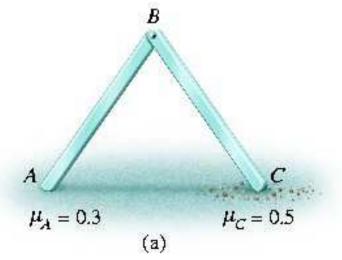
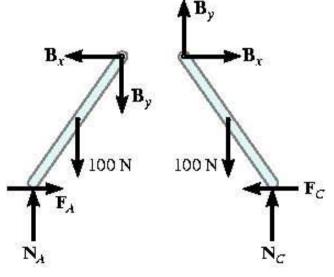


- In all cases, geometry and dimensions are assumed to be known
- Three types of mechanics problem involving dry friction
 - Equilibrium
 - Impending motion at all points
 - Impending motion at some points

- Types of Friction Problems
- Equilibrium
- Total number of unknowns = Total number of available equilibrium equations
- Frictional forces must satisfy F ≤ µ_sN; otherwise, slipping will occur and the body will not remain in equilibrium
- We must determine the frictional forces at A and C to check for equilibrium

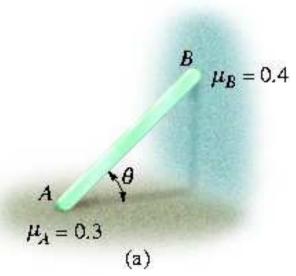


- If the bars are uniform and have known weights of 100N each, FBD are shown below
- There are 6 unknown force components which can be determined strictly from the 6 equilibrium equations (three for each member)



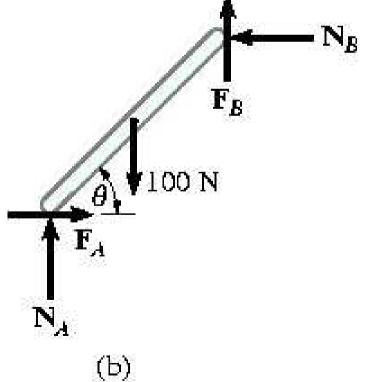
Impending Motion at All Points

- Total number of unknowns = Total number of available equilibrium equations and available frictional equations
- If the motion is impending at the points of contact, $F_s = \mu_s N$
- If the body is slipping, $F_k = \mu_k N$
- Consider angle θ of the 100N bar for no slippage



• FBD of the 100N bar

 5 unknowns and 3 equilibrium equations and 2 static frictional equations which apply at both points of contact

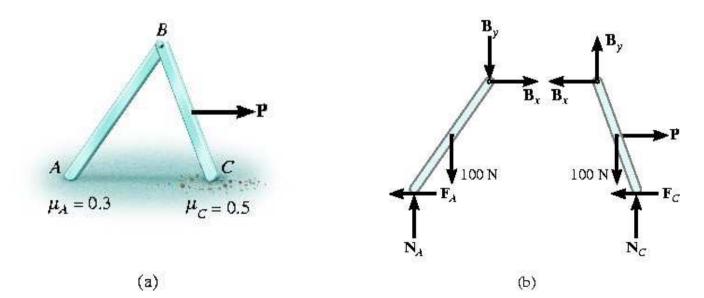


Types of Friction Problems

Impending Motion at Some Points

- Total number of unknowns < total number of available equilibrium equations and the frictional equations or conditional equations for tipping
- As a result, several possibilities for motion or impending motion will exist

- **Types of Friction Problems**
- Example
- Consider 2-member frame to determine force
 P needed to cause movement
- Each member has a weight of 100N



Types of Friction Problems

- 7 unknowns
- For unique solution, we must satisfy 6 equilibrium equations (three for each member) and only one of the two possible static frictional equations
- As P increases, it will either cause slipping at A and no slipping at C or slipping at C and no slipping at A

Types of Friction Problems

- Actual situation can be determined by choosing the case for which P is smaller
- If in both cases, same value of P is obtained, slipping occur simultaneously at both points and the 7 unknowns will satisfy 8 equations

Equilibrium Versus Frictional Equations

- Frictional force always acts so as to oppose the relative motion or impede the motion of the body over its contacting surface
- Assume the sense of the frictional force that require F to be an "equilibrium" force
- Correct sense is made after solving the equilibrium equations
- If F is a negative scalar, the sense of **F** is the reverse of that assumed

Procedures for Analysis FBD

- Draw the necessary FBD and unless it is stated that impeding motion or slipping occurs, always show the frictional forces as unknown
- Determine the number of unknowns and compare with the number of available equations
- If there are more unknowns that the equations of equilibrium, apply frictional equations at points of contact

Procedures for Analysis FBD

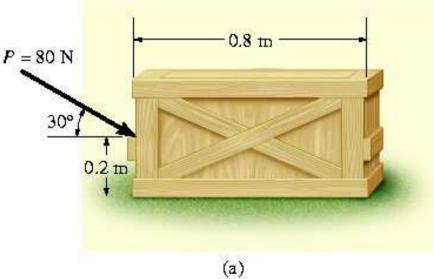
• If the equation $F = \mu N$ is used, show **F** acting in the proper direction on the FBD

Equations of Equilibrium and Friction

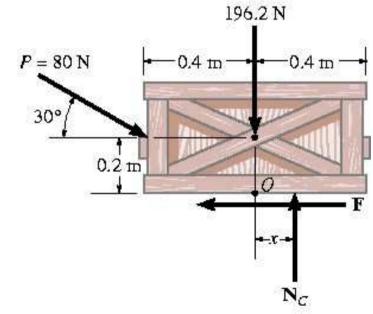
- Apply the equilibrium equations and the necessary frictional equations and solve for unknowns
- If the problem is 3D, apply the equations using Cartesian coordinates

Example 8.1

The uniform crate has a mass of 20kg. If a force P = 80N is applied on to the crate, determine if it remains in equilibrium. The coefficient of static friction is $\mu = 0.3$.



- Resultant normal force NC act a distance x from the crate's center line in order to counteract the tipping effect caused by P
- 3 unknowns to be determined by 3 equations of equilibrium



Solution $+ \rightarrow \sum F_r = 0;$ $80\cos 30^{\circ} N - F = 0$ $+\uparrow \sum F_{v}=0;$ $-80\sin 30^{\circ} N + N_{C} - 196.2N = 0$ $\sum M_{o} = 0;$ $80\sin 30^{\circ} N(0.4m) - 80\cos 30^{\circ} N(0.2m) + N_{c}(x) = 0$ Solving $F = 69.3N, N_{C=236N, x=-0.00908m=-9.08mm}$

Solution

- Since x is negative, the resultant force acts (slightly) to the left of the crate's center line
- No tipping will occur since $x \le 0.4m$
- Maximum frictional force which can be developed at the surface of contact

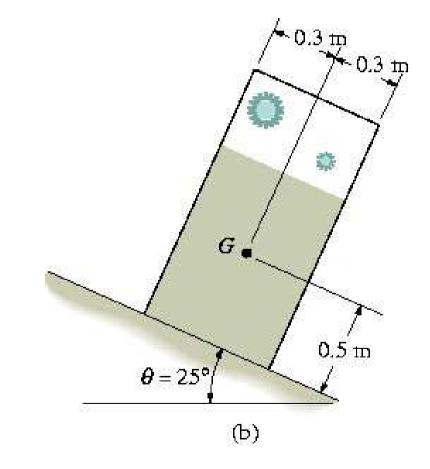
 $F_{max} = \mu_s N_c = 0.3(236N) = 70.8N$

• Since F = 69.3N < 70.8N, the crate will not slip thou it is close to doing so

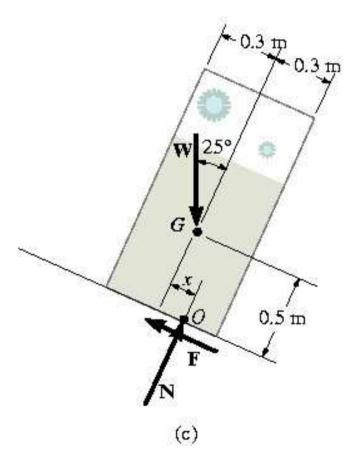
Example 8.2

It is observed that when the bed of the dump truck is raised to an angle of $\theta = 25^{\circ}$ the vending machines begin to slide off the bed. Determine the static of coefficient of friction between them and the surface of the truck

- Idealized model of a vending machine lying on the bed of the truck
- Dimensions measured and center of gravity located
- Assume machine weighs W



- Dimension x used to locate position of the resultant normal force N
- 4 unknowns

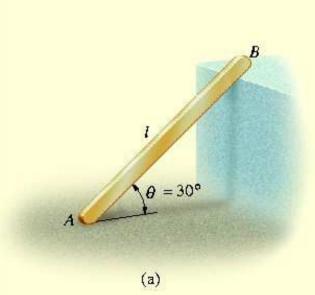


 $\sum F_x = 0;$ $W \sin 25^{\circ} N - F = 0$ $\sum F_{v} = 0;$ $N-W\cos 25^{\circ}N=0$ $\sum M_{O} = 0;$ $-W\sin\theta(0.5m) + W\cos\theta(x) = 0$ Slipping occurs at $\theta = 25^{\circ}$ $F_s = \mu_s N; W \sin 25^\circ = \mu_s (W \cos 25^\circ N)$ $\mu_{\rm s} = \tan 25^{\circ} = 0.466$

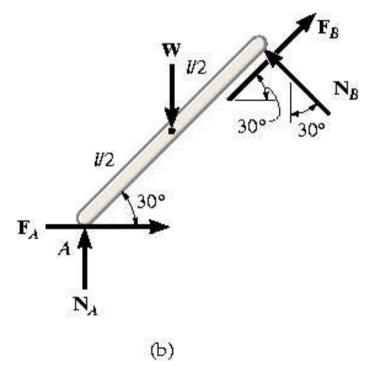
- Angle $\theta = 25^{\circ}$ is referred as the angle of repose
- By comparison, $\theta = \Phi_s$
- θ is independent of the weight of the vending machine so knowing θ provides a method for finding coefficient of static friction
- $\theta = 25^{\circ}, x = 0.233m$
- Since 0.233m < 0.5mthe vending machine will slip before it can tip as observed

Example 8.3

The uniform rob having a weight of W and length I is supported at its ends against the surfaces A and B. If the rob is on the verge of slipping when $\theta = 30^{\circ}$, determine the coefficient of static friction μ_s at A and B. Neglect the thickness of the rob for calculation.



- 5 unknowns
- 3 equilibrium equations and 2 frictional equations applied at A and B
- Frictional forces must be drawn with their correct sense so that they oppose the tendency for motion of the rod



Frictional equations $F = \mu_{s} N;$ $F_A = \mu_s N_A, F_B = \mu_s N_B$ Equilibrium equations $+ \rightarrow \sum F_{x} = 0;$ $\mu_s N_A + \mu_s N_B \cos 30^\circ - N_B \sin 30^\circ = 0$ $+\uparrow \sum F_{v}=0;$ $N_A - W + N_B \cos 30^\circ + \mu_s N_B \sin 30^\circ = 0$ $\sum M_A = 0;$ $N_B \ell - W\left(\frac{1}{2}\right) \cos 30^\circ = 0$

Solution Solving $N_B = 0.4330W$

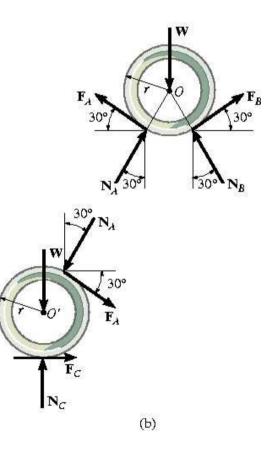
 $\mu_s N_A = 0.2165W - (0.3750W)\mu_s$ $N_A = 0.6250W - (0.2165W)\mu_s$ By division

 $0.6250\mu_s - 0.2165\mu_s^2 = 0.2165 - 0.375\mu_s$ $\mu_s^2 - 0.4619\mu_s + 1 = 0$ Solving for the smallest root $\mu_s = 0.228$

Example 8.4

The concrete pipes are stacked in the yard. Determine the minimum coefficient of static friction at each point of contact so that the pile does not collapse.

- Coefficient of static friction between the pipes A and B, and between the pipe and the ground, at C are different since the contacting surfaces are different
- Assume each pipe has an outer radius r and weight W
- 6 unknown, 6 equilibrium equations
- When collapse is about to occur, normal force at D = 0



Solution For the top pipe, $\sum M_{O} = 0;$ $-F_{A}(r) + F_{B}(r) = 0; F_{A} = F_{B} = F$ $+ \rightarrow \sum F_r = 0;$ $N_A \sin 30^\circ - F \cos 30^\circ - N_B \sin 30^\circ + F \cos 30^\circ = 0$ $N_A = N_B = N$ $+\uparrow \sum F_{v}=0;$

 $2N\cos 30^\circ + 2F\sin 30^\circ - W = 0$

For the bottom pipe, using $F_A = F$ and $N_A = N$, $\sum M_{O'} = 0$; $F_C(r) - F(r) = 0$; $F_C = F$ $+ \rightarrow \sum F_x = 0$; $-N \sin 30^\circ + F \cos 30^\circ + F = 0$ $+ \uparrow \sum F_y = 0$; $N_C - W - N \cos 30^\circ - F \sin 30^\circ = 0$ Solving, F = 0.268N

Between the pipes,

$$(\mu_{s})_{\min} = \frac{F}{N} = 0.268$$

$$N = 0.5W$$

$$N_{c} - W - (0.5W) \cos 30^{\circ} - 0.2679(0.5W) \sin 30^{\circ} = 0$$

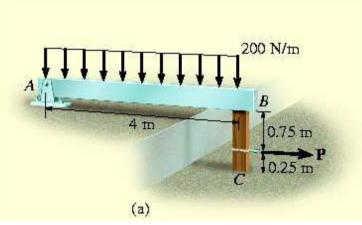
$$N_{c} = 1.5W$$
For smallest required coefficient of static friction,
$$(\mu'_{s})_{s} = \frac{F}{N} = \frac{0.2679(0.5W)}{0.2679(0.5W)} = 0.0893$$

$$(\mu'_s)_{\min} = \frac{1}{N_c} = \frac{1}{1.5W} = 0.089$$

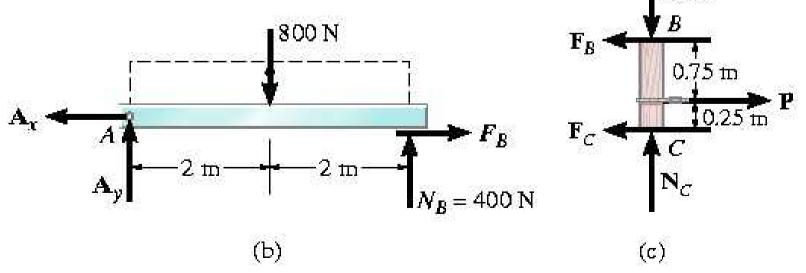
- A greater coefficient of static friction is required between the pipes than that required at the ground
- It is likely that the slipping would occur between the pipes at the bottom
- If the top pipes falls downwards, the bottom two pipes would roll away

Example 8.5

Beam AB is subjected to a uniform load of 200N/m and is supported at B by post BC. If the coefficients of static friction at B and C are $\mu_{\rm B}$ and $\mu_{\rm C} = 0.5$, determine the force **P** needed to pull the post out from under the beam. Neglect the weight of the members and the 200 N/m thickness of the post.



- FBD of beam AB and the post
- Apply $\Sigma M_A = 0$, $N_B = 400N$
- 4 unknowns
- 3 equilibrium equations and 1 frictional equation applied at either B or C



Solution $+ \rightarrow \sum F_x = 0;$ $P - F_B - F_C = 0$ $+ \uparrow \sum F_y = 0;$ $N_C - 400N = 0$ $\sum M_O = 0;$ $- P(0.25m) + F_B(1m) = 0$

Post slips only at B

$$F_C \le \mu_C N_C$$

 $F_B = \mu_B N_B; F_B = 0.2(400N) = 80N$

Solution Solving $P = 320N, F_{c} = 240N, N_{c} = 400N$ $F_{c} = 240N > \mu_{c}N_{c} = 0.5(400N) = 200N$ Post slips only at C

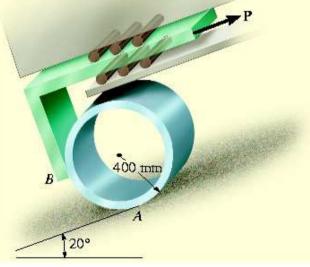
 $F_B \le \mu_B N_B$ $F_C = \mu_C N_C; F_C = 0.5 N_C$ **Solving** $P = 267 N_C N_C = 400 N_C E_C = 200 N_C E_C = 6$

 $P = 267N, N_c = 400N, F_c = 200N, F_B = 66.7N$

Choose second case as it requires a smaller value of P

Example 8.6

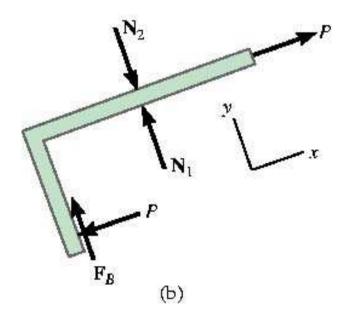
Determine the normal force P that must be exerted on the rack to begin pushing the 100kg pipe up the 20° incline. The coefficients of static friction at points of contact are $(\mu_s)_A = 0.15$ and $(\mu_{s})_{R} = 0.4$.



- The rack must exert a force P on the pipe due to force equilibrium in the x direction
- 4 unknowns
- 3 equilibrium equations and 1 frictional equation which apply at either A or B
- If slipping begins to occur at B, the pipe will roll up the incline
- If the slipping occurs at A, the pipe will begin to slide up the incline



- Solution
- FBD of the rack



Solution

$$\sum F_{x} = 0;$$

$$-F_{A} + P - 981 \sin 20^{\circ} = 0$$

$$\sum F_{y} = 0;$$

$$N_{A} - F_{B} - 981 \cos 20^{\circ} = 0$$

$$\sum M_{o} = 0;$$

$$F_{B}(400mm) - F_{A}(400mm) = 0$$

Pipe rolls up incline $F_A \le 0.15N_A$ $(F_S)_A = (\mu_S)_A; 224N \le 0.15(1146N) = 172N$

Inequality does not apply and slipping occurs at A

Pipe slides up incline

 $P \le 0.4N_B$ $(F_s)_A = (\mu_s)_A N_A;$ $F_A = 0.15N_A$

Solving

 $N_A = 1085N, F_A = 163N, F_B = 163N, P = 498N$

Check: no slipping occur at B

 $F_B \le (\mu_s)_B P;$ 163 $N \le 0.4(498N) = 199N$