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Instructional objectives 
By the end of this lecture, the student will learn 

(a) what is shape factor and how it can be used to enhance the mechanical efficiency of a 

material, and 

(b) how to develop shape factors considering appropriate load and different cross section.   

 

Selection of Shapes 
So far we have learned how the combination of material properties can be used to develop a 

material index for the selection of a suitable material for a given application under different 

loading conditions. Similarly, the cross-sectional shape of a part can be used to enhance the load 

bearing capacity. An engineering material confirms to a modulus and strength, but it can be made 

stiffer and stronger when loaded under bending or twisting by shaping it into an I-beam or a 

hollow tube, respectively. It can be made less stiff by flattening it into a leaf or winding it, in the 

form of a wire, or into a helix. ‘Shaped’ sections (i.e. cross-section formed to a tube, a box-

section, an I-section or the like) carry bending, torsional, and axial-compressive loads more 

‘efficiently’ (i.e. for a given loading conditions, the section uses as little material as possible) 

than solid sections. The efficiency can be enhanced by introducing sandwich panels of the same 

or different materials. But when choosing shapes one has to be careful so the basic functional 

requirement is not violated. 

 

Shape Factor (φ) 
Shape Factor is a dimensionless number that characterizes the efficiency of the shape, regardless 

of its scale, for a given mode of loading, e.g. bending, torsion, twisting, etc. The four primary 

shape factors of our consideration are, 

• e
Bφ  Macro shape factor for elastic bending 

• e
Tφ  Macro shape factor for elastic torsion 

• f
Bφ  Macro shape factor for onset of failure in bending 

• f
Tφ  Macro shape factor for onset of plasticity or failure in torsion 
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All the shape factors are defined equal to 1 for a solid cylinder i.e. our reference cross sectional 

shape is circular. Shape Factor of all other cross section will be evaluated w.r.t this one. 
 

Example 9: Selection of shape factor in elastic bending of beam 
The bending stiffness S of a beam is proportional to the product EI and can be given as 

EI  Sα           (1) 

where E is Young’s modulus and I is the second moment of area of the beam about the axis of 

bending (the x axis), which can be written as 

∫= dAyI 2         (2) 

where y is measured normal to the bending axis and dA is the differential element of area at y. 

The values of the moment I and of the area A for the common sections are listed in the first two 

columns of Table 2.5.1. The second moment of area, I0

π
=

π
=

4
A

4
r I

24
0

, for a reference beam of circular section 

with radius r is simply 

       (3) 

The bending stiffness of any shaped section differs from that of a circular one with the same area 

A by the factor e
Bφ  where  
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π===φ       (4) 

Note that the factor e
Bφ  is dimensionless and depends only on the shape. For example, the big 

and small beams have the same value of e
Bφ  if their section shapes are the same. Figure 2.5.1 

shows three different shapes with their corresponding values of shape factor to be considered for 

elastic bending of beams. It can be noted that the values of the shape factor do not change with 

the size of the shape. 

 

 

 

Figure 2.5.1 Schematic pictures of a set of (a) rectangular sections with e
Bφ  = 2; (b) I-sections 

 with e
Bφ  = 10; and (c) tubes section with e

Bφ = 12. 
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Table 2.5.1 Area (A), Second moment of Area (I), Torsional moment of Area (K), Section 

 modulus in bending (Z), and in torsion (Q) for common engineering shapes 
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Example 10: Selection of shape factor in elastic twisting of shafts 
The shapes that can resist bending effectively may not be so good when loaded under torsion. 

The stiffness of a shaft in torsion i.e. the torque T divided by the angle of twist (θ) is proportional 

to GK, where G is the shear modulus and K is the torsional moment of area. For a typical circular 

sections K is identical with the polar moment of area, J, which can be given as 

∫= dArJ 2         (5) 

where dA is the differential element of area at the radial distance r and measured from the centre 

of the section. For typical non-circular sections, K is less than J and is defined such that the angle 

of twist is related to the torque T by 

L
KGTST =

θ
=        (6) 

where L is length of the shaft and G the shear modulus of the material of the shaft. The 

approximate expressions for K for several common sections are listed in Table 2.5.1. The shape 

factor for a shaft under elastic twisting ( e
Tφ ) can therefore be given by  
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Example 11: Selection of shape factor for failure in bending and twisting 

The bending stress, σb, is the largest at the point ym

Z
M

I
Mym

b ==σ

 on the surface of the beam [as shown in 

figure 2.5.2] that lies furthest from the neutral axis and can be given as 

       (8) 

where M is the bending moment and Z is the section modulus. Failure in bending can occur when 

σb exceeds the failure strength (yield strength or the ultimate tensile strength) of the material of 
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the beam. The shape factor in this case is considered through the section modulus, Z, and is 

measured by the ratio, 0ZZ , where Z0

2/330

f
B

A
Z4

4r
Z

Z
Z π

=
π

==φ

 is the section modulus of a reference beam of circular 

section with the same cross-sectional area, A. Hence, the shape factor to be considered against 

failure in bending can be given as 

      (9) 

Similarly, in case of a circular rod subjected to a torque T, the maximum shear stress τmax occurs 

at the maximum radial distance rmax

Q
T

J
Trmax

max ==τ

 from the axis of twisting and can be given as 

       (10) 

 

 

 

 

 

 

 

 

Figure 2.5.2 Schematic picture of (a) bending of beam, and (b) cross-section of beam 

 

where M is the bending moment and Z is the section modulus. Failure in bending can occur when 

σb

0ZZ

 exceeds the failure strength (yield strength or the ultimate tensile strength) of the material of 

the beam. The shape factor in this case is considered through the section modulus, Z, and is 

measured by the ratio, , where Z0

2/330

f
B

A
Z4

4r
Z

Z
Z π

=
π
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 is the section modulus of a reference beam of circular 

section with the same cross-sectional area, A. Hence, the shape factor to be considered against 

failure in bending can be given as 

      (11) 

Similarly, in case of a circular rod subjected to a torque T, the maximum shear stress τmax occurs 

at the maximum radial distance rmax from the axis of twisting and can be given as 

(a) (b) 

Maximum 
bending 
stress 
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Q
T

J
Trmax

max ==τ        (12) 

The quantity in maxrJ in equation (12) has the same character as I/y in bending. Hence, the 

shape factor in failure in twisting can be given by the ratio 0QQ as 

2/30

f
T

A
Q2

Q
Q π

==φ        (13) 

The expression for the shape factors for different shapes is given in the Table 2.5.2. 

 

Table 2.5.2 Shape factors of common engineering shapes in elastic bending and twisting, and 

 in failure in bending and twisting 

Section 
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Limits to shape factor 
From the above discussion it can be concluded that to make stiff and strong structures, efficient 

shape factors have to be made which is often limited by a number of factors as follows.  

[1] The range of shape factor for a given material is limited either by manufacturing 

constraints or by local buckling.  

[2] Steel, for example, can be drawn to thin walled tubing or formed (by rolling, folding or 

welding) into other efficient shapes; shape factors as high as 30 are common and they 

may reach 65. 

[3] Wood cannot be shaped so easily and shapes with values greater than 3 are rare. 

However, bamboo is a gift of nature and is already shaped in tubular fashion which 

possesses a high value of shape factor. But it is very difficult to give it any other shape. 

Composites, too, can be limited by the present difficulty in making thin-walled shapes.  
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The maximum useful shape factor for simple shapes is related to the ratio E/σf

 

 of a given 

material. Table 2.5.3 outlines the maximum possible shape factors in common engineering 

materials based on various manufacturing technologies available today. 

Table 2.5.3 Maximum values of shape factors in common engineering materials 

Material max
e
B )(φ  max

e
T )(φ  

max
f
B )(φ  max

f
T )(φ  

Structural steel 65 25 13 7 

6061 aluminium alloy 44 31 10 8 

GFRP and CFRP 39 26 9 7 

Polymers (e.g. nylons) 12 8 5 4 

Woods (solid sections) 5 1 3 1 

Elastomers <6 3 - - 

 

Exercise 
Choose the correct answer 

1. What will be the expression for shape factor, e
Bφ , when the reference cross section is a 

square of area A? 

(a) 2A
I12   (b) 2A

Iπ  (c) 
2/3A

I4   (d) 2A
I2 π  

2. What will be the expression for shape factor, e
Tφ , when the reference cross section is a 

square of area A? 

(a) 2A
K2π   (b) 2/3A

Kπ   (c) 2A
K14.7   (d) 2A

K4 π  

3. What will be the expression for shape factor, f
Bφ , when the reference cross section is a 

square of area A? 

(a) 2/3

6
A

Z    (b) 2/3A
Zπ   (c) 2/3A

Zπ   (d) 2

4
A

Z  
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4. What will be the expression for shape factor, f
Tφ , when the reference cross section is a 

square of area A? 

(a) 
2/3A

Qπ
   (b) 

2/3A
Q8.4   (c) 2A

Q8.4   (d) 2A

Qπ
 

 

Answers: 1(a), 2(c), 3(a), 4(b) 
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