CHAPTER SEVEN
PLASTIC COLLAPSE and LIMIT ANALYSIS

7.1 Introduction and bars with axial loading

7.2 Plastic action in bending and plastic hinges
7.3 Collapse loads in beams
Review and Summary
® Structural design under static load
(1) Elastic analysis ---- Allowable stress concept and safety
factors(S , /S )

Limit analysis ---- For ductile materials and asks for the load

that places a structure on the verge of plastic collapse.
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® Advantagesof limit analysis

(1) Leads to a design that uses less material to carry a
given load
(2) Smplein caculation and Moreredlistic

® Goal of this chapter ---- calcualation of the plastic collapse



loads
® Basic assumption about the material:
(1) yield rather than fracture
(2) The material has a yield point Y and is elastic perfectly
plastic

® Single bar under axial loading
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FIGURE 11.2.1. (a) Typical stress—strain behavior of a ductile steel. The yield point is
¥ = 240 MPa. (b) Prismatic bar A8 under axial load P. (c) Load—deflection behavior of bar

AB

(1) Theyieldload P, =YA=240" 10°" 10"° = 24kN

(2) Theelongation at yield D, = P,L/ AE =144" 10"°m

(3) The plastic yielding does not change the collapse load R,
(always equalsto theinitia yielding load)

® | oad-carrying capacity

(1) Statically determinate structure: no change

(2) Statically indeterninate structure: The collapse load is larger
than the load that initiates yielding



® Three-bar truss (statically indeterminate) : an example

(1) The collapse load Py,
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FIGURE 11.2.2. (a) Three-bar truss. (b) Tension versus defleetion relation for cach separate
bar. (¢) Forces that act on point A at the collapse load P

P, =24 +(24+/2) = 57.94kN
(2) Elastic analysis (more tedious)
(@) bar AB begin to yield (statically indeterminate)
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FIGURE 11.2.3. (a) Forces that act at point A in the truss of Fig. 11.2.2a when the most
highly stressed bar has yielded. (b) Relations among the (small) deflections at point A. (c)
Load—deflection response of the three-har truss.
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With E=200Gpa, we have

Equilibrium: P=24+2

Deformation: D AC

Tac=12kN , P=40.97 kN, D,z =144" 10 °m
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FIGURE 11.2.3. (a) Forces that act at point A in the wuss of Fig. 11.2.2a when the most
highly stressed bar has yielded. (b} Relations among the (small} deflections at point 4. {c)
Load=delection response of the three-bar truss.

* The collpase load P, is 41% greater than the load that
initiate yielding
(b) Thedeflection D ,g at the collpase load

At the instant when collapse load R, is reached, Bars AC are at the
end of their elastic responsg, i.e.

D, =+/2D ¢ :ﬁ% =288" 10"°m

This deflection is smal

elastic

If sefety fector is 2.0, the | Ry =40.97/2=20.49KNyras
i Ry =57.94/2 = 2897kN(imie, )

analysi

(c) Unloading the structure after collapse load R, has been
reached

After unloading, we can find the residual forces in bars of the
unloading structure by superposition two cases:

(1) the structure loaded by +P, (downward)

(2) the structure loaded by -P P, (upward)
because the bar response elastically, the case (2) is.

- 57.94

40.97

- 57.94
TE =12(—"" = - 16.97kN
AC ( 40.97 )

T =24 ) = 33.94kN

Thetotd internal forces(residua forces) are
T =T +TP =24- 33.94=-9.94kN
T, =TR+T? =24-16.97 = 7.03kN



(3) Some discussion

® After the load B, is released, if we continue loading in the
opposite direction (upward), then what value of upward P
produces renewed yielding in compression? Assume that
bars will yield at 24kN in compression as in tension. In this
case the upward load P must be large enough to produce an
elastic force of 24-9.94=14.06kN (compressive) in bar AB,

we find

p = 14.06(%27) = 24.00kN(upward)

The range of elastic response is from 57.94kN (downward)
to 24kN (upward), a total range of 57.94+24=81.94kN.
Before any vyielding, the elastic range was 2 X
40.97=81.94kN, the same value. Thus we further have:

® Residual stress have not increased the total elastic range, but
have only shifted it. Thisis true in general: increase the limit
of elastic action if further loads act in the same direction but
decrease the limit of elastic action if further loads act in the

opposite direction



7.2 Plastic action in bending and plastic hinges
® Stressand strain dlstrlbutlon changeasM INcreases.
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FIGURE 11.3.1. Beam of rectangular cross section & by £ = 2e, loaded h:. bending ma-
ment M. With a Nat-topped stress—strain relation and increasing curvature, the strain distribution
remains linear while distance ac between the centroid and the clastic—plastic boundary becomes
small. At the onset of vielding, @ = 1, for greater bending moment, 0 << & < L

_ 2
AN —%F +(+a)ck, =2 pery

(2  whenyiddjus begins, a=1® M, =§bczY

(3)  whenal maeria hesyied, a =1,@ M, = bc?Y

My, ---- fully plastic moment. Shape factor = Mp/My,
® Curvature K of the beam in the lastic plastic state
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FIGURE 11.2.2. (a) Forces F, (elastic part) and F, (plastic part) are produced by
stress that acts on the cross section of a partially vielded beam of rectangular cross
seetion. (b) Bending moment versus curvature refation for a beam of rectangular cross

section.

Using relaion K =M / El to the central elastic core of depth 2a c, we have
k =Y/Eac (0<a <1)

M =[c? - 1§eY o by (vaidfor k 3 Y/Ec)
3éEk



® Thelatera extent of theyield zone

o gl et
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FIGURE 11.3.3. Yiclded zones when the fully plastic moment M, prevails in simply sup-
pored beams of rectangular cross section with (a) concentrated center load P, and (b) uni-
formly distributed load g,

(@ The bending moment is M, at x=0 and drops linearly to zero
at theends X = |, thuswe have

a- Xo o3 - X0
M=M ¢——==bcYe—Z=P (I- x)/2
pgl @ © gl ) p (1= %)

by using , -3-2°, ., wefind a =3x/T® x=1/3a=1
3

() M =bc?Y(1%2- Y) /12, a=-/3x/I® x=1/,/3a =1

® Plastic hinge: Although yield material extends an
appreciable distance along the beam, the fully plastic zone
spans an infinitesimal length dx at x=0. This zone os called a
plastic hinge Further deformation takes place entirely within
the hinges as its material strains at constant Y (without
increase of the load)

® Resdual stressafter unloading
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FIGURE 11.3.4. Calculation of the residual stress pattern afier unloading a plastic hinge n
a rectangular cross section
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7.3 Collapse loadsin beams
® Calculate the collapse load on a beam by a given loading

pattern, support condition and fully plastic moment M,
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FIGURE 11.4.1. (2) Unmitorm propped cantilever beam. showing bending moment
diagrams at the onset of yielding and al the collapse condition. (k) Deflection pattérn
after the collapse P, is reached. and the corresponding support forces on the beam.
Deflections in the sketch are greatly exaggerated.

(1) Elastic solution: Ma=-3PL/16, Mg=5PL/32, so yield will begin
first at point A with Ma=M,

]

(2) The corresponding load at initid yieldis p = 16M, :

y
3L
(3) Further increase in load (P>R,),~> plastic action will spread at A
and then begin at B, until Mx=Mg=Mp, at this time the collapse
load P, is reached.

At the time the oollapse load P, is reached, an attempt to increase
P, further result in point B moving further downward as B, remains
constant. The structure has become what is called a mechanism or
akinematic mechanism: it is a linkage of bars. Its configuration
can found by strictly geometric considerations. In collapse anaysis,
only small motions are needed to develop plastic hinges.



The calculation of collapse load P, by virtual-work

argument:

(@) Uniform propped cantilever beam with concentrated load P
---- As comstant load P, moves through virtual through virtual
distance D=q(L/2), the work it does is absorbed by the hinges
as they rotate with constant moment M, through the respective
virtual angles g at hinges A and 29 at hinges B. This represents
a small additional deflection imagined to take place after a
collapse mechanism is formed. Loads, hinge moment and elastic
distortions all remain constant as the hinges rotate.
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FIGURE 11.4.2. (a) Collapse mechanism of the beam in Fig. 11.4.1a. Plastic hinges are
indicated by dots. Deflections are exaggerated. (b) Uniform propped cantilever beam with a uni-
formly distributed load g. (¢} Collapse mechanism of the beamn of part (b). Plastic hinges are at
points A and B. Deflections are exagperated.

L 6M
(1) P@3) =M, Q) +M X)) ® P, =—

(2 If end A were smply supported, then it is statically
determinate and a single hinges will form at B, we have
Po=4M,/L.

(3) If both ends were fixed, hinges will form at A. B. C, and by

L 8M
Pp(q5)=2Mp>‘(Q)+Mp>(ZQ),Wehave P, = Lp .

We see that collapse load increase as the degree of static
Indeterminacy increases.

P,/B, =M _ /M, for staticaly determinate
P /B >M_ /M, for gaticaly indeterminate
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(1)
(2)

Uniform propped cantilever beam with a uniformly
distributed load P ----

{a) [1:7} (Ed]

Two hinges are needed to produce a mechanism, the
location of hinge B is not known ----xg

L oads that act on sections AB and BC are, respectively, Xz
and gy(L-Xp). They can be regarded as two equivalent
concentrated forces. The virtual work equation is

L'ZXB):Mp4q>+Mp(q +f)

d,%; (@ %)+qp(L- X )(f

where f =qx, /(L - X, ), solving for Qp, We have

q _2M ) 2-x, /L
P 2
L %(1-x8/|_)

12M

p

L2

If weassume Xg = L/2, then d, = (approximate)

5
If we assume B isat X = g'— (where elastic theory shows

amaximum moment), then

11.733M _
q, :T ( approximate)
the correct hinges location is such that g, is a minimum,

11.657M ,
thus da,/dx; =0® q, Tz (exac)

We see that approximate values ar aways higher than exact
value.



Upper and Lower Bound Theorems

Upper Bound Theorem. A load computed on the basis of an
assumed collapse mechanism is greater than the actual collapse
load or at best equal to it. The lowest upper bound is the
correct collapse load. The corresponding mechanism is the one
that actually occurs.

L ower Bound Theorem. A load computed on the basis of an
assumed equilibrium moment diagram in which the magnitude
of lending moment never exceeds M, is less than the actual
collapse load Py, or at best equal toit.

Example: page 454
Page 451

The lower bound theorem is attractive because it gives a
conservative result.

Uniqueness: If the equilibrium moment distribution in the lower
bound theorem is associated with a mechanism, then the applied
load is the collapse |oad.
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FIGURE 11.6.1. (a) Uniform propped cantilever beam with two equal loads P, and two
free-body diagrams. (b, c) Assumed collapse mechanisms and the bending moment diagrams
associated with each. Deflections sketched are greatly exaggerated.

Find the collapse load B, for the beam shown whose bending
moment capacity is M, throughout.

(1) For the mechanism shown in (b), the virtual work equation:

POZ)+ P@ %L) =M ,(@)+ M, @)

We have P=4M/,/L. We see the bending moment is
everywhere £ Mp, so the mechanism is correct and
P=P,=4M,/L (by the uniqueness theorem)

(2) For the mechanism shown in (c), the virtual work equation

s P(2q§)+P(q§>:Mp(2q>+Mp(aq)

This equation yields P=5My/L, since this load is larger than
the load in (b), so from the upper bound theorem it is not
correct. Also from the bending moment we know that

_4Mp
p 3 >Mp

I.e. the mechanism assumed does not in fact occur.

The principal of superposition does not apply to plastic
problems!
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FIGURE 11.6.2. (1) Plane frame with loads P and 2P, one leg fixed and the other pinned.
{b-d) Assumed collapse mechanisms, with deflections exaggerated.

The fully plastic bending moment capacity is M, throughout the
frame. Find the collapse load associate with the mechanism of
(b), and see if the associated moment is acceptable:

(1) For the case (b), only horizontal force does work during
virtual displacement g, the virtual work eqg. is
3M
P(2Lg) =M () hence P= 2—Lp
(2) Calculation of the bending moment at each of the critical
sections (in terms of Ry and R,)

M, =-2R,L+4PL M, =-2R,L+2PL+2R,L

M. =-RL+2R,L M, =2R,L

eliminating Ry and Ry, we have
M,-2M.+2M, =4PL
M,-2M.+M, =PL

For he mechanism shown in (b), Ma=M,, Mg= - M,
Mp=M,, thus with P=3M,/2L, we finally have M= - 1.5M,
(positive M represents tensile stress outside the frame). The
mechanism of (b) does not in fact occur.



