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88  OOPPEENN  CCHHAANNNNEELL  FFLLOOWW  
 
88..11  CCllaassssiiffiiccaattiioonn  &&  DDeeffiinniittiioonn  
 

 Open channel flows are flows in rivers, streams, artificial channels, 
irrigation ditches, partially filled pipe etc. 

 
 Basically, it is a flow with free surface. 

(Free surface is a surface with atmospheric pressure) 
 

Open Channel Flow

Steady flow Unsteady flow

Uniform Varied

Gradually
varied
flow

Rapidly
varied
flow

Varied

Gradually
varied
flow

Rapidly
varied
flow

Uniform   

Classifications of Open Channel Flow  
 
8.1.1 Open Channel Geometry 
 
1. Depth of flow, y: vertical distance from the bottom to surface. 
 

A

Free surface

flow

Bottom

B

y

(cross-section)
 

 
2 Top width, B:  

– the width of the channel at the free surface 
 
3 Flow area, A:  

– cross-sectional area of the flow 
 
4 Wetted perimeter, P:  

– the length of the channel cross-section in contact with the fluid 
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5 Hydraulic radius (hydraulic mean depth), R: 
 

 R  = 
P
A

perimeter Wetted
area Flow

=  

 
6 Average depth (hydraulic average depth), yave: 
 

 yave  = 
B
A

 widthTop
area Flow

=  

 
8.1.2 Rectangular channel 
 

– B  = b 
 

– A  = b*y 
 

– P  = b+2*y 
 

– R  = 
y*2b

y*b
+

 

 
– yave  = y  

 

y

b  

 
8.1.3 Trapezoidal channel 
 

– B  = b + 2*m*y 
 

– A  = y*(b+m*y) 
 

– P  = b+2*y* 2m1+  
 

– R  = 
2m1*y*2b

)y*mb(*y
++

+  

 

– yave  = 
y*m*2b

)y*mb(*y
+

+  

 

1
m

y

b  
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8.1.4 Triangular channel 
 

– B  = 2*m*y 
 

– A  = m*y2 

 
– P  = 2*y* 2m1+  

 

– R  = 
2m1*2

y*m
+

 

 

– yave  = 
2
y  

 

y 1
m  

 
8.1.5 Circular channel 
 

– B  = )yD(*y*2 −  
 

– A  = ( )
8

sin*D2 θ−θ  

 

– P  = 
2
D*θ  

 

– R  = ⎟
⎠
⎞

⎜
⎝
⎛

θ
θ

−
sin1

4
D  

 

– yave  = ( )

2sin*8
sin*D
θ

θ−θ  

 

y Dθ

(θ in radian)  
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8.2 Steady Uniform Flow 
 

 For a steady uniform flow 
– depth is constant along the flow 
– velocity is constant over the cross-section 
– time independent 

 
8.2.1 Manning Equations 

 
 In 1890, Manning, an Irish engineer derived a better and more accurate 

relationship, Manning equation, based on many field measurement. 
 

    V = 2
1

3
2

S*R*
n
1        (8.1) 

 
• n - Manning’s coefficient, s/m1/3  

    (can be found in most of the hydraulic handbooks) 
 

 To incorporate the continuity equation, Manning equation becomes 
 

Q = 
2 1

3 2A * R *S
n        (8.2) 

 
 As the flow according to Manning equations is for normal steady 

uniform flow,  
– the flow is Normal Flow 
– the depth is Normal Depth  
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Worked examples: 
 
1. Water flows in a rectangular, concrete, open channel that is 12 m wide 

at a depth of 2.5m.  The channel slope is 0.0028. Find the water 
velocity and the flow rate.  (n = 0.013) 

  
AAnnsswweerr  
  
By Manning equation, 
 

2
1

3
2

S*R*
n
1  V =  

 
 with n = 0.013 
   S = 0.0028 
 
   A  = 12* 2.5 m2 = 30 m2 
   P = 12 + 2*2.5 m = 17 m 
 ∴ R = A/P  
    = 30 / 17 m = 1.765 m 
  

 hence V  = 2
1

3
2

)0028.0(*)765.1(*
013.0
1  

     =  5.945 m/s 
 
 Discharge, Q =  A*V 
     =  30*5.945 m3/s 
     =  178.3 m3/s 
  
  



Fluid Mechanics Chapter 8 – Open Channel Flow  

P.8-6 

2. Water flows in a rectangular, concrete, open channel that is 12 m wide. 
The channel slope is 0.0028.  If the velocity of the flow is 6 m/s, find 
the depth of the flow. (n = 0.013) 

   

h

12m   
  
AAnnsswweerr  
  
By Manning equation, 
 

2
1

3
2

S*R*
n
1  V =  

 
 with V = 6 m/s 
   n = 0.013 
   S = 0.0028 
 
   A  = 12* h  m2  
   P = 12 + 2*h m 

 ∴ R = 
h6
h*6

h*212
h*12

P
A

+
=

+
=  

     
h6
h*6

+
 = 1.790 

   h   = 2.551 m 
 
 Depth of the flow = 2.551m 
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3. A trapezoidal channel with side slopes of 2/3, a depth of 2 m, a bottom 
width of 8 m and a channel slope of 0.0009 has a discharge of 56 m3/s. 
Find the Manning’s n. 

   

1
1.5

14m

2m

3m 8m 3m
  

  
AAnnsswweerr  
  
   A = (14+8)*2/2 m2 
    = 22 m2 
   P = 8 + 2* 22 32 +  m 
    = 15.211 m 
   A/P = 22 / 15.211 m 
    = 1.446 m 
 
 By Manning equation, 
 

   2
1

3
2

S*R*
n
A  Q =  

 
   Q  = 56 m3/s, S  = 0.0009 
  

   56  = 2
1

3
2

)0009.0(*)446.1(*
n
22  

  n = 0.01507 
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4. Determine the depth in a trapezoidal channel with side slopes of 1 to 
1.5, a bottom width of 8 m and a channel slope of 0.0009. The 
discharge is 56 m3/s and n = 0.017. 

  

1
1.5

(8+3*y) m

y

8m
 

  
AAnnsswweerr  
  
   A = (8+8+3*y)*y/2 m2 
    = (8+1.5*y)*y m2 
   P = 8 + 2*y* 22 5.11 +  m 
    = 8+3.6056*y    m 
   R = A/P 
    = (8+1.5*y)*y / 8+3.6056*y  
 
 By Manning equation, 

   2
1

3
2

S*R*
n
A  Q =  

   Q = 56 m3/s, S = 0.0009 
  

∴ 56  = 2
13

2

)0009.0(*
y*6056.38
y*)y*5.18(*

017.0
y*)y*5.18(

⎥
⎦

⎤
⎢
⎣

⎡
+
++  

 or [ ]
[ ]

7333.31
y*6056.38
y*)y*5.18(

3
2

3
5

=
+

+  

[ ]
[ ]

09667.3
y*4507.01

y*)y*1875.01(
3

2

3
5

=−
+

+  

 
 By trial & error, y = 2.137 m. 
 The depth of the trapezoidal channel is 2.137m. 
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5. Water flows in the triangular steel channel shown in the figure below. 
Find the depth of flow if the channel slope is 0.0015 and the discharge 
is 0.22 m3/s. (n=0.014) 

 

y
60o

  
  
AAnnsswweerr  
  
   A = 2ytan30° * y/2 m2 
    = y2*tan30° m2 
   P = 2y/cos30° m 
   R = A/P = y2*tan30° / 2y/cos30°  m 
    = ysin30°/2 m 
  
  By Manning equation, 

   2
1

3
2

S*R*
n
A  Q =  

 
   Q  = 0.22 m3/s, S = 0.0015 

   0.22 = 0015.0*
2

30siny*
014.0

30tany 3
22

⎟
⎠
⎞

⎜
⎝
⎛ °°  

    = y8/3 * 0.6338 

 or    y = 
8

3

6338.0
22.0

⎟
⎠
⎞

⎜
⎝
⎛      m 

    = 0.672 m 
 
   Depth of the channel is 0.672 m. 
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8.2.2 Optimum Hydraulic Cross-sections ((RREEFFEERREENNCCEE  OONNLLYY)) 
 

 From Manning equation, 

   Q = 
3

2

3
5

P

S*A*
n
1  

 Hence, Q will be maximum when P is a minimum. 
 

 For a given cross-sectional area, A of an open channel, the discharge, Q 
is maximum when the wetted perimeter, P is minimum. Hence if the 
wetted perimeter, P for a given flow area is minimised, the area, A will 
give the least expensive channel to be construct. 

 
 This corresponding cross-section is the optimum hydraulic section or 

the best hydraulic section. 
 
8.2.2.1 Rectangular section 
 
   width = b 
 
   depth = y 
 
   area, A = by 
 
   P  = b+2*y 

     = y2
y
A

+  

y

b  

 

Hence 02
y
A

dy
dP

2 =+−=  

 i.e.  y = 
2
A  or b = 2y  

 
Therefore, the optimum rectangular section is 

     

y

2y  
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8.2.2.2 Trapezoidal section 
 
   B  = b+2*m*y 
 
   A = (b+m*y)*y 
 
   P = b+2*y* 2m1+  

1
m

y

b  

 
By eliminating b from P, 

   P  = y*)mm1*2(
y
A 2 −++       

For a minimum value of P, δP = 0,  

i.e.  0
dy
dP

=   and   0
dm
dP

=  

 

From  0
dy
dP

= ,  y2 = 
3

A     

 

From  0
dm
dP

= ,  m = 
3

1     

It implies the side slope of the channel is 60° to horizontal. 

  b  = y
3

32
3

yy3my
y
A

=−=−  

  and  P  = y32y
3

4y
3

32
=+  

  i.e.  P = 3*b  
 
The optimum section is given as follow: 
 

b

b b60
o
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8.2.2.3 Other sections 
 
N-side Channel 

 from the conclusion of the previous two sections 
– reflection of the rectangular optimum section about the water 

surface will form a square of side b. 
– reflection of the trapezoidal optimum section about the water 

surface will form a regular hexagon of side b. 
 

 For a N-side channel, the optimum hydraulic section should be in a 
form of half a 2N-side regular polygon. 

 

b

b
b b

b

bφ

 

°⎟
⎠
⎞

⎜
⎝
⎛ −

=φ 180*
N

1N  

 
Triangular Section 

 N = 2, hence φ = 90° 
 

y
45

o

 
 
Circular Section 

 From the result of N-side channel, it can be concluded that the 
optimum section of a circular channel is a semi-circle. 

 
 It is the most optimum section for all the possible open-channel cross-

section. 
 

D
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Worked examples 
 
1. An open channel is to be designed to carry 1m3/s at a slope of 0.0065.  

The channel material has an n value of 0.011. Find the optimum 
hydraulic cross-section for a semi-circular section.  

  
D

 
  
AAnnsswweerr  
  
The optimum circular section is a semi-circular section with diameter D 
which can discharge 1 m3/s. 
 

For a semi-circular section, 
 A = π*D2/8 
 P = π*D/2 
 R = A/P 
  = D/4 

 
As n = 0.011, S = 0.0065 and Q = 1 m3/s. 
  

2
1

3
2

S*R*
n
A  Q =  

 

 i.e. 1  = 0065.0*
4
D*

011.0*8
D* 3

22

⎟
⎠
⎞

⎜
⎝
⎛π  

  D8/3 = 2
1

3
2

0065.0*4*011.0*8 −

π
 

  D = 0.951 m 
 

The diameter of this optimum section is 951mm.  
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2. Find the optimum rectangular section from the last example. 
 

y

2y  
  
AAnnsswweerr  
  
   A = 2*y2 
   P = 4*y 
   R = A/P = y/2 
  

By Manning equation, 
 

2
1

3
2

S*R*
n
A  Q =  

  1  = 0065.0*
2
y*

011.0
y*2 3

2
2

⎟
⎠
⎞

⎜
⎝
⎛  

  y8/3  = 
0065.0*2

2*011.0*1 3
2

 

  y  = 0.434 m 
 
The optimum rectangular section has dimension of width 0.868m and 
depth 0.434m.  
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3. Find the optimum triangular section from the last example. 
 

y
45

o

 
  
AAnnsswweerr  
  
   A = y2 
   P = y*22  

   R = A/P = 
22

y  

  
By Manning equation, 

2
1

3
2

S*R*
n
A  Q =  

  1  = 0065.0*
22

y*
011.0
y 3

2
2

⎟
⎠
⎞

⎜
⎝
⎛  

  y8/3  = 
0065.0

)22(*011.0 3
2

 

  y  = 0.614 m 
The optimum triangular section is a right angle triangle with depth 0.614 m.  
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88..33  NNoonn--UUnniiffoorrmm  ffllooww  --  SSppeecciiffiicc  EEnneerrggyy  iinn  OOppeenn  CChhaannnneell  &&  CCrriittiiccaall  
FFllooww  

 

horizontal datum

channel bed

fluid surface

z1

z2

y1

y2

v2 /2g
v1 /2g

2
2

energy line

hf

E2

E1

 
 

 In open channel, the solution of many problems are greatly assisted by 
the concept of specific energy, i.e. 

     E = v
g

y
2

2
+         (8.3) 

 
In terms of flow rate, Q, 

    E = 1
2

2

g
Q
A

y( ) +       (8.4) 

 
 The minimum energy will be given as 

dE
dy

 = 0         (8.5) 

 
88..33..11  RReeccttaanngguullaarr  CChhaannnneell  
 

 Let   q = Q
b

  = v*y      (8.6) 

q - the discharge per unit width of a rectangular channel 
 

 ∴   E = q
gy

y
2

22
+        (8.7) 
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 By assuming q is constant 
 

     dE
dy

 = 1 - q
gy

2

3  = 0      (8.8) 

  or  y = yc  

     = ( )q
g

2 1
3         (8.9) 

   yc - critical depth at which the energy is minimum. 
 

 The corresponding energy, E is 
 

    Emin = 3
2

yc         (8.10) 

 

 From (8.6),  v = q
y

. 

Substitute into (8.8), 

    1 - 
v
gy

c

c

2

 = 0 

     
v
gy

c

c

2

= 1        (8.11) 

   or  vc = gyc        (8.12) 
 

 Since Froude number, Fr is defined as 

Fr = 
avegy

v
       (8.13) 

 
Hence, the minimum energy is occurred when 
 
    Fr2 = 1         (8.14) 

 
 For a given discharge, Q, if the flow is such that E is a min., the flow 

is critical flow. 
– critical flow   - flow with Emin 
– critical depth, yc - the depth of the critical flow 
– critical velocity  - vc = gyc   
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E

y

yc

y1

A

C

B

subcritical
or slow

supercritical
or fast45o

yc vc /2g2

y2

y2 v2 /2g2

v1 /2g2
y1

 
 
 

 If the flow with E > Emin, there are two possible depths (y1, y2). 
- (y1, y2) are called alternate depths. 

 
 C divides the curve AB into AC and CB regions. 

 
   - AC - subcritical flow region 

- CB - supercritical flow region 
 

 Subcritical Critical Supercritical 
Depth of flow y > yc y = yc y < yc 
Velocity of flow v < vc v = vc v > vc 
Slope Mild 

S < Sc

Critical  
S = Sc

Steep 
S > Sc 

Froude number Fr < 1.0 Fr = 1.0 Fr > 1.0 
Other v

g
yc

2

2 2
<  v

g
yc

2

2 2
=  v

g
yc

2

2 2
>  
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88..33..22  NNoonn  --  RReeccttaanngguullaarr  CChhaannnneell  
 

 If the channel width varies with y, the specific energy must be written 

in the form  E = Q
gA

y
2

22
+        (8.15) 

 
 The minimum energy also occurs where 

dE
dy

 = 0 at constant Q 

 
 Since A = A(y), therefore (8.15) becomes 

 

   1 - 2
2

2 3Q A
g

dA
dy

−

 = 0 

 

   or dA
dy

 = gA
Q

3

2         (8.16) 

 

 Since  dA
dy

 = B - the channel width at the free surface, 

∴  B = gA
Q

3

2  

or  A = ( )BQ
g

2 1
3        (8.17) 

  vc = Q
A

 

   = ( )gA
B

1
2        (8.18) 

 
 For a given channel shape, A(y) & B(y), and a given Q, (8.17) & (8.18) 

have to be solved by trial and error to find the A and then vc. 
 
♦ If a critical channel flow is also moving uniformly (at constant depth), 

it must correspond to a critical slope, Sc, with yn = yc.  This condition 
can be analysed by Manning formula. 
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Worked examples: 
 
1. A triangular channel with an angel of 120° made by 2 equal slopes. For 

a flow rate of 3 m3/s, determine the critical depth and hence the 
maximum depth of the flow. 

 
B

yc

30o

 
 
Answer 
 

For critical flow,  
     v2 = g*yave 
     Q2 = g*yave*A2 

      = gA
B

3
  (yave = 

B
A ) 

   For critical flow, 
B = 2*y*cot 30° 

   & A = y2*cot 30° 

 ∴   Q2 = 3
2
g y5 

 

   Hence y = ( )2
3

2 1
5Q

g
 

     = ( *
* .

)2 3
3 9 81

2 1
5  m 

      = 0.906 m 
 
   The maximum depth is 0.906 m.  

 
  The critical depth, yc = yave = 

B
A = my

B
yB 453.0

2
0906

2
2/)*(

=== . 
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2. In the last example, the channel Manning roughness coefficient is 
0.012 and the flow rate is 3 m3/s.  What is the value of the channel 
slope if the flow is critical, subcritical or supercritical? 

 
B

y
30o

 
 
Answer 
 
     B  = 2 3*y 

     A  = 1
2

*B*y 

     P  = 4*y 
 

Using Manning equation, 

     Q = A
n

R S* *
2

3
1

2  

      = 1 1
2 8

2
3

1
2

n
B y B S* ( * * ) * ( ) *  

     Sc
1/2 = 2

8
2

3nQ
By

B( )−  

     = 2
2 3

3
42

2
3nQ

y
y

*
( * )−  

 
For critical flow, y = y 

∴  Sc
1/2 = 3

2

2 )
4

906.0*3(
)906.0(*32
3*012.0*2 −  

     Sc = 0.0472 
 

For flow is  critical,   S = 0.0472 - critical slope 
     subcritical, S < 0.0472 
     supercritical,  S > 0.0472 
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88..44  FFrriiccttiioonnlleessss  FFllooww  oovveerr  aa  BBuummpp  
 

y1
v1

y2 v2

∆ h

subcritical
approach flow   

supercritical
approach flow   

 
 

 When fluid is flowing over a bump, the behaviour of the free surface 
is sharply different according to whether the approach flow is 
subcritical or supercritical. 

 
 The height of the bump can change the character of the results. 

 
 Applying Continuity and Bernoulli’s equations to sections 1 and 2, 

 
v1*y1 = v2*y2 

  &  v
g

y1
2

12
+  = v

g
y h2

2

22
+ + ∆  

 
 Eliminating v2 between these two gives a cubic polynomial equation 

for the water depth y2 over the bump, 
 

y2
3 – E2*y2

2 + v y
g

1
2

1
2

2
*  = 0    (8.19) 

  where E2 = v
g

y1
2

12
+  - ∆h      (8.20) 

 This equation has one negative and two positive solutions if ∆h is not 
too large. 
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 The free surface’s behaviour depends upon whether condition 1 is in 
subcritical or supercritical flow. 

 

∆ h

1

2

water
depth

specific 
energy

y1

y2

yc

Ec E2 E1

∆ hmax
subcritical
bump

supercritical
bump

 
 
 The specific energy E2 is exactly ∆h less than the approach energy, E1, 

and point 2 will lie on the same leg of the curve as E1. 
 

 A subcritical approach, Fr1 < 1, will cause the water level to decrease 
at the bump. 

 
 Supercritical approach flow, Fr1 > 1, causes a water level increase 

over the bump. 
 

 If the bump height reaches ∆hmax = E1 – Ec, the flow at the crest will 
be exactly critical (Fr = 1). 

 
 If the bump > ∆hmax, there are no physical correct solution.  That is, a 

bump to large will choke the channel and cause frictional effects, 
typically a hydraulic jump. 
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Worked example: 
 
Water flow in a wide channel approaches a 10 cm high bump at 1.5 m/s 
and a depth of 1 m.  Estimate 

(a) the water depth y2 over the bump, and 
(b) the bump height which will cause the crest flow to be critical. 

 
Answer 
 
(a) For the approaching flow, 

    Fr  = v
gy

1

1
 = 15

9 81 1
.

. *
 

     = 0.479 ⇒ subcritical 
 
For subcritical approach flow, if ∆h is not too large, the water level over 
the bump will depress and a higher subcritical Fr at the crest. 
 

    E1 = v
g

y1
2

12
+  = 15

2 9 81
10

2.
* .

.+  m 

     = 1.115 m 
  Hence E2 = E1 - ∆h  = 1.115 – 0.1 m 
     = 1.015 m 
 
  Substitute E2 into (8.24), 
    y2

3 – 1.015*y2
2 + 0.115 = 0 

 
  By trial and error,  
   y2 = 0.859 m, 0.451 m and –0.296 m (inadmissible) 
 
The second (smaller) solution is the supercritical condition for E2 and is 
not possible for this subcritical bump. 
 
  Hence y2 = 0.859 m 
Checking:  v2  = 1.745 m/s (By continuity) 
    Fr2 = 0.601 (> Fr1 and < 1) (OK) 
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(b)  By considering per m width of the channel, 
    q = v*y = 1.5*1 m2/s 
 
  For critical flow, 

    E2 = Emin = 3
2

yc  

    yc = ( )q
g

2 1
3  

     = ( .
.

)15
9 81

2 1
3  

     = 0.612 m 

    E2 = 3
2

*0.612 m 

     = 0.918 m 
 
   ∆hmax = E1 - Emin 
     = 1.115 – 0.918 m 
     = 0.197 m 
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88..55  HHyyddrraauulliicc  JJuummpp  iinn  RReeccttaanngguullaarr  CChhaannnneell  
 

 A hydraulic jump is a sudden change from a supercritical flow to 
subcritical flow. 

 
 Assumptions: 

– the bed is horizontal. 
– the velocity over each cross-section is uniform. 
– the depth is uniform across the width. 
– frictionless boundaries. 
– surface tension effects are neglect. 

 
1 2

y1

y2

v1 v2

critical
depth level

eddy currents
 

 
 Considering the control volume between 1 and 2, the forces are 

  F31 = ρgy1*
b
2

*y1  = ρgb* y1
2

2
   (8.21a) 

  Similarly  F32 = ρgb* y2
2

2
       (8.21b) 

 
 By continuity equation, 

     Q = b*y1*v1 = b*y2*v2    (8.22) 
 

 By the momentum equation,  
F1  = F2 = 0 

   hence F31 – F32  = ρ*Q*(v2 - v1)     (8.23) 
 

 Sub. (8.21a, b) and (8.22) into (8.23), then 

    ρgb y y
2 1

2
2

2( )−  = ρQ( Q
y b

Q
y b2 1

− )  

       = )
yy
yy(

b
Q

21

21
2 −ρ     (8.24) 
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 In a hydraulic jump, y1 ≠ y2, 

     y1*y2*(y1+y2) = 2 2

2
Q

gb
 

   ∴  y1
2y2 + y1y2

2 = 2 2

2
Q

gb
 

   i.e.  ( ) ( )y
y

y
y

Q
gb y

2

1

2 2

1

2

2
1
3

2
+ −  = 0     (8.25) 

 Solving (8.25),  

     y
y

2

1
 = 1

2
1 1 8 2

2
1
3[ ]− + +

Q
gb y

     (8.26) 

 This is the hydraulic jump equation. 
 

 Using Froude number, 
   

     Fr1
2 = v

gy
1
2

1
 = Q

gy b

2

1
3 2      (8.27) 

 then,   y
y

2

1
 = 1

2
1 1 8 1

2[ ]− + + Fr      (8.28a) 

 

  or    y
y

1

2
 = 1

2
1 1 8 2

2[ ]− + + Fr      (8.28b) 

 
 (y1,y2) are called conjugate depths. 

 
 The energy loss in a jump is given by 

v
g

y1
2

12
+  = v

g
y hf

2
2

22
+ +  

   i.e.  hf  = )yy()
g2
vv( 21

2
2

2
1 −+

−     (8.29) 

 
 Sub. (8.22) into above, 

     hf  = [−
+

+
Q
gb

y y
y y

2

2
1 2

1
2

2
22

1( ) ](y1 – y2)   (8.29) 

 



Fluid Mechanics Chapter 8 – Open Channel Flow  

P.8-28 

 Using (8.25), (8.29) becomes 

     hf  = ( )y y
y y

2 1
3

1 24
−        (8.30) 

 
This is the energy loss equation for the hydraulic jump (y2>y1, hf>0). 

 
 The power loss in a jump is 

     P  = ρghf*Q 
 

 This energy loss is useful for getting away with the unwanted energy 
of a flow. The energy loss is due to the frictional forces amount the 
eddy currents in the pump. It will increase the temperature of the fluid. 
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Worked example: 
 
Water flows in a wide channel at q = 10 m2/s and y1 = 1.25 m.  If the flow 
undergoes a hydraulic jump, calculate 

(a) y2, 
(b) v2, 
(c) Fr2, 
(d) hf,, and  
(e) the percentage dissipation of the energy. 

 
Answer 
 

(a)    v1 = q
y1

 

     = 10
125.

 m/s = 8 m/s 

    Fr1 = v
gy

1

1
 

     = 8
9 81 125. * .

 = 2.285 

  Since y
y

2

1
 = 1

2
1 1 8 1

2[ ]− + + Fr  

     = 1
2

1 1 8 2 285 2[ * ( . ) ]− + +  

     = 2.77 
   or y2 = 2.77*1.25 m 
     = 3.46 m 
 
(b)  By Continuity equation, 

    v2 = v1*( y
y

1

2
) 

     = 8* 125
346
.
.

 m/s   

= 2.89 m/s 
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(c)    Fr2 = v
gy

2

2
 

     = 2 89
9 81 3 46

.
. * .

 

     = 0.496 
 

(d)    hf = ( )y y
y y

2 1
3

1 24
−  

     = ( . . )
* . * .

3 46 125
4 3 46 125

3−  

     = 0.625 m 
 

(e)    E1 = v
g

y1
2

12
+  

     = 8
2 9 81

125
2

* .
.+  m 

     = 4.51 m 
 

 percentage loss = h
E

f

1
100%*  

     = 0 625
4 51

100%.
.

*  

     = 14 % 
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88..66  GGrraadduuaallllyy  VVaarriieedd  FFllooww  
 

 It is not always possible to have uniform depth across the flow i.e. 
normal flow with normal depth. 

 
 The depth of flow can be changed by the conditions along the channel. 

 
 Examples of Gradually Varied Flow are: 

 
– backwater curve 
 

yn

dy
dx >0

dam

water surface

 
 

– Downdrop curve 
 

yn1

yn2

dy
dx <0

water surface

slope change

 
 
 

 In a uniform flow, the body weight effect in balanced out by the wall 
friction. 

 
 In gradually varied flow, the weight and the friction effects are 

unable to make the flow uniform. 
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horizontal datum

channel bed

fluid surface

z1

z2

y1

y2

v1

v2

δx

θ

1 2

v1/2g2

v2/2g2THL
s dhf

 
 
 

 Basic assumptions are 
- slowly changing bottom slope 
- slowly changing water depth (no hydraulic jump) 
- slowly changing cross section 
- one dimensional velocity distribution 
- pressure distribution approximately hydrostatic 

 
 Denoting  v1 = v;  v2 = v + dv 

z1 = z,   z2 = z + dz 
y1 = y,   y2 = y + dy 
p1 = p,   p2 = p 

 
 Apply Bernoulli’s equation between section 1 and 2, 

p v
g

y z
γ

+ + +
2

2
 = p v dv

g
y dy z dz dh fγ

+
+

+ + + + +
( ) ( ) ( )

2

2
 

 
 Neglecting higher order terms, 

    dhf + dy + dz + v
g

du = 0 

 
 When lim dx → 0, 

    
dh
dx

dy
dx

dz
dx

v
g

dv
dx

f + + +  = 0     (8.30) 
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 In (8.30), the four terms are 
dh
dx

f  - rate of head loss along the channel 

  = S (head loss gradient in Manning equation) 
dy
dx

  - rate of change of water depth 

  - water surface profile’s gradient 
dz
dx

  - rate of vertical change along channel 

  = -sinθ 
v
g

dv
dx

 - rate of change of velocity head along the channel 

 
 By Continuity equation 

v*A = constant 

  i.e.  A dv
dx

 + v dA
dx

 = 0 

    A dv
dx

 + v dA
dy

dy
dx

 = 0 

    A dv
dx

 + v B dy
dx

 = 0 

  or  dv
dx

 = - vB
A

dy
dx

 

     = - v
y

dy
dx

 

 

 Therefore v
g

dv
dx

 = - v
gy

dy
dx

2

 

      = -Fr2 dy
dx

       (8.31) 

 
 Hence (8.30) becomes 

   s + dy
dx

 - sinθ - Fr2 dy
dx

 = 0 

 or   dy
dx

 = [ sin θ −
−

S
Fr1 2 ]       (8.32) 

    - general equation of gradually varied flow. 
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 (8.32) is a 1st order non-linear differential equation.  Numerical 

method is used to solve the equation. 
 

The equation is rewritten as 
 

    dx
dy

 = [ 1 2−
−

Fr
Ssin θ

] 

   dxx
x

1

2∫  = (
sin

)1 2

1

2 −
−∫

Fr
S

dyy
y

θ
 

    x2 = x1 + (
sin

)1 2

1

2 −
−∫

Fr
S

dyy
y

θ
     (8.33) 

 
 The simplest solution is the direct mid-point solution of the integral. 

  i.e.  x2 = x1 + (
sin

)
( )

1 2

2
1 2

−
− +

Fr
S y yθ

*(y2-y1)   (8.34) 

 
 (8.34) may be used to calculate the water profile in a step-by-step 

sequence from a known (x1, y1) value. 
 



Fluid Mechanics Chapter 8 – Open Channel Flow  

P.8-35 

Worked example: 
 
Determine the upstream profile of a backwater curve given: 
 Q = 10 m3/s,  b = 3m,  sinθ = 0.001, n = 0.022. 
 

yn

dam

water surface

θ

5m

 
 
Answer 
 
 For normal flow, (S → sin θ) 

    Q = A
n

R S* *
2

3
1

2  

  i.e.  10 = 
( )

.
* ( ) * .

3
0 022

3
3 2

0 001
y y

y
n n

n+
 

    yn = 2.44 m 
 
 The water profile is from 2.44 m to 5 m along the channel. 
 
 From Manning equation, 

    v = 2
1

3
2

S*R*
n
1  

    S = n v

R

2 2

4
3

 

 

 Hence  x2 = x1 + (
.

)

/

1

0 001

2

2 2

4 3

−

−

Fr
n v
R

*(y2-y1) 
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From the table, the water level is not affected by the dam at 5.7 km 
upstream. 
 

0

1m

2m

3m   

4m

5m

1km2km3km4km5km6km7km8km

normaldepth

dam

 
 
From the graph, the water depth at any location can be obtained. 
 

section, I yi (m) dy (m) yave (m) v (m/s) Fr 1-Fr*Fr R (m) So - Sf dx (m) x (m)
1 5 0

0.25 4.875 0.684 0.099 0.990 1.147 0.000812 305
2 4.75 305

0.25 4.625 0.721 0.107 0.989 1.133 0.000787 314
3 4.5 619

0.25 4.375 0.762 0.116 0.986 1.117 0.000758 326
4 4.25 945

0.25 4.125 0.808 0.127 0.984 1.100 0.000722 341
5 4 1285

0.25 3.875 0.860 0.140 0.981 1.081 0.000677 362
6 3.75 1647

0.25 3.625 0.920 0.154 0.976 1.061 0.000622 392
7 3.5 2040

0.25 3.375 0.988 0.172 0.971 1.038 0.000551 440
8 3.25 2480

0.25 3.125 1.067 0.193 0.963 1.014 0.000459 524
9 3 3004

0.25 2.875 1.159 0.218 0.952 0.986 0.000337 707
10 2.75 3711

0.31 2.595 1.285 0.255 0.935 0.951 0.000146 1992
11 2.44 5703
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88..66..11  CCllaassssiiffiiccaattiioonnss  ooff  SSuurrffaaccee  PPrrooffiillee  ooff  GGrraadduuaallllyy  VVaarriieedd  FFllooww  
 

 It is customary to compare the actual channel slope, sinθ or So with 
the critical slope Sc for the same Q.   

 
 There are five classes of channel slope giving rise to twelve distinct 

types of solution curves. 
  - So > Sc - Steep   (S) 
  - So = Sc - Critical  (C) 
  - So < Sc - Mild   (M) 
  - So = 0 - Horizontal  (H) 
  - So < 0 - Adverse  (A) 
 

 There are three number designators for the type of profile relates to 
the position of the actual water surface in relation to the position of 
the water for normal and critical flow in a channel. 

 - 1 the surface of stream lies above both normal and critical 
depth 

 - 2 the surface of stream lies between normal and critical 
depth 

 - 3 the surface of stream lies below both normal and critical 
depth 

 
 

yn

yc
M3

M2

M1

Mild slope

yc

yn
S3

S2

S1   

Steep slope  
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 Combining the two designators, we have 

 
Slope 
class 

Slope notation Depth 
class 

Froude 
number 

Actual depth Profile

sinθ > S Steep (S) yc > yn Fr < 1 y >yn; y>yc S1 
   Fr > 1 yc > y > yn S2 
   Fr > 1 y<yn; y<yc S3 
sinθ = S Critical (C) yc = yn Fr < 1 y>yn = yc C1 
   Fr > 1 y<yn = yc C3 
sinθ < S Mild (M) yc < yn Fr < 1 y>yn; y>yc M1 
   Fr < 1 yn > y > yc M2 
   Fr > 1 y<yn; y<yc M3 
sinθ = 0 Horizontal (H) yn = ∞ Fr < 1 y > yc H2 
   Fr > 1 y<yn; y<yc H3 
sinθ < 0 Adverse (A) yn = Im Fr < 1 y > yc A2 
   Fr > 1 y < yc A3 
 

 For type S 
 
 
 
 
 
 
 
 
 
 
 
 

 For type C 
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 For type M 

 
 
 
 
 
 
 
 
 
 
 
 

 For type H 
 
 
 
 
 
 
 
 

 For type A 
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Class Exercise 8.1: 
 
A 500 mm-diameter concrete pipe on a 1:500 slope is to carry water at a 
velocity of 0.18 m/s. Find the depth of the flow. (n=0.013) 
 

500mm

y
θ

 
              (y = 18 mm) 
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Class Exercise 8.2: 
 

What are the dimensions for an optimum rectangular brick channel (n = 
0.015) designed to carry 5 m3/s of water in uniform flow with s = 0.001?  
What will be the percentage increase in flow rate if the channel is a semi-
circle but retained the same sectional area?   (increase = 8.4%) 
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Class Exercise 8.3: 
 

A trapezoidal channel has a bottom width of 6.0 m and side slopes of 1:1.  
The depth of flow is 1.5 m at a discharge of 15 m3/s.  Determine the 
specific energy and alternate depth.   (E = 1.59 m, y = 0.497 m) 
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Class Exercise 8.4: 
 

A triangular channel has an apex angle of 60° and carries a flow with a 
velocity of 2.0 m/s and depth of 1.25 m. 
 

(a) Is the flow subcritical or supercritical? 
(b) What is the critical depth? 
(c) What is the specific energy? 
(d) What is the alternate depth possible for this specific energy? 

       (yc = 1.148 m, E = 1.454 m, y = 1.06 m) 
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Class Exercise 8.5: 
 

A rectangular channel is 4.0 m wide and carries a discharge of 20 m3/s at a 
depth of 2.0 m.  At a certain section it is proposed to build a hump.  
Calculate the water surface elevations at upstream of the hump and over 
the hump if the hump height is 0.33 m.  (Assume no loss of energy at the 
hump.) 

hump

y2
y1

Q
water surface
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Class Exercise 8.6: 
 

In a hydraulic jump occurring in a horizontal, rectangular channel it is 
desired to have an energy head loss equal to 6 times the supercritical flow 
depth.  Calculate the Froude number of the flow necessary to have this 
jump.           (Fr1 = 4.822 ) 
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Tutorial – Open Channel Flow 
 
1. Calculate the normal depth in a concrete trapezoidal channel with side 

slope of 1 to 3, a bed slope of 0.00033, a bottom width of 4.0 m and a 
water discharge of 39 m3/s.  Manning coefficient is 0.013. 

 

y

4m

1
3

1
3

 
 
 
2. Determine the critical depth of the trapezoidal channel for a discharge 

of 15 m3/s.  The width of the channel bottom, b = 6 m, and the side 
slope is 45°. 

 
 
3. Consider a flow in a wide channel over a bump with an approaching 

velocity, v1 at the upstream is 1 m/s and the depth, y1 is 1 m.  If the 
maximum bump height is 15 cm, determine  

 
(a) the Froude number over the top of the bump, and 
(b) the depression in the water surface. (y2 > 0.5 m) 

 
 
4. Water flows in a trapezoidal channel at a rate of 8.5 m3/s.  The 

channel has a bottom width of 3 m and side slope of 1:1.  If a 
hydraulic jump is forced to occur where the upstream depth is 0.3 m, 
what will be the downstream depth and velocity?  What are the values 
of Fr1 and Fr2? 

 
 
5. A wide canal has a bed slope of 1 in 1000 and conveys water at a 

normal depth of 1.2 m.  A weir is to be constructed at one point to 
increase the depth of flow to 2.4 m.  How far upstream of the weir will 
the depth be 1.35 m?  (Take n in the Manning equation as 0.013) 

 
 

     


