB !
X

MA ¼ 0 : RBl� Px ¼ 0 ! RB ¼ Px

l
! ILðRBÞ ¼ x

l
:
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Influence lines for total vertical reactions of support are the same as for a simply

supported beam.

Thrust. For the entire structure, the equilibrium condition
P

X ¼ 0 leads to

relationship HA ¼ HB ¼ H. Section 1–1 passes through joints S and C.

Inf. line U 4

aK
h

= 3

1.031 

0.9844 
+ 

NP (U4)

Inf. line R A1

1 x0=4.6154m
2
1tanj −

4
= 0.625

f
l

+ 

NP(RA1)

3d =6 
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3d´IL(RA) l
f
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Fig. 2.35 Arched chain with over-arch trussed structure. Design diagram and influence lines
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P ¼ 1 left at joint C0 P ¼ 1 right at joint C0

H !
X

Mright
S ¼ 0 : �Hf þ RB

l

2
¼ 0

H ¼ l

2f
RB ! ILðHÞ ¼ l

2f
� ILðRBÞ

H !
X

Mleft
S ¼ 0 : Hf � RA

l

2
¼ 0

H ¼ l

2f
RA ! ILðHÞ ¼ l

2f
� ILðRAÞ

The maximum ordinate under the joint C is equal to l 4f= .

Vertical components of reactions. Equilibrium conditions for joint A2 are

X
X ¼ 0 : S1�2 cos’þ H ¼ 0 ! S1�2 ¼ �H cos’= ;X
Y ¼ 0 : S1�2 sin’þ RA2 ¼ 0 ! RA2 ¼ �S1�2 sin’:

So the vertical component of reaction at point A2 becomes RA2 ¼ H tan’;
corresponding influence line is

ILðRA2Þ ¼ tan’� ILðHÞ:

Similarly, ILðRB2Þ ¼ tan’� ILðHÞ.
Influence lines for RA2 and RB2 may be obtained by multiplying all ordinates of

influence line forH by a constant factor tan ’. The maximum ordinate under joint C
is equal to ðl=4f Þ tan’.
Reaction at point A1. Since total reaction RA ¼ RA1 þ RA2, then

RA1 ¼ RA � RA2 ! ILðRA1Þ ¼ ILðRAÞ � ILðRA2Þ ¼ ILðRAÞ � tan’� ILðHÞ:
Construction and final influence line for vertical component RA1 is presented

in Fig. 2.35. The nil point of influence line for RA1 is point of intersection of lines

B2–S and 1–2. The location of this nil point is defined by the formula x0 ¼
ðl=2Þ � ½ðl tan’� 2f Þ=ðl tan’þ 2f Þ�. For the entire structure, we get tan’ ¼
ð3=2Þ and x0 ¼ 4:6154m.

Ordinate of influence line RA1 at point C equals to ðl=4f Þ tan’� ð1=2Þ ¼
½24=ð4� 8Þ� � ð3=2Þ � ð1=2Þ ¼ 0:625.

Note that reaction RA1 may be directed upward and downward as well.

Force U4. Section 2–2 passes across the fourth panel of the truss and arch member

2–3 just under joint K; the vertical line passing through joint K intersects the

member 2–3 at yK ¼ 6.75 m. The internal force F2–3 in the arch chain is resolved

into vertical Fvert and horizontal H components. Obviously, the horizontal compo-

nent equals to thrust H.

P ¼ l left at SPLC P ¼ l right at SPLC

U4 !
X

Mright
K ¼ 0

� U4hþ RB9d � Hðf þ cþ hÞ þ Hðc1 þ cþ hÞ ¼ 0

� U4hþ RB9d � H � yK ¼ 0

U4 ¼ 1

h
ðRB9d � H � yKÞ !

ILðU4Þ ¼ 1

h
½9d � ILðRBÞ � yK � ILðHÞ�

U4 !
X

Mleft
K ¼ 0

U4h� RA3d þ Hðf þ cþ hÞ � Hðc1 þ cþ hÞ ¼ 0

U4h� RA3d þ H � yK ¼ 0

U4 ¼ 1

h
ðRA3d � H � yKÞ !

ILðU4Þ ¼ 1

h
½3d � ILðRAÞ � yK � ILðHÞ�
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The term H(c1 + c + h) presents the moment with respect to point K due to

thrust, which arise in member 2–3; the moment with respect to the same point K due

to Fvert (vertical component of force F2–3) is zero.

The nil point of influence line for U4 is the point of intersection of lines B2–S and
the line which originates from joint 1 and passes through member 2–3 under

point K. This point is real.
Ordinate of influence line U4 at point C equals to 1=h ð5:0625� 3:0Þ ¼ 1:031.

Force D4 (section 1–1). Assume that internal force S2–3 is tensile.

P ¼ l left at SPLC P ¼ l right at SPLC

D4 !
X

Yright ¼ 0

D4 sin aþ RB � S2�3 sin’1 ¼ 0; S2�3 ¼ � H

cos’1

D4 sin aþ RB þ H tan’1 ¼ 0

D4 ¼ � 1

sin a
ðRB þ H � tan’1Þ !

ILðD4Þ ¼ � 1

sin a
½ILðRBÞ þ tan’1 � ILðHÞ�

D4 !
X

Yright ¼ 0

RA � D4 sin aþ S2�3 sin’1 ¼ 0; S2�3 ¼ � H

cos’1

RA � D4 sin a� H tan’1 ¼ 0

D4 ¼ 1

sin a
ðRA � H � tan’1Þ !

ILðD4Þ ¼ 1

sin a
½ILðRAÞ � tan’1 � ILðHÞ�

Construction and final influence line for D4 is presented in Fig. 2.35. The nil

point of influence line forD4 is point of intersection of lines B2–S and the line which
originates from joint 1 and passes parallel to the member 2–3. This point for given

’1 is fictitious.

Influence line for thrust H of the structure is very useful for the calculation of

internal force in any member of the truss. Let the structure be subjected to

uniformly distributed load q along the entire span l of the truss. In this case, the

thrust of the arch chain equals to H ¼ qoH ¼ qð1=2Þlðl=4f Þ ¼ ðql2=8f Þ, where oH

is the area of influence line for H under the load q. Positive sign indicates that

shown direction for the thrust at points A2 and B2 coincides with actual direction of

thrust. Knowing the thrust allows us to perform an analysis of the structure. For

example, the force S1�2 ¼ �ðH= cos’Þ ¼ �ðql2=8f cos’Þ. Negative sign

indicates that the member 1–2 is compressed.

In the case of a fixed concentrated force P at joint C’ and uniformly distributed

load q within C’–M, we get:

U4 ¼ �1:031P� 1

2
� 1:031� 6d � q ¼ �1:031P� 6:186q ðkNÞ:

2.8 Deflection of Three-Hinged Arches Due to External Loads

This section presents computation of displacement of three-hinged arch. Different

approaches are applied: Maxwell–Mohr integral and graph multiplication method

using Simpson–Kornouhkov rule.
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2.8.1 Uniform Circular Arch: Exact Solution

Three-hinged semicircular uniform arch of radius R carrying uniformly distributed

load q is shown in Fig. 2.36. The flexural stiffness is EI. For calculating the vertical
displacement of the hinge C, we assume that influence of axial and shear forces on

displacement is negligible. The expression for displacement for this problem takes

into account only the bending moments

DC ¼
Z s

0

MP
�M

EI
ds;

where MP denotes the bending moment due to actual load. Now we will consider

two states, the actual and unit ones, and form the expressions for bending moments

for both of them.

Actual State

The vertical reactions of supports and thrust are:

RA ¼ RB ¼ ql

2
¼ qR; H ¼ M0

C

f
¼ qð2RÞ2

8R
¼ qR

2
;

where l ¼ 2R is the span of the arch; M0
C is the bending moment at point C for

reference beam; f is the rise of the arch, f ¼ R. The magnitude of the bending

moment induced at any section by the given load q is

MP ¼ RAx� Hy� qx2

2
¼ q Rx� Ry

2
� x2

2

� �
:

H 

R R 
x 

y 

dj

j j

R 

ds 
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Fig. 2.36 Design diagram of the arch and unit state
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Unit State

This state presents the same arch subjected to unit vertical force P at hinge C. The
vertical reactions of supports and thrust are:

�RA ¼ �RB ¼ 1

2
; �H ¼ M0

C

f
¼ 1� l

4R
¼ 1

2
:

The magnitude of the bending moment induced at any section by the unit load P is

�M ¼ �RAx� �Hy ¼ 1

2
x� 1

2
y:

Now, the vertical displacement at point C may be presented as:

DC ¼ 2

Z pR 2=

0

MP M

EI
ds ¼ 2q

EI

Z pR 2=

0

Rx� Ry

2
� x2

2

� �
� x

2
� y

2


 �
ds (2.26a)

Let us change to polar coordinates: ds ¼ Rd’, y ¼ R sin ’, x ¼ R � R cos ’ ¼
R(1 � cos ’). The upper limit s ¼ pR 2= should be changed to ’ ¼ p 2= . In this

case, (2.26a) becomes

DC ¼ q

EI

Z p 2=

0

R2ð1� cos’Þ�R2

2
sin’�R2

2
ð1� cos’Þ2

� 

� Rð1� cos’Þ�R sin’½ �Rd’

¼qR4

EI

Z p 2=

0

1� cos’�1

2
sin’�1

2
ð1� cos’Þ2

� 
�ð1� cos’� sin’Þd’:

Integrating procedure is cumbersome, but elementary. On rearrangement, the

final result for vertical displacement at C can be written as

DC ¼ qR4

4EI
ðp� 3Þ: (2.26b)

In case of concentrated force P at point C, the vertical displacement at C is

DC ¼ ðPR3=2EIÞðp� 3Þ.

2.8.2 Nonuniform Arch of Arbitrary Shape: Approximate
Solution

In general case of the nonuniform arch and arbitrary shape, the general idea for

computation of displacement remains the same – it is necessary to “multiply” the
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bending moments diagrams in the entire and the unit states. However, the

Vereshchagin rule becomes none applicable, since the basic line of both diagrams

is curvilinear. Therefore, it is only possible to determine the displacement in the

general case of the arch numerically. For this, a curvilinear axis of the arch should

be presented as a set of straight elements (usually 8–10), followed by a multiplica-

tion procedure of two bending moment diagrams. As before, the normal and shear

forces will be neglected.

Let us subdivide the arch into segments with equal horizontal projections.

The length of the ith chord between two nodal points equals Ds ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxr � xlÞ2 þ ðyr � ylÞ2

q
. Ordinates of the left and right ends of the portion, xl, yl

and xr, yr, should be calculated according to the equation y ¼ f ðxÞ of the axis of the
arch. Now Mohr integral may be presented in approximate form

DiP ¼
Z

MiMP

EI
ds ffi 1

EI0

X
n

MiMP � I0
Im

Ds; (2.27)

where MP and Mi are bending moment diagrams in the entire and unit states,

respectively; n is the total number of segments, I0 and Im are the moment of inertia

of the cross section at the crown C and at the middle of the segment Ds. The
moment of inertia Im should be calculated according to the law I ¼ IðxÞ, or as half-
sum of the moments of inertia at the ends of a segment. Simpson’s formula [Dar89]

EI0DiP ¼
X
n

Ds0

6
ðabþ 4ef þ cdÞ;Ds0 ¼ Ds

I0
Im

(2.28)

is applied to each straight segment and is subsequently summed over all the

segments. Ordinates a, e, and c of the bending moment diagram MP in the loading

state relate to the left end, the middle point, and the right end of the ith segment

(Fig. 2.37a); ordinates b; f ; d of the bending moment diagram �M in the unit state

relate to the same points (Fig. 2.37b).

Figure 2.38 presents a nonuniform parabolic arch and its approximate model.
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xm xm 

xr xr 

yl 

Im 

yr 

c
e

a

MP 

I0

a
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Ds

d
f

b

M

b

Fig. 2.37 Notation of ordinates of the bending moment diagrams within the one straight segment;

MP and M are bending moment diagrams in the actual and unit states
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Specified Points of the Arch

The span of the arch is divided into eight equal parts; the specified points are

labeled 0–8. Parameters of the arch for these sections are presented in Table 2.3;

the following formulas for calculation of trigonometric functions of the angle ’
between the tangent to the arch and x-axis have been used: tan’ ¼
y0 ¼ ½4f ðl� 2xÞ�=l2; cos’ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2’

p
.

The lengths of each straight segment are presented in Table 2.4. Table 2.5

presents the geometrical parameters at specified sections of the arch, and computa-

tion of the conventional length Ds0 for each segment.

Approximation of entire arch

0

1
2 3

4

5
6

7

8l/8 l/8

b P

l=24m

y 

x 

f=
6
mI=IC cosj

Pa
C

j

Fig. 2.38 Parabolic arch. Design diagram and approximation of entire arch

Table 2.3 Geometrical parameters of parabolic arch

Points

Coordinates (m)

tan ’ cos ’x y

0 0 0.0 1.00 0.7070

1 3 2.625 0.75 0.800

2 6 4.500 0.50 0.8944

3 9 5.625 0.25 0.9701

4 12 6.000 0.0 1.0

5 15 5.625 �0.25 0.9701

6 18 4.500 �0.5 0.8944

7 21 2.625 �0.75 0.800

8 24 0.0 �1.00 0.7070

Table 2.4 The chord lengths of each straight segment

Portion 0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8

Length (m) 3.9863 3.5377 3.2040 3.0233 3.0233 3.2040 3.5377 3.9863

Table 2.5 Geometrical parameters at specified sections of nonuniform arch (I ¼ IC cos ’)

Portion

Geometrical parameters (m)

Im (factor IC) Ds0 ¼ Ds IC
Im

xl xm xr yl ym yr Ds

0–1 0 1.5 3 0 1.4062 2.625 3.9863 0.7535 5.2904

1–2 3 4.5 6 2.625 3.6562 4.500 3.5377 0.8475 4.1743

2–3 6 7.5 9 4.500 5.1562 5.625 3.2040 0.9323 3.4366

3–4 9 10.5 12 5.625 5.9062 6.000 3.0233 0.9850 3.0693
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The moment of inertia Im ¼ 0:5ðIl þ IrÞ. For example, for segment 0–1 we get

I0�1 ¼ 0:5 ð0:707þ 0:800Þ IC ¼ 0:7535IC:

Table 2.6 contains the bending moments at specified sections for loaded and unit

states. These moments are calculated by the formula Mk ¼ M0
k � Hyk, where

H ¼ M0
C=f ¼ Pl=4f ¼ 1� P. For each segment, the section at the left end has

ordinates a and b, at the middle section the ordinates are e and f and at the right

end ordinates are c and d.
For example, in P-condition RA ¼ P 2= and H ¼ P, so for points 1 and 2 -

(portion 1–2) we get

M1 ¼ P

2
� 3� P� 2:625 ¼ �1:125P; M2 ¼ P

2
� 6� P� 4:5 ¼ �1:5P:

Data for the right half-arch is not presented due to the symmetry of structure.

Required displacement of point C is equals to twice the sum of the members of

the last column. In our case,

DiP ¼ 2ð2:6348þ 7:9491þ 6:5443þ 1:5286Þ P

EIC
¼ 37:3136

P

EIC
: (2.26c)

The above-discussed procedure is very effective for computation of displace-

ment of any nonsymmetrical three-hinged arches. If it is necessary to take into

account the shear and axial forces, the corresponding terms of Maxwell–Mohr

integral (1.8) should be included and Table 2.6 to be expanded [Rab54a].

2.9 Displacement Due to Settlement of Supports
and Errors of Fabrication

Settlement of supports and errors of fabrication often occur in engineering practice.

If this happens in a statically determinate structure, the internal stresses in the

members of the structures are not induced. So computation of displacement of any

point of statically determinate structures reflects the kinematical nature of a

problem.

Table 2.6 Bending moments at specified sections and computation of deflection

Portion Ds0
MP, factor (�P) M factor (�1) Ds0

6
abþ 4ef þ cdð Þ

a e c b f d

0–1 5.2904 0.0 0.65625 1.125 0.0 0.65625 1.125 2.6348P

1–2 4.1743 1.125 1.40625 1.50 1.125 1.40625 1.50 7.9491P

2–3 3.4366 1.50 1.40625 1.125 1.50 1.40625 1.125 6.5443P

3–4 3.0693 1.125 0.65625 0.0 1.125 0.65625 0.0 1.5286P
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2.9.1 Settlements of Supports

Let us consider a three-hinged arch of span l and rise f; supports A and B settles in

vertical and horizontal directions as shown in Fig. 2.39a. The new position of the

arch, in an exaggeration scale, is shown by a dotted line. It is necessary to calculate

the vertical Du
C and horizontal Dh

C displacements of the hinge C. Unit state presents
the same structure subjected to unit force X, which corresponds to the required

displacement.

An effective method for solution of this type of problem is the principle of

virtual displacements

X
dWact ¼ 0: (2.29)

According to this principle, the elementary work done by all active forces on any
virtual displacements, which are compatible with constraints, is zero.

Procedure for Computation of Displacement Caused
by the Settlement of Support

1. At point K where displacement should be determined, we need to apply a unit

generalized force X ¼ 1, corresponding to the required displacement.

2. Show reactions R at the settled support, caused by unit generalized force X ¼ 1,

and compute these reactions.

A 

C 

B 

a

DA
DB

hDC

hDA

hDB

DC

A 

C 

B H=l/4f H

RA=0.5 RB=0.5 

b
X1=1 

A 

C 

B 

l
f

R A ⋅=1•

c

X2=1

H B= 0.5H A=0.5

l
f

RB =1•

u

u
u

Fig. 2.39 (a) Settlement of supports A and B; (b) unit state for calculation of Du
C; and (c) unit state

for calculation of Dh
C
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3. Calculate the total work (2.29) done by unit force and all reactions on the

displacements of the supports.

4. Solve this equation with respect to required displacement.

Vertical displacement of the hinge C. Let us apply X1 ¼ 1 in vertical direction; this

force corresponds to the required vertical displacement Du
C. Reactions at the

supports A and B are shown in Fig. 2.39b. These reactive forces should be

considered as active, and (2.29) becomes

X1 � Du
C � RA � Du

A � RB � Du
B � H � Dh

A þ H � Dh
B ¼ 0:

Since X ¼ 1, then

Du
C ¼ �

X
R� D ¼ RA � Du

A þ RB � Du
B þ H � Dh

A � H � Dh
B: (2.29a)

Formula (2.29a) may be generalized for the case of displacements caused by

settlements of several supports

Dks ¼ �
X

RD; (2.30)

where Dks is the displacement in kth direction due to settlement of supports, D is the

given settlement of support; R are the reactions in the support which is settled; this

reaction caused by unit load which corresponds to the required displacement.

Summation covers all supports.

Horizontal displacement of the hinge C. Horizontal force X2 ¼ 1 corresponds to the

required horizontal displacement Dh
C. Reactions at the supports A and B are shown

in Fig. 2.39b. Equation (2.30) leads to the following result:

Dh
C ¼ �

X
R� D ¼ R0

A � Du
A � R0

B � Du
B þ H0

A � Dh
A þ H0

B � Dh
B:

Discussion

1. Equation (2.30) reflects a kinematical nature of problem; it means that

displacements of any point of a statically determinate structure are determined

by the geometrical parameters of a structure without taking into account the

deformations of its elements. Any settlement of support of such structure does

not depend on the stiffness of the structure, and therefore leads to displacement

of its separate parts as rigid discs.

2. The positive results for required Dimeans that unit load X on the displacement Di

performs positive work.

3. Assume that Du
A 6¼ 0, while all other displacements are zero. Thus, in case of

vertical displacement of only one of the support, the crown hinge C has the

vertical and horizontal displacements.
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2.9.2 Errors of Fabrication

Deflections of the structural members may occur as a result of the geometric misfit.

This topic is sometimes referred to as geometric incompatibility.

The following procedure may be applied for this type of problems:

1. At point K, where displacement should be determined, we need to apply a unit

generalized force X ¼ 1 corresponding to the required displacement.

2. Compute all reactions caused by the unit generalized force X ¼ 1.

3. Calculate the work done by these reactions on the displacements.

Example 2.8. The tie AB of the arch ACB in Fig. 2.40 is D ¼ 0.02 m longer then

required length l. Find the vertical displacement at point C, if l ¼ 48 m, f ¼ 6 m.

Solution. The actual position of the tie is AB0 instead of required AB position. For

computation of the vertical displacementDCwehave to apply a unit vertical force atC.
Reactions of the three-hinged arch and thrust in tie caused by the force P ¼ 1 equal

RA ¼ RB ¼ 0:5;H ¼ M0
C f= ¼ l ð4f Þ= ¼ 2:

Application of principle of virtual displacements leads to the following

expression

X � DC � H � D ¼ 0:

Since X ¼ 1, then the required displacement becomes

DC ¼ þH � D ¼ þ0:04m (downward)

It is obvious that the effect of geometric incompatibility may be useful for the

regulation of stresses in the structure. Let us consider a three-hinged arch which is

loaded by any fixed load. The bending moments are MðxÞ ¼ M0 � Hy, where M0

is the bending moment in the reference beam. If a tie is fabricated longer than is

required, then the thrust becomes H ¼ H1 þ H2 where H1 and H2 are thrust due to

fixed load and errors of fabrication, respectively.

A 

C 

f 

DC

D D

DC

Actual state 

l 

B A 

C 
X=1

Unit state 

H B

RA RBl

B
C

Fig. 2.40 Design diagram of the arch (error fabrication) and unit state
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Discussion

For computation of displacement due to the settlement of supports and errors of

fabrication, we use the principle of virtual work. This principle and the

Maxwell–Mohr integral method have the general concept of generalized coordinate

and corresponding generalized unit force in common.

2.10 Matrix Form Analysis of Arches Subjected
to Fixed and Moving Load

This paragraph presents the matrix analysis of three-hinged arch subjected to fixed

and moving load.

Design diagram of three-hinged parabolic arch subjected to fixed load is shown

in Fig. 2.41. The span of the arch is divided into n equal portions, so d ¼ l/n; in the
case of Fig. 2.41, n ¼ 8.

Let the span and rise of the arch be l ¼ 16 m and f ¼ 4 m, respectively.

If the equation of the arch obeys formula (3), then

y1 ¼ y7 ¼ 1:75m; y2 ¼ y6 ¼ 3:0m; y3 ¼ y5 ¼ 3:75m; y4 ¼ f ¼ 4:0m:

Vector of bending moments at the nodal points 1–7 is

M
!¼ L�

mLm P
!
; (2.31)

where the influence matrix of bending moments is

L�
m ¼

1 0 0 m�
1 0 0 0

0 1 0 m�
2 0 0 0

0 0 1 m�
3 0 0 0

0 0 0 0 0 0 0

0 0 0 m�
5 1 0 0

0 0 0 m�
6 0 1 0

0 0 0 m�
7 0 0 1

2
666666664

3
777777775

A

4

B

l
dd

1

2
3 5

6

7

y1
y2

y4= f

P7

P6

P5
P4P3P2

P1

y

y3

d d

Fig. 2.41 Design diagram of

three-hinged parabolic arch
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To find the entries m�
i we need to construct a bending moment diagram for

three-hinged arch subjected to self-balanced load, which acts as shown in Fig. 2.42.

The trust is H ¼ 1 f= , so the bending moments at the nodal points are

m�
1 ¼ m�

7 ¼ � y1
y4

¼ � 1:75

4
; m�

2 ¼ m�
6 ¼ � y2

y4
¼ � 3

4
;

m�
3 ¼ m�

5 ¼ � y3
y4

¼ � 3:75

4
:

Therefore, matrix L�m becomes

L�
m ¼

1 0 0 �0:4375 0 0 0

0 1 0 �0:75 0 0 0

0 0 1 �0:9375 0 0 0

0 0 0 0 0 0 0

0 0 0 �0:9375 1 0 0

0 0 0 �0:75 0 1 0

0 0 0 �0:4375 0 0 1

2
666666664

3
777777775
:

Influence matrix of bending moments for the arch coincides with influence

matrix for bending moments for simply supported beam of the same span

Lm ¼ d

n
Iðn�1Þ;

where Iðn�1Þ is a matrix of order n � 1 and has the following special form

I n�1ð Þ ¼

n� 1 n� 2 n� 3 ::: 1

n� 2 ::: ::: ::: 2

::: ::: ::: ::: :::
2 4 6 ::: n� 2

1 2 3 ::: n� 1

2
66664

3
77775:

A

4

B

l
dd

1

2
3 5

6

7

2/d

1/d 1/d

H H

y4

*m7

*m6

*m5
*m3

*m2

*m1

Fig. 2.42 Bending moment

diagram due to self-balanced

load 1/d–2/d–1/d
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If n ¼ 8 then Lm becomes

Lm ¼ d

8

7 6 5 4 3 2 1

6 12 10 8 6 4 2

5 10 15 12 9 6 3

4 8 12 16 12 8 4

3 6 9 12 15 10 5

2 4 6 8 10 12 6

1 2 3 4 5 6 7

2
666666664

3
777777775
:

This matrix is symmetric with respect to both diagonals. The entries of the last

row and last column, as well as the entries of the first column (from bottom to top)

and first row (from right to left) present the natural numbers 1,2,…, (n�1). Any

entry mki, which is located on the main diagonal or above, is determined as a

product of the k-th entry of the very first row and the number i of the row .

Vector of bendingmoments is the result of multiplication of the followingmatrices

M
!¼

M1

M2

M3

M4

M5

M6

M7

666666666666666666664

777777777777777777775

¼

1 0 0 �0:4375 0 0 0

0 1 0 �0:75 0 0 0

0 0 1 �0:9375 0 0 0

0 0 0 0 0 0 0

0 0 0 �0:9375 1 0 0

0 0 0 �0:75 0 1 0

0 0 0 �0:4375 0 0 1

2
666666666666666664

3
777777777777777775

� 2

8

7 6 5 4 3 2 1

6 12 10 8 6 4 2

5 10 15 12 9 6 3

4 8 12 16 12 8 4

3 6 9 12 15 10 5

2 4 6 8 10 12 6

1 2 3 4 5 6 7

2
666666666666666664

3
777777777777777775

�

P1

P2

P3

P4

P5

P6

P7

2
66666666666666666666

3
77777777777777777777

:

If we assume that the vector of external loads is P
!¼ 1 4 2 0 0 2:5 0b cT

[Kle80], then the vector of bending moments at the nodal points 1–7 becomes

M
!¼ 2:75 6 3:75 0 �1:25 0 �1:25b cT:
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This matrix approach may be effectively used for the construction of influence

lines for bending moments. If force P ¼ 1 is placed only at joint 1, then the vector

of external load becomes

P
!¼ 1 0 0 0 0 0 0b cT

and procedure (2.31) gives us the bending moments at the nodal points 1–7.

In order to calculate all ordinates of influence lines for bending moments at

sections 1–7, the vector of loads P
!

should be replaced by an identity matrix P;
if n ¼ 8, then this matrix is of order 7.

The final result of multiplication of the three squared matrices is

M ¼

IL M1ð Þ
IL M2ð Þ
IL M3ð Þ
IL M4ð Þ
IL M5ð Þ
IL M6ð Þ
IL M7ð Þ

2
666666666666666

3
777777777777777

¼

1:3125 0:6250 �0:0625 �0:7500 �0:5625 �0:3750 �0:1875

0:7500 1:5000 0:2500 �1:0000 �0:7500 �0:5000 �0:2500

0:3125 0:6250 0:9375 �0:7500 �0:5625 �0:3750 �0:1875

0 0 0 0 0 0 0

�1:1875 �0:3750 �0:5625 �0:7500 0:9375 0:6250 0:3125

�0:2500 �0:5000 �0:7500 �1:0000 0:2500 1:5000 0:7500

�1:1875 �0:3750 �0:5625 �0:7500 �0:0625 0:6250 1:3125

2
6666666666664

3
7777777777775

:

The ith row of this matrix represents the influence line of bending moment at the

ith nodal point.

It is easy to verify that each influence line for bending moment consist of the

strength portions; this means that the structure under consideration is indeed

statically determined.
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