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CHAPTER TWO 

 
METHOD OF LEAST WORK 

 
 The method of least work is used for the analysis of statically indeterminate beams, frames and 
trusses. Indirect use of the Castigliano’s 2nd theorem is made and the following steps are taken. 
 
 (1) The structure is considered under the action of applied loads and the redundants. The 

redundants can be decided by choosing a particular basic determinate structure and the 
choice of redundants may vary within a problem. 

 
 (2) Moment expressions for the entire structure are established in terms of the applied loads 

and the redundants, which are assumed to act simultaneously for beams and frames. 
 
 (3) Strain energy stored due to direct forces and in bending etc. is calculated and is partially 

differentiated with respect to the redundants. 
 
 (4) A set of linear equations is obtained, the number of which is equal to that of the 

redundants.Solution of these equations evaluates the redundants. 
 
NOTE:−  
 Special care must be exercised while partially differentiating the strain energy expressions and 

compatibility requirements of the chosen basic determinate structure should also be kept in mind. 
For the convenience of readers, Castigliano’s theorem are given below: 

 
2.1. CASTIGLIANO’S FIRST THEOREM:− 

“The partial derivative of the total strain energy stored with respect to a particular deformation 
gives the corresponding force acting at that point.” 
 

 Mathematically this theorem is stated as below: 

 
∂U
∂∆ =  P 

and 

 
∂U
∂θ   =  M 

It suggests that displacements correspond to loads while rotations correspond to moments. 
 
2.2. CASTIGLIANO’S  SECOND THEOREM :− 
 “The partial derivative of the total strain energy stored with respect to a particular force gives the 
corresponding deformation at that point.” 
 
Mathematically, 

   
∂U
∂P  =  ∆ 

 and 

   
∂U
∂M  =  θ 
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2.3. STATEMENT OF THEOREM OF LEAST WORK. 
 “In a statically indeterminate structure, the redundants are such that the internal strain energy 
stored is minimum.” This minima is achieved by partially differentiating strain energy and setting it to zero 
or to a known value. This forms the basis of structural stability and of Finite Element Method. 
 
2.4. Example No.1:  1st Degree Indeterminacy of Beams. 
 Analyze the following loaded beam by the method of least work. 
 

L
Rb

Ma

A B
x

wKN/m

Number of reactions = 3nNumber of equations = 2

Ra

 
 

 The beam is redundant to first degree. 
 In case of cantilever, always take free end as the origin for establishing moment expressions. 
Choosing cantilever with support at A and Rb as redundant. Apply loads and redundant simultaneously to 
BDS. 
 

LRa Rb

BA

Ma
WwKN/m

x

 
 

 Taking B as origin (for variation of X) 

  MX  = 



RbX − 

wX2

2   0 <  X < L 

     U  =   
1

2EI  
L

∫
o
 M2 dX. A generalized strain energy expression due to moments. 

 
Therefore, partially differentiating the strain energy stored w.r.t. redundant, the generalized form is: 

   
∂U
∂R  =  

1
EI 

L

∫
o
 M 



∂M

∂R   dX  Where R is a typical redundant. 

 
 Putting moment expression alongwith its limits of validity in strain energy expression. 

                  U  =  
1

2EI 
L

∫
o
  



RbX − 

wX2

2

2

 dX 

 
 Partially differentiate strain energy U w.r.t. redundant Rb, and set equal to zero. 

 So 
∂U
∂Rb = ∆b = 0  = 

1
EI 

L

∫
o
 



RbX − 

wX2

2  (X) dX,   because at B, there should be no deflection. 
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        0 = 
1
EI 

L

∫
o
 



RbX2 − 

wX3

2  dX 

 

         0 = 
1
EI 



RbX3

3  − 
wX4

8

L
 
o
 

  

      Or     
RbL3

3  = 
 wL4

8  

      and 

 Rb  =  
+3
8  wL  

 

The  (+ve) sign with Rb indicates that the assumed direction of redundant Rb is correct. Now calculate Ra. 
 
  ∑ Fy  =  0 

  Ra + Rb  =  wL 

  Ra = wL − Rb 

       =  wL − 
3
8 wL 

       =  
8 wL − 3 wL

8  

 Ra  =   
5
8  wL  

 

 Put  X = L and Rb =  
3
8  wL in moment expression for MX already established before to get Ma. 

   Ma  =  
3
8 wL   .L  −  

wL2

2  

 

              =  
3
8 wL2 − 

wL2

2  

 

         =   
3 wL2 − 4 wL2

8  

Ma  = − 
wL2

8  

 
 The (−ve) sign with Ma indicates that this reactive moment should be applied such that it gives us tension 
at the top at point A. 
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Example No.2: Solve the following propped cantilever loaded at its centre as shown by method of least 
work. 

Ra L Rb

BA
Ma x

xP

C

B.D.S. is  a  cantiever  supported  at  A.
I

Ra L

L/2

Rb

BA
Ma x

xP
C

Rb is a redundant as shown.

 
 

BDS under loads and redundant. Taking point B as origin. 
 

   Mbc =  RbX    0  <  X  <  
L
2 

  and Mac =  RbX − P 



x − 

L
2           

L
2 < X < L. Now write strain energy expression. 

 

        U =  
1

2EI 
L/2

∫
o

 (RbX)2 dX  + 
1

2EI  
L

∫
 L/2

 



RbX − P



X − 

L
2 

2
 dX. Partially differentiate 

       w.r.t redundant Rb. 

                   
∂U
∂Rb  =  ∆b = 0 =  

1
EI 

L/2

∫
o

[RbX] [X] dX + 
1
EI  

L

∫
 L/2

 



Rbx − P



X − 

L
2  [X] dX 

 

          0 =  
1
EI 

L/2

∫
o

 RbX2 dX + 
1
EI 

L

∫
 L/2

 



RbX2 − PX2 + P 

L
2 X  dX 

 

              0 =  
1
EI  



Rb.

X3

3  
L/2
 
o

 + 
1
EI  



RbX3

3  − 
PX3

3  + 
PL
4  X2

L
 
 L/2

. Put limits 
   

          0 =  
1
EI 



RbL3

24  − 0  + 
1
EI 



RbL3

3  − 
PL3

3  + 
PL3

4  − 
RbL3

24  +  
PL3

24  −  
PL3

16  

    

       0 =  
1
EI  



RbL3

24  + 
RbL3

3  − 
RbL3

24  − 
PL3

3  + 
PL3

4  + 
PL3

24  −  
PL3

16   

 

          0 =  
1
EI 



RbL3

3  + 



− 16PL3 + 12PL3 + 2PL3 − 3PL3

48  
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          0 = 
RbL3

3  − 
5PL3

48  

   Or 
RbL3

3  =  
5PL3

48  

 Rb = 
+5P
16    

 The (+ve) sign with Rb indicates that the assumed direction of redundant  Rb  is correct. Now Ra 
can be calculated. 
 
  ∑ Fy  =  0   
  Ra + Rb  =  P 
  Ra  =  P − Rb 

  Ra  =  P −  
5P
16 = 

16P − 5P
16  

Ra = 
11P
16    

  Put X = L and  Rb  =  
5P
16  in expression for Mac to get Ma. 

  Ma  =  
5P
16  L  −  P 

L
2   

              =  
5 PL − 8 PL

16  

Ma = 
− 3 PL

16   

The (−ve) sign with  Ma  indicates that this reactive moment should be acting such that it gives us 
tension at the top. 
 
2.5. 2ND DEGREE INDETERMINACY:− 

EXAMPLE NO. 3:  Analyze the following fixed ended beam loaded by Udl by least work method. 
 

L
RbRa

WwKN/m

BA
Ma Mb

 
 
 B.D.S. is chosen as a cantilever supported at  A.  Rb and Mb  are chosen as redundants. 
 

L RbRa

WwKN/m
x

BA
Ma

Mb

 
 

BDS UNDER LOADS AND REDUNDANTS 
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Mx =  RbX  −  
wX2

2  − Mb  0 < X < L                 Choosing B as origin. 

     Write strain energy expression. 

      U =  
1

2EI 
L

∫
o
 



RbX − 

wX2

2  − Mb
2
 dX 

 Differentiate strain energy partially w.r.t. redundant Rb and use castigations 
theorem alongwith boundary condition. 

  
∂U
∂Rb =  ∆b  =  0  =  

1
EI 

L

∫
o
 



RbX − 

wX2

2  − Mb  [X] dX 

 

       0 =  
1
EI 

L

∫
o
 



RbX − 

wX2

2  − Mb  dX 

 

       0 =  
1
EI 



Rb 

X3

3  − 
wX4

8  − 
MbX2

2

L
 
o

 

 

       0 =  
1
EI 



Rb  

L3

3   −  
wL4

8   −  
MbL2

2  

 

       0 =  Rb  
L3

3   −  
wL4

8   −  
MbL2

2       →    (1) 

 
 As there are two redundants, so we require two equations. Now differentiate strain energy 
expression w.r.t. another redundants Mb. Use castigations theorem and boundary condition. 
 

  
∂U

∂Mb  =  θb  =  0 =  
1
EI  

L

∫
o
  



RbX − 

wX2

2  − Mb   ( −1) dX 

 

        0 =  
1
EI  

L

∫
o
 



− RbX + 

wX2

2  + Mb   dX 

 

        0 =  
1
EI  



− 

RbX2

2   +  
wX3

6   +  MbX  
L
 
o

 

 

        0 =  −  
Rb L2

2   +  
wL3

6   + MbL. 

  

            
Rb L2

2   −  
wL3

6   = MbL 

 

 So    Mb =  
RbL

2   −  
wL2

6        →    (2) Put Mb in equation 1, we get 

 

         0 =  
RbL3

3   −  
wL4

8   −  



 

RbL
2   −  

wL2

6   
L2

2
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         0 =  
RbL3

3   −  
wL4

8   −   
RbL3

4   +  
wL4

12
 

 

       0 =  
RbL3

12   −  
wL4

24
 

 Rb = 
wL
2   

 Put Rb value in equation 2, we have   

      Mb =  



wL

2   
L
2  −  

wL2

6  
 

      Mb =  
+wL2

12  
 
 The (+ve) value with  Rb  and  Mb  indicates that the assumed directions of these two redundants 
are correct. Now find other reactions Ra and Mb by using equations of static equilibrium. 
 

  ∑ Fy  =  0 
  Ra  +  Rb  =  wL 
  Ra  =  wL − Rb 

        =  wL  − 
wL
2  

 Ra  =  
wL
2   

 

 Put X  =  L ,  Rb  =  
wL
2   & Mb  =  

wL2

12  in MX expression to get Ma 

 

  Ma  =  
wL
2  . L −  

wL2

2  − 
wL2

12
 

 

 Ma  =  − 
wL2

12   

 The (−ve) sign with  Ma  indicates that this moment  should be applied in such direction that it 
gives us tension at the top. 
 
Example No. 4:   Solve the same previous fixed ended beam by taking a simple beam as B.D.S.:−  

Choosing Ma and Mb as redundants. 
 

L RbRa

WwKN/m
x

BA

Ma
Mb

 
BDS UNDER LOADS AND REDUNDANTS 

  B.D.S. is a simply supported beam ,  So Ma  and Mb are redundants. 
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∑ Ma  =  0 

Rb × L + Ma  =  Mb + 
wL2

2
 

  Rb × L  =  (Mb − Ma )  + 
wL2

2
 

  Rb  =   



Mb − Ma

L   +  
wL
2   So taking B as origin. Write MX expression. 

   

 MX =  RbX  −  Mb − 
wX2

2
    0 < X < L 

 Put Rb value   

   MX =  









Mb − Ma

L  + 
wL
2  X − 

wX2

2  − Mb    0 < X < L.   Set up strain energy 

        expression. 

      U  =  
1

2EI  
L

∫
o
 

















Mb − Ma

L  + 
wL
2  X − 

wX2

2  − Mb
2
 
 
 dX. Differentiate w.r.t. Ma first. 

Use castigations theorem and 
boundary conditions.  

 

  
∂U

∂Ma =  θa = 0 = 
1
EI 

L

∫
o
 

















Mb − Ma

L  + 
wL
2  X − 

wX2

2  − Mb  



− 

X
L  dX.   In general R.H.S. 

is 
1
EI ∫ N.m.dX. 

       0  =  
1
EI 

L

∫
o
 



MbX

L  − 
MaX

L  + 
wL
2  X − 

wX2

2  − Mb  



− 

X
L  dX 

 

        0 =  
1
EI 

L

∫
o
 



− 

MbX2

L2  + 
MaX2

L2  − 
wX2

2  + 
wX3

2L + 
MbX

L   dX . Integrate it. 

 

        0 =  
1
EI 



 − 

Mb
L2    

X2

3  + 
Ma
L2   

X3

3  − 
wX3

6  + 
wX4

8L + 
MbX2

2L  
L
 
o
 . Simplify it. 

 

        0 =  
MbL

6  + 
MaL

3  − 
wL3

24            →    (1) 

 Now differentiate U Partially w.r.t. Mb. Use castiglianos theorem and boundary conditions. 
 

   
∂U

∂Mb =  θb = 0 = 
1
EI 

L

∫
o
 

















Mb − Ma

L  + 
wL
2  X − 

wX2

2  − Mb  



 X

L  − 1  dX 

 

       0  =  
1
EI 

L

∫
o
 



MbX

L  − 
MaX

L  + 
wL
2  X − 

wX2

2  − Mb  



 X

L  − 1  dX 

 

        0 = 
L

∫
o



MbX2

L2  − 
MaX2

L2  + 
wLX2

2L  − 
wX3

2L  − 
MbX

L  − 
MbX

L  + 
MaX

L  − 
wLX

2  + 
wX2

2  + Mb dX 
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        0 =



MbX3

3L2  − 
MaX3

3L2  + 
wX3

6  − 
wX4

8L  − 
MbX2

2L   − 
MbX2

2L  + 
MaX2

2L  − 
wLX2

4  + 
wX3

6  + MbX
L
 
o
 

   Put limits now. 
 

        0 =  



MbL3

3L2  − 
MaL3

3L2  + 
wL3

6  − 
wL4

8L  − 
MbL2

2L  − 
MbL2

2L   + 
MaL2

2L  − 
wLL2

4  + 
wL3

6  + MbL  

 
   Simplifying we get. 
 

        0 =  
MbL

3  + 
MaL

6  − 
wL3

24  

  or    
MbL

3  = − 
MaL

6  + 
wL3

24  

 

 so              Mb  = 
wL2

8  − 
Ma
2     (2), Put Mb in equation (1)  we get. 

 

         0 = 



wL2

8  − 
Ma
2  

L
6 + 

MaL
3  − 

wL3

24  Simplify to get Ma. 

 

        0 =  
wL3

48  − 
MaL
12  + 

MaL
3  − 

wL3

24  

 

 Ma = 
wL2

12    

 Put Ma in equation (2) , we have    

  Mb  =  
wL2

8  − 
wL2

12  ×  
1
2  

 

 or Mb  =  
wL2

12  ; Now Rb =  



Ma + Mb

L  +  
wL
2  Putting Ma and Mb we have. 

 

  Rb  =  




wL2

12  − 
wL2

12
L  +  

wL
2  

 Rb  =  
wL
2   ,  Calculate Ra now. 

  ∑ Fy  =  0 
  Ra  +  Rb  =  wL  Put value of Rb. 
  Ra  =  wL − Rb 

  Ra  =  wL − 
wL
2  

 Ra  =  
wL
2   

We get same results even with a different BDS. The beam is now statically determinate. SFD and 
BMD can be drawn. Deflections at can be found by routine methods. 
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2.6.  2ND  DEGREE  INDETERMINACY OF BEAMS:− 
Exmaple No. 5: Solve the following loaded beam by the method of least work. 
 

L/2                    L/2

W                        W

A
B

C

EI=Constant  
 

B.D.S. is a cantilever supported at A.  Rb & 
Rc are chosen as redundants. 

 

L/2                  L/2

Ra                    Rb                       Rc

A C
B

x
xW WMa

 
BDS UNDER LOADS AND REDUNDANTS 

 
 Choosing C as origin, Set-up moment expressions in different parts of this beam. 
 

 Mbc  =  Rc.X − 
wX2

2    0 < X < 
L
2  

 

 Mab  =  Rc.X + Rb 



X − 

L
2  − 

wX2

2                
L
2 < X <  L . Write strain energy expression for entire 

     structure. 

      U = 
1

2EI 
L/2

∫
o 



Rc.X − 

wX2

2  
2
 
 

 dX + 
1

2EI 
L

∫
L/2

 




Rc.X + Rb 



X − 

L
2  − 

wX2

2
  

2
 
 
dX 

 Partially differentiate it w.r.t. redundant Rc first. Use castiglianos theorem and boundary 
conditions. 
 

  
∂U
∂Rc =  ∆c = 0 = 

1
EI 

L/2

∫
o 



Rc.X − 

wX2

2   [X]dX + 
1
EI 

L

∫
L/2



Rc.X + Rb 



X − 

L
2  − 

wX2

2
   [X] dX 

    

       0 =  
1
EI 

L/2

∫
o 



Rc.X2 − 

wX3

2   dX +  
1
EI 

L

∫
L/2

 



Rc.X2 + Rb.X2  − 

Rb.LX
2  − 

wX3

2   dX . Integrate it. 

 

       0 =  
1
EI 



Rc.

X3

3  −  
wX 4

8  
L/2
 
o

 + 
1
EI 



Rc. 

X3

3  + Rb. 
X3

3  −  
RbLX2 

4  . −  
wX 4

8
 

L
 
L/2

.    Insert limits and 

simplify. 
 

       0  =   
Rc.L3

3  + 
5Rb.L3

48  − 
wL4

8             →    (1) 
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Now partially differentiate strain energy w.r.t. Rb. Use Castiglianos theorem and boundary conditions. 

   
∂U
∂Rb =  ∆b = 0 = 

1
EI 

L/2

∫
o 



Rc.X − 

wX2

2   (0) dX + 
1
EI 

L

∫
L/2



Rc.X + Rb 



X − 

L
2  − 

wX2

2  



X − 

L
2  dX 

   

       0  =  0 + 
1
EI 

L

∫
L/2

 



Rc.X2 + RbX2 − 

RbLX
2  − 

wX3 
2  − 

Rc.L.X
2   − 

RbL.X
2  + 

Rb.L2

4  + 
wL.X2

4  dX. 

Integrate. 
 

       0  =  
1
EI 



Rc.X3

3  + 
Rb.X3

3  − 
Rb.L.X2

4  − 
wX4 

8  − 
Rc.L.X2

4  − 
Rb.LX2

4  +  
Rb.L2.X 

4  +  
wL.X3 

12

L
 
L/2

. 

Put limits 
 

       0  =  
Rc.L3

3  + 
Rb.L3

3  − 
Rb.L3

4  − 
wL4

8   − 
Rc.L3

4  − 
Rb.L3

4  + 
Rb.L3

4  + 
wL4

12  − 
Rc.L3

24  − 
Rb.L3

24  

 

   + 
Rb.L3

16  + 
wL4

128 + 
Rc.L3

16  + 
Rb.L3

16  − 
Rb.L3

8  − 
wL4

96
 

  
 Simplify to get 

     Rc. =  − 
2
5 Rb. + 

17
40 wL      →    (2) Put this value of Rc in equation ( 1), to get Rb 

 

                 0  =  



− 

2
5 Rb. + 

17
40 wL  

L3

3  + 
5

48 Rb.L3 − 
wL4

8   (1) 

 

   0  =  − 
2
15 Rb.L3  + 

17
120 wL4  + 

5
48 Rb.L3 − 

wL4

8  

 Simplify to get 

 Rb.  =  
12
21 wL  

   
 Put value of Rb in equation (2) and evaluate Rc, 
 

         Rc  = − 
2
5 ×  

12
21 wL  +  

17
40 wL 

 

 Rc  =  
11
56 wL  

The (+ve) signs with Rb & Rc indicate that the assumed directions of these two redundants are correct. 
Now calculate Ra. 
   ∑ Fy  =  0 
 
   Ra + Rb + Rc  =  wL 
 
  or Ra  =  wL − Rb − Rc  . Put values of Rb and Rc from above and simplify. 
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               =  wL − 
12
21 wL − 

11 wL
56   

 

   Ra  =  
373

1176 wL 

 Ra  = 
91

392 wL  

        Putting the values of these reactions in Mx expression for span AB and set X = L, we have  
 

Ma  =  Rc.L  + Rb. 
L
2 − 

wL2

2   . Put values of Rb and Rc from above and simplify. 

 

                      =  
11 wL

56 .L  + 
12
21 wL × 

L
2 − 

wL2

2  

 

                Ma  =  − 
21

1176 wL2 

 

 Ma =  − 
7

392 wL2  

 
The (−ve) sign with Ma indicates that this reactive moment should be applied in such a direction that gives 
us tension at the top. Now the beam has been analyzed and it is statically determinate now. 
2.7.  INTERNAL  INDETERMINACY OF STRUCTURES BY FORCE METHOD :− 

The question of internal indeterminacy relates to the skeletal structures like trusses which have discrete line 
members connected at the ends. The structures which fall in this category may include trusses and skeletal 
frames. 
     For fixed ended portal frames, the question of internal indeterminacy is of theoretical interest only. 

1 2

Relative displacement
of horizontal number =

 
 
Consider he truss shown in the above diagram. If this truss is to be treated as internally indeterminate, more 
than one members can be considered as redundants. However, the following points should be considered 
for deciding the redundant members. 

(1) The member which is chosen the redundant member is usually assumed to be removed or cut. The 
selection of redundant should be such that it should not effect the stability of  the remaining 
structure. 
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(2) The skeletal redundant members will have unequal elongations at the two ends and in the  direction 
in which the member is located. For example, if a horizontal member is chosen as redundant, then 
we will be concerned with the relative displacement of that member in the horizontal direction 
only.  

(3) Unequal nodal deflection (∆1 − ∆2 ) of a typical member shown above which is often termed as 
relative displacement is responsible for the self elongation of the member and hence the internal 
force in that member. 

 
2.7.1.  FIRST APPROACH:  WHEN THE MEMBER IS REMOVED :− 
With reference to the above diagram, we assume that the redundant member (sloping up to left) in the 
actual structure is in tension due to the combined effect of the applied loads and the redundant itself. Then 
the member is removed and now the structure will be under the action of applied loads only. 
 

A D

CB
B1

Together
B2

Apart

 
Due to the applied loads, the distance between the points B and D will increase. Let us assume that point B 
is displaced to its position B2. This displacement is termed as ∆ apart. Now the same structure is considered 
under the action of redundant force only and let us assume that point B2 comes to its position B1 (some of 
the deflections have been recovered). This displacement is termed as ∆ together. The difference of these 
two displacements ( ∆apart − ∆together) is infact the self lengthening of the member BD and the 
compatibility equation is  

  ∆apart − ∆together =  self elongation. 
 
2.7.2.  2ND  APPROACH 
We assume that the member is infact cut and the distance between the cut ends has to vanish away when 
the structure is under the action of applied loads and the redundant. In other words, we can say that the 
deformation produced by the applied loads plus the deformation produced by the redundant should be equal 
to zero. 

A                                   D

B                                  C

F-Diagram

A                                   D

B                                  C

U-Diagram

1

1

 



104 THEORY OF INDETERMINATE STRUCTURES 

 

  Total Deflection produced by redundants ∆ × R = 
n

∑
i = 1

    
2

UiLi
AiEi

 × X 

 

  Total Deflection produced by loads          ∆ × L  = 
n

∑
i = 1

 
FiUiLi
AiEi  

  If deflection is (+ve), there is elongation.  If deflection is (−ve), there is shortening. 

  Now U = 
P2L
2AE Elastic strain energy stored due to axial forces 

 

P
L AE

P  
PROOF:− 
  Work done = 1/2 P.∆ = shaded area of P − ∆ diagram. 
  Now   f  α  ∈  (Hooke’s Law) 
 

    or 
P
A α 

∆
L  (For direct stresses) 

 

      
P
A  =  E 

∆
L where E is Yung’s Modulus of elasticity. 

 

        ∆  =  
PL
AE 

 

Therefore work done =  
P∆
2  = 

1
2 P.  

PL
AE ( Shaded area under P−∆ line __ By putting value of ∆) 

 

         Work done =  
P2L
2AE  (for single member) 

 

        Work done =  ∑  
P2L
2AE  (for several members) 

 
 We know that Work done is always equal to strain energy stored. 
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EXAMPLE NO 6:  

 Analyze the truss shown below  by Method of Least work. Take 

 (1) Member U1L2 as redundant. 

 (2) Member U1U2 as redundant. Number in brackets ( ) are 
  areas × 10−3 m2.  E = 200 × 106 KN/m2 

 

(2.4)                L1     (2.4)             L2    (2.4)   
 L0 L3

3 @ 4,5m
48KN

6m
(3.0)

(24)U1                          U2

(3.0)
(1.2)

(1.8)

(1.8)

L0U1 = 7.5m
Cos   = 0.8
Sin    = 0.6

 
 

Note: In case of internally redundant trusses, Unit load method (a special case of strain energy method) 
is preferred over direct strain energy computations followed by their partial differentiation. 

SOLUTION: Case 1 – Member U1L2 as redundant  
 
 

F-Diagram

3@4.5m
48KN

L32.0
     2.4        L1           2.4       L2

6m3.0
1.21.8

U2U1

1.2

L0

L0 U1=7.5m
Cos   = 0.8
Sin    = 0.6

3.0

 
 

 (1) U1L2 is redundant.: STEPS  
 
  1 − Remove this member. (See – diagram) 

  2 − Assume that tensile forces would be induced in this member. 

  3 − Analyze the structure without U1L2 (B.D.S.) or F' diagram. 

 4 − Displacement of members due to redundant + that due to loads should be equal 
to zero. OR 

      ∆ × L  +  ∆ × R =  0 

  5 − Analyze the truss with unit tensile force representing U1L2  or  U−diagram. 
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Condition: ∆ apart  =  ∑8
1  

F′UL
AE              ∆ together= ∑8

1 
U2L
AE   × PU1 L2

   

 
U1       2.4       U2     

3.0

 
  

3.0 6m

    L1                     L2                     
L3

L0

1.2   

1.8

       1.2 

2.4

3@4.5m

   16   

0

                    
+
                                      

0
  

32

  

144

0

72
+

+
0 B.M.D.

(BDS under loads)  F  - diagram/

SFD

48

                                                 
We shall determine member forces for F/ - diagram by method of moments and shears as 

explained earlier. These are shown in table given in pages to follow. Member forces in U-diagram are 
determined by the method of joints. 

 
U1 U20.60

Lo
O     L1                         L2    o

L3
Cos

Sin

     
     

     
     

     
  +1.0   

1
1

 
(BDS under) U-diagram redundant unit force. 

JOINT (L2)  

L1 L2   

U2L21

 
∑FX  =  0 

  1 ×  Sinθ + L1L2   = 0 

  L1L2  =  − Sinθ  =  − 0.60 

  ∑ Fy  =  0 

  U2L2 + 1 × Cosθ =  0 

   U2L2  =  − Cosθ = − 0.80 
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Joint (L1) 
U1

 

L1

   

L1U2

0.6
L1L2

 
 
               ∑ FX  =0 
 
  L1U2 Sinθ − 0.6  =  0 
 

  L1U2  = 
0.6
0.6 = + 1 

 
  ∑ Fy  =  0 
 
                                         L1U2 ×  0.80 + UL1  =  0    ⇒   U1L1  =  −0.80             
 
 Now Book F/ forces induced in members as determined by moments and shears method and U 
forces as determined by method of joints in a tabular form. 
 

Member A × 10-3 
 

(m2) 

 
  L 
(m) 

 
  Fi′ 
(KN) 

 
  Ui 

F′UL
AE  ×10-3 

(m) 

U2L
AE  × 10-3 

(m) 

 Fi=Fi′ 
 +UiX 
  (KN) 

U1U2  2.4 4.5 − 12 −0.6 +0.0675 3.375×10-3 − 25.15 
LoL1  2.4 4.5 +12    0       0       0 +12 
L1L2  2.4 4.5 +24 −0.6 − 0.135 3.375×10-3 +10.84 
L2L3  2.4 4.5 +24    0       0       0 +24 
LoU1  3.0 7.5 − 20    0       0       0 − 20 
L1U2  4.8 7.5 − 20 +1.0 − 0.416 20.83×10-3 + 1.93 
U2L3  3.0 7.5 − 40    0       0       0 − 40 
U1L1  1.2 6.0 +16 −0.8 − 0.32 16×10-3 − 1.54 
U2L2  1.2 6.0 +48 −0.8 − 0.96 16×10-3 +30.456 
U1L2  1.8 7.5    0 +1.0       0 20.83×10-3 +21.96 

     ∑−1.7635× 
10−3  

∑ 80.91 × 
10−6  

 

 
 Compatibility equation is 
  ∆ × L + ∆ × R = 0 

   ∆ × L = 
n

∑
1

  
F′UL
AE   

 

  ∆ × R = 
n

∑
1

  
U2L
AE   . X Putting values from above table in compatibility equation. Where R = X = force  

in redundant Member U1L2  
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      − 1.7635 × 10-3  + 80.41 × 10-6. X  =  0 
 or − 1.7635 × 10-3 + 0.08041 × 10-3. X  =  0 

  − 1.7635 + 0.08041 ×  X  =  0 

      0.08041 X  =  1.7635 

       X  =  
1.7635

0.08041 

 
       X  =  + 21.93 KN (Force in members U1L2) 
 
Now final member forces will be obtained by formula Fi = Fi' + Ui X. These are also given in above table. 
Apply check on calculated forces. 
 
 Check on forces 
 Joint Lo 

20

12

16  
Note: Tensile forces in above table carry positive sign and are represented as acting away from joint. 

Compressive forces carry negative sign and are represented in diagram as acting towards the joint. 
  ∑ Fx  =  0 

  12 − 20 Sin θ  =  0 

  12 − 20 × 0.6  =  0 

   0  =  0 
 
  ∑ Fy  =  0 

  16 − 20 Cos θ  =  0 

  16 − 20 × 0.8   = 0 

         0  = 0 Checks have been satisfied showing correctness of solution. 
 
EXMAPLE NO. 7: 
CASE 2: Analyze previous loaded Truss by taking U1 U2 as Redundant 
 

16 48 32
L1            36        L2   24                

L3L0

20

U1                  U2

40
6420

40

32

F/ =Diagram

Cos    =  0.8
Sin      =  0.6
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 In this case member forces in BDS (F/ diagram) have been computed by method of joints due to 
obvious reasons.) 
 Joint Lo:- 

16

LoU1

LoL1
 

  ∑ Fy  =  0  

  16 + LoU1 × Cosθ  =  0 

  LoU1  =  − 
16
0.8  = − 20 

  ∑ FX  = 0 

  LoL1 + LoU1 Sinθ  =  0 

  LoL1 + LoU1 × 0.6  =  0 

  LoL1 − 20 × 0.6  =  0 

               LoL1 = + 12 
Joint U1 

U1L1

U1L2

20

 
  ∑ FX  =  0 

  20 Sinθ+ U1L2 Sinθ  =  0 

  20 × 0.6 + U1L2 × 0.6  =  0 

  U1L2  = − 20 

  ∑ Fy   =  0 

  20 × 0.8 − U1L1 − U1L2 × 0.8 = 0 

  20 × 0.8 − U1L1 + 20 × 0.8  =  0 

  U1L1  =  32  
 

Joint L1: 

12

32
L1U2

L1 L2
 

  ∑ Fy  =  0 

  L1U2 Cosθ + 32  =  0 
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  L1U2  =   − 
32
0.8 

 
  L1U2  =  − 40  
 

  ∑ FX  =  0 

  L1L2 + L1U2 Sinθ − 12  =  0 

  L1L2 − 40 × 0.6 − 12  =  0 

  L1L2  =  36 
  
 Joint U2   

40 U2L2     
U2L3

 
 

  ∑ FX  =  0 

  40 Sinθ + U2L3 Sinθ  =  0 

  40 × 0.6 + U2L3 × 0.6  =  0 

  U2L3  =  − 40 

         ∑ Fy  =  0 

  40 Cosθ − U2L3 Cosθ − U2L2  =  0 

  40 × 0.8 − ( − 40) × 0.8 − U2L2  =  0 

  U2L2  =  64 

 
 Joint L2 
 

36

20 64

48

L2 L3

 
  ∑ FX  =  0 

  L2L3 + 20 Sinθ − 36  =  0 

  L2L3 + 20 × 0.6 − 36  =  0 

  L2L3 − 24  =  0 

  L2L3  =  24 
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 Joint L3  (Checks) 

24
32

40

 
  ∑ FX  =  0 

  40 Sinθ − 24  =  0 

  40 × 0.6 − 24  =  0 

   0  =  0   

  ∑ Fy  =  0 

  32 − 40 Cosθ  =  0 

  32 − 40 × 0.8  =  0 

  0  =  0 Checks are satisfied. Results are OK and are given in table at page to follow: 

Now determine member forces in U diagram. 

 

0         L1          1          L2      0             
L3

00

1 1

1.3281.66
1.328

U1                  U2

1.66

L0

U-Diagram  
(BDS under unit redundant force) 

 
 Joint U1 
  

1

U1 L
U1 L21  

 
  ∑ FX  =  0 

  1 + U1L2  ×  Sinθ  =  0 

  1 + U1L2  ×  0.6  =  0 
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  U1L2   =  − 1.66 

  ∑ Fy  =  0 
  U1L1 +U1L2 × Cosθ   =  0 

  U1L1 + ( − 1.66) × 0.8  =  0 

  U1L1  = 1.328 

 
 Joint L1 :- 

1.328 L1 U2

L1 L2

 
  ∑ Fy  =  0 

  1.328 + L1U2 × 0.8  =  0 

  L1U2  = − 
1.328
0.8   =  − 1.66 

 
  ∑ FX  =  0  

  L1L2 + L1L2 × 0.6  =  0 

  L1L2 − 1.66 × 0.6  =  0 

  L1L2  =  +1 

Entering results of member forces pertaining to F/ diagram and U diagram alongwith member 
properties in a tabular form. 
 

Mem-
ber 

A × 
10-3 
(m) 

  L 
(m) 

   Fi′ 
(KN) 

  U1 F′UL
AE  × 10-3 

(m) 

U2L
AE   × 10-3 

(m) 

 Fi=Fi+UiX 
      (KN) 
 

U1U2 2.4 4.5    0 +1        0 9.375 × 10-3 −25.34 
LoL1 2.4 4.5 +12    0        0       0 + 12 
L1L2 2.4 4.5 + 36 + 1      +0.3375 9.375 × 10-3 +10.66 
L2L3 2.4 4.5 +24   0        0       0 + 24 
LoU1 3.0 7.5 − 20   0        0       0 − 20 
L1U2 1.8 7.5 − 40 −1.66 +1.383 57.4 × 10-3 +2.06 
U2L3 3.0 7.5 − 40    0         0        0 − 40 
U1L1 1.2 6.0 + 32 1.328 1.0624 44.09 × 10-3 + 65.65 
U2L2 1.2 6.0 + 64 1.328 2.1248 44.09 × 10-3 + 97.65 
U1L2 1.8 7.5 − 20 −1.66 0.691 57.4 × 10-3 − 62.06 
     ∑ 5.6 × 10-3 ∑221.73 × 10-6  
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Compatibility equation is  

  ∆ × L + ∆ × R = 0  Putting values of ∆ × L and ∆ × R due to redundant from above table. 

  56 × 10-3  + 221.73 × 10-6 X = 0 , where X is force in redundant member U1U2. 
 
 or 5.6 × 10 -3 + 0.22173 × 10-3 X = 0 
 

  X  =  
5.6 × 10-3

0.22173 × 10-3 
 

  X  = − 25.34 KN.   Therefore forces in truss finally are as follows. 
(by using formula (Fi = Fi' + UiX and are given in the last  
column of above table) 

  FU1 U2 = 0 + Ui.x = 0 − 25.34 × 1 = − 25.34 

  FLoL1  = 12 − 25.34 × 0 = + 12 

  FL1L2  = 36 − 25.34 × 1 = + 10.66 

  FL2L3  = 24 − 0  =  + 24 

  FLoU1 = − 20 − 0 × 25.34 = − 20 

  FL1U2 = − 40 + 1.66 × 25.34 = + 2.06 

  FU2L3 = − 40 + 0 × 25.34 = − 40 

  FU1L1 = + 32 + 1.328 × 25.34 = + 65.65 

  FU2L2 = + 64 + 1.328 × 25.34 = + 97.65 

  FU1L2 = − 20 − 1.66 × 25.34 = − 62.06. Now based on these values final check can be applied. 
 
 Joint Lo. 

20

12

16  
  ∑ FX  = 0 

  12 − 20 Sinθ  = 0 

  12 − 20 × 0.6 = 0 

  0 = 0 
  ∑ Fy = 0 

  16 − 20 Cosθ = 0 

  16 − 20 × 0.8 = 0 

  16 − 16 = 0 

          0 = 0 Results are OK. 
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2.8.  STEPS FOR TRUSS SOLUTION BY METHOD OF LEAST WORK. 
 Now instead of Unit load method, we shall solve the previous truss by direct use of method of 
least work. 
 
 (1) Consider the given truss under the action of applied loads and  redundant force X  
  in member U1L2 
 
 (2) The forces in the relevant rectangle will be a function of applied load and  
  redundant force X. (As was seen in previous unit load method solution) 
 
 (3) Formulate the total strain energy expression due to direct forces for all the   
  members in the truss. 
 
 (4) Partially differentiate the above expressions with respect to  X. 
 
 (5) Sum up these expressions and set equal to zero. Solve for  X. 
 
 (6) With this value of  X,  find the member forces due to applied loads and redundant acting  
  simultaneously (by applying the principle of super positions). 
 
EXAMPLE NO. 8 :- 

 Analyze the loaded truss shown below by least work by treating member U1L2 as redundant. 
Numbers in ( ) are areas × 10-3 m2 . E = 200 × 106 KN/m2. 
 
SOLUTION:- 
 

48  x 4.5
= 16KN 32

48
 

 
   b = 10 
   r  = 3 
   j  = 6 
          b + r  = 2 j 
        10 + 3 = 2 × 6 
               13 = 12 
         D = 13 − 12 = 1 
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               Stable Indeterminate to 1st degree. 
 

16 3248

X

X

 
 

F − Diagram (Truss under loads and redundant) 
 
NOTE: Only the rectangle of members containing redundant X  contains forces in terms of  X as has been 

seen earlier. Now analyze the Truss by method of joints to get Fi forces. 
JOINT L0 

16KN

L0L1

L0U1

 
 
  ∑ Fy  =  0 
  LoU1 Cosθ + 16 = 0 

  LoU1  =  
− 16
Cosθ 

                     =   
− 16
0.8  

LoU1 =  − 20 KN   
 ∑ FX  =  0 
   LoL1 + LoU1 Sinθ = 0 
   LoL1 + (−20) × 0.6 = 0 
   LoL1 − 12 = 0 

LoL1 = 12 KN   
 Joint U1  

20

X

U1U2

U1L1  
  ∑ FX  =  0 
  U1 U2 + X Sinθ + 20 Sinθ = 0 
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   U1 U2 + X × 0.6 + 20 × 0.6 = 0 
 

U1 U2 = − (0.6 X +12)   
  ∑ Fy  =  0 
  − U1 L1 − X Cosθ + 20 Cosθ = 0 
  − U1 L1 − X × 0.8 + 20 × 0.8  = 0 
     U1 L1  =  − 0.8 X + 16 

U1L1 = − (0.8 X − 16)   

 Joint L1 :-  
 

U2L1
0.8X - 16

L1L212

 
 
  ∑ Fy  =  0 
  − (0.8X − 16) + L1 U2 Cosθ = 0 
    L1U2  ×  0.8 = 0.8 X − 16 
 

L1U2 = (X − 20)  
  ∑ FX  =  0 
  L1L2 + L1U2 Sinθ − 12 = 0 Put value of L1U2. 

  L1L2 + (X − 20 ) × 0.6 − 12 = 0 

  L1L2 + 0.6 X − 12 − 12  = 0 

L1 L2 = − (0.6X − 24)    
 
Joint U2  

(0.6X+12)

(X-20)
U2L2

U2L3
 

 
                 ∑ FX = 0 

  (0.6 X + 12) + U2L3 Sinθ − (X − 20) Sinθ = 0 

  0.6 X + 12 + U2L3  ×  0.6 − (X − 20) × 0.6 = 0 
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  0.6 X + 12 + 0.6U2L3 − 0.6 X + 12 = 0 

  U2L3 =  
 − 24
0.6   

 
U2L3  = − 40 KN   

 
  ∑ Fy  = 0 

  − U2L2 − (X − 20) Cosθ − U2L3 Cosθ = 0 

  − U2L2 − (X − 20) × 0.8 − (− 40) × 0.8 = 0 

  − U2L2 − 0.8 X + 16 + 32 = 0 

  − 0.8 X + 48 = U2L2 

 

U2L2 = − (0.8X − 48)   
 Joint L2:-   
 
 

X
0.8 X- 48

L2 L3

48

0.6 X-24

 
  ∑ FX  = 0  

  L2L3 + 0.6 X − 24 − X Sinθ = 0 

  L2L3 = − 0.6 X + 24 + 0.6 X 

L2L3 = 24 KN  
 
  ∑ Fy  = 0 

  − (0.8X − 48) − 48 + X Cosθ  = 0 

  − 0.8X + 48 − 48 + 0.8X = 0 

     0 = 0 (Check) 
 Joint L3 :- 
  At this joint, all forces have already been calculated. Apply checks for corretness. 

24

40

32  
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  ∑ FX  =  0 
  40 Sinθ − 24 = 0 
  40 × 0.6 − 24 = 0 
       24 − 24 = 0 
  0  = 0  O.K. 
 
  ∑ Fy  =  0 
  − 40 Cosθ + 32  = 0 
  − 40 × 0.8 + 32 = 0 
                  − 32 + 32 = 0 O.K. Checks have been satisfied. 
      0  = 0 
 This means forces have been calculated correctly. We know that strain energy stored in entire 

Truss is U = ∑ 
Fi2L
2AE 

So, 
∂U
∂X  =  ∆  =  0  =  

 ∑ Fi  
∂Fi
∂X . Li

AE   

  
 ∑ Fi  

∂Fi
∂X . Li

AE  = 0 = 80.41 × 10−6X − 1764.17 × 10−6 Values of Fi and Li for various 

members have been picked up from table annexed. 
               0 = 80.41 X − 1764.17 

  or  80.41 X = 1764.17 

              X = 
1764.17
80.41  

              X = 21.94 KN 
 
 Now putting this value of X in column S of annexed table will give us member forces. 
 
Now apply equilibrium check on member forces calculated. You may select any Joint say L1. 
Joint L1 :- 

12

15.5 1.74

10.84 
∑ FX  =  0,  

 10.84 − 12  + 1.94 Sinθ = 0  
or 10.84 − 12 + 1.94 × 0.6 = 0 ,  

or   0  = 0 (Check)  It means that solution is correct. 
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Insert here Page No. 138−A 
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EXAMPLE NO. 9:- By the force method analyze the truss shown in fig. below. By using the forces in 
members L1U2  and L2U3  as the redundants. Check the solution by using two different members as the redundants.     
E = 200 × 10 6  KN/m2 

SOLUTION:- 

(1.5)         (1.5)           (1.5)         (1.5)        L4L0 L1              L2               L3

6m

U1    (1.8)     U2  (1.8)     U3

(2.4)
(0.90) (1.2)   (1.2) (0.60)        (0.90)

(1.2)
(1.2)0 0

48KN         96KN           72KN

L0U1 = 7.5m
Cos   = 0.8
Sin    = 0.6

4@4.5m48+96+72-
114 =  102KN

F - Diagram

48x4.5
18

96x9
18

+

72x13.5
18

+ = 114KN
 

(1.5)         (1.5)           (1.5)         (1.5)        L4(1.5)         (1.5)           (1.5)         (1.5)        
L4L0

L0

L0 L4

L4
L1              L2               L3

L1              L2               L3

6m

6m

6m

(1.2) (1.2)

(1.2)(1.2)

0

0 0

0
0

0

0
0

0

0

0
0

0 0

0 0

0

0

4@4.5m

(0.90) (0.60) (0.90)
(2.4)(2.4) loads only.

102KN

102KN

48KN         96KN         72KN 114KN

114KN

54KN

42KN

S.F.D.

F-Diagram

B.M.D.

+

+

-

459 KN-m     702KN-m   
513KN-m

Or

0.6

0.6

0.6

0

U2-diagram for redundant X2

U1-Diagram for redundant X10.80.8

0.8 0.8

(1) (2)

L1 L2 L3

 
Compatibility equations are: 

  ∆X1L + ∆X1R1 + ∆X1R2 =  0     →    (1) Change in length in member 1 due 
to loads and two redundants should be zero. 

  ∆X2L + ∆X2R1 + ∆X2R2  =  0    →    (2) Change in length in member 2 due to loads 
and two redundants should be zero. 

 Here     R1  =  X1 
      R2  =  X2 
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 Where ∆X1L = 
 ∑.F′U1 L

AE   = Deflection produced in member (1) due to applied loads. 

  ∆X1R1  = Deflection produced in member (1) due to redundant R1 = ∑



U1

2L
AE  . X1 

  ∆x1R2  =  Deflection produced in member (1) due to redundant R2 = ∑



U1U2L

AE  . X2 

                ∆x2L   = Deflection produced in member (2) due to loads =  ∑ 
F′U2L

AE  

  ∆x2R1  =  Deflection produced in member (2) due to redundant  R1 = ∑



U1U2L

AE  . X1 

  ∆x2R2  = Deflection produced in member (2) due to redundant R 2  =  ∑



U2

2L
AE  . X2 

From table attached, the above evaluated summations are picked up and  final member forces can be seen 
in the same table. All member forces due to applied loads (Fi' diagram) have been determined by the 
method of moments and shears and by method of joints for U1 and U2 diagrams. 
 Evaluation of member forces in verticals of F′ − Diagram :- 
 Forces in verticals  are determined from mothod of joints for different trusses shown above. 

(Joint L1) 

76.5

48

76.5

U1 L1

 
         ∑ Fy  =  0 

  U1L1  − 48  = 0 

  U1L1  =  48  
  
 (Joint U2) 

117 85.5

52.5
U2L2  

  ∑ Fy  =  0 
  − U2L2 + 52.5  Cosθ  =  0 
  − U2L2 + 52.5 × 0.8 = 0 
    U2L2 = 52.5 × 0.8 

   U2L2  =  + 42   
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 (Joint U3) 
85.5

U3L3
142.5

 
  ∑ Fy =  0 

  − U3L3 + 142.5  Cosθ  =  0 

    U3L3  =  142.5 × 0.8 

  U3L3 =  + 114   

 Evaluation of forces in verticals of U1  −  Diagram:-  
(Joint L1) 

U1L1
1

L1L2

 
  ∑ FX  =  0 

  L1L2 + 1 Sin θ  =  0 

  L1L2  = − 0.6   

 
  ∑ Fy  =  0 

  U1L1 + 1 Cos θ =  0 

  U1L1 =  − 0.8   

 
 (Joint U1   )  

0.8
U1 L2

U1U2

 
  ∑ FX  =  0 

  U1U2 + U1L2 Sinθ  =  0 
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  ∑ Fy  =  0 

  + 0.8 − U1L2 Cos θ  =  0 

   0.8  =  U1L2  ×  0.8 

   U1L2  =  1 

 so  U1U2 + 1 × 0.6  =  0 Putting value of U1L2 in ∑ FX. 

    U1 U2  =  − 0.6 

Now from the table, the following values are taken. 
  ∆X1L  =  − 0.671 × 10 -3 

  ∆X1R1  = 125.7 × 10−6X1 = 0.1257 × 10-3X1 
  ∆X1R2 = 32 × 10-6 X2 = 0.032 × 10-3X2 
  ∆X2L   = − 6.77 × 10-3 

  ∆X2R1 = 0.032 × 10-3 X1 

  ∆X2R2 = 125.6 × 10-6X2 = 0.1256 × 10−3X2 

 Putting these in compatibility equations, we have. 

  − 0.671 × 10−3+0.1257 × 10−3X1+0.032 × 10−3X2 = 0  → (1) 

  − 6.77 × 10−3+0.032 ×  10−3 X1+0.1256 × 10−3X2 = 0  → (2) 

 dividing by 10−3  
  − 0.671+0.1257X1 + 0.032X2 = 0   →  (1) 

  − 6.77 + 0.032X1 + 0.1256X2 = 0     →  (2)   

 From (1),  X1 = 
 0.671 − 0.032X2

0.1257          →  (3) 

 Put X1 in (2) & solve for X2 

  − 6.77 + 0.032 



0.671 − 0.032X2

0.1257  + 0.1256X2  = 0 

  − 6.77 + 0.171 − 8.146 × 10-3X2 + 0.1256X2  =  0 

  − 6.599 + 0.1174X2   = 0 

     0.1174X2  =  6.599 

X2  =  56.19 KN   

 From (3)    X1  = 
0.671 − 0.032 × 56.19

0.1257  

                X1  = − 8.96 KN 
 
After redundants have been evaluated, final member forces can be calculated by using the formula shown 
in last column of table. Apply checks on these member forces. 
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CHECKS:- 

 (Joint Lo) 
127.5

76.5

102
 

 
  ∑ FX  =  0 

  76.5 − 127.5 Sinθ = 0 

  76.5 − 127.5 × 0.6 = 0 

               0 = 0 

 

  ∑ Fy  =  0 

  102 − 127.5 Cosθ = 0 

  102 − 127.5 × 0.8 = 0 

   0 = 0 

 
 The results are O.K. Follow same procedure if some other two members are considered redundant. 
See example No. 12. 
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2.9.  SIMULTANEIOUS INTERNAL AND EXTERNAL TRUSS REDUNDANCY 
EXAMPLE NO. 10:  Determine all reactions and member forces of the following truss by using 
castiglianos theorem or method of least work. Consider it as: 
 (i) internally redundant; 
 (ii) internally and externally redundant. 

  Nos. in (   ) are areas in × 10-3m2.  E = 200 × 106  KN/m2 

A
6m

F
(2)

(5)
(5)

(2)

(4) E6KN B

(3)(3)
(2)

D(4)3KN C
20KN 20KN

8m

8m

 
SOLUTION: 

 DEGREE  OF  INDETERMINACY :- 

  D = (m + r ) − 2 j = (10 + 4 ) − 2 × 6 = 2 

 Therefore, the truss is  internally statically indeterminate to the 2nd degree. There can be two 
approaches, viz, considering two suitable members as redundants and secondly taking one member 
and one reaction as redundants for which the basic determinate structure can be obtained by 
cutting the diagonal CE and replacing it by a pair of forces X1 − X1 and replacing the hinge at  F 
by a roller support with a horizontal redundant reaction HF = X2. Applying the first approach and 
treating inclineds of both storeys sloping down to right as redundants. 

 
(I)  WHEN THE TRUSS IS CONSIDERED AS INTERNALLY REDUNDANT :- 

A
6m

F
(2)

(5)
(5)

(2)

(4) E6KN B

(3)(3)
(2)

D(4)3KN C
20KN 20KN

8m

8m

X1

X1

X2

 
 

 Applying method of joints for calculating member forces. 
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Consider Joint (C) and all unknown forces are assumed to be in tension to begin with , acting away from 
the joint. Length AE= 10 m , cos θ = 0.6 , sin θ = 0.8 

Joint (C) 

3KN

20KN

SCD

X1

SBC  
  ∑ FX  = 0 
  Scd + 3 + X1 Cos θ =  0 
  Scd = − (3 + 0.6 × X1) 
  ∑ Fy  =  0 
            − Sbc − X1  Sin θ − 20  =  0 
  Sbc  =  −  ( 20 + 0.8 X1 ) 
 Joint (D) 

SBD SDE

(3+0.6X1)

20KN

 
  ∑ FX   =  0 
   3 + 0.6X1 − SBD  ×  0.6 = 0 
  SBD = ( 5 + X1 ) 
  ∑ Fy  =  0 
             − SDE − 20 − SBD Sinθ  =  0 
             − SDE − 20 − ( 5 + X1 ) ×  0.80 = 0 
                SDE  =  − ( 24 + 0.8X1 ) 
 Joint (B)  

6KN

(20+0.8X1)

(5+X1)

SBE

X2
SAB  

            ∑ FX  =  0 
  SBE + (5+X1) × 0.6 + X2  × 0.6 + 6  =  0 
  SBE  =  − ( 9 + 0.6 X1 + 0.6 X2) 
  ∑ Fy  =  0 
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             − SAB − X2 Sinθ − (20 + 0.8 X1) + (5+X1) Sinθ  =  0 
             − SAB − 0.8 X2 − 20 − 0.8 X1 + 4 + 0.8 X1  =  0 
                SAB  =  − (16 + 0.8 X2 ) 
 Joint (E) 

(24 + 0.8 x 1)

SAE SEF

X1

9+0.6X  + 0.6X1 2

 
    ∑ FX  =  0 
  9 + 0.6 X1 + 0.6 X2 − X1 x 0.6 − SAE × 0.6  =  0 
  9 + 0.6 X2  =  SAE  × 0.6 
  SAE  =  ( 15 + X2 ) 

  ∑ Fy  =  0 
             − SEF − 24 − 0.8 X1 + X1 × 0.8 − (15 + X2 ) × 0.8  =  0 
  SEF  =  − 24 − 0.8 X1 + 0.8 X1 − 12 − 0.8 X2  =  0 
  SEF  =  − 36 − 0.8 X2 
  SEF  =  − (36 + 0.8 X2 )   

Enter Forces in table. Now applying Catiglianos’ theorem and taking values from table attached. 

  ∑ S . 
∂S
∂X1

 . 
L

AE  =  0  =  485.6 + 65.64X1 + 2.7X2 = 0  (1) 

and 

  ∑ S. 
∂S
∂X2

 . 
L

AE  = 0 = 748.3 + 2.7X1 + 62.94 X2  = 0  (2) 

 
or 485.6 + 65.64 X1 + 2.7 X2 = 0     →    (1) 

  748.3 + 2.7 X1 + 62.94 X2 = 0      →    (2) 
 From (1) 

  X2  =  − 



485.6 + 65.64 X1

2.7   putting in (2) 

 

  748.3 + 2.7 X1 − 62.94 



485.6 + 65.64 X1

2.7  = 0 →    (2) 

  748.3+2.7X1 −11319.875 − 1530.141X1  − 10571.575 − 1527.441 X1 = 0 →    (3) 
 

X1  =  − 6.921 KN   

 From  (3)   X2  =  − 



485.6 − 65.64 × 6.921

2.7  

X2  = − 11.592 KN   
 Now put values of X1 and X2 in 5th column of S to get final number forces SF as given in last 
column of table. Apply equilibrium check to verify correctness of solution. 
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EQUILIBRIUM  CHECKS :- 
 
 Joint (A) 

HA

6.726KN

3.408KN

4KN  
 
  ∑ FX   =  0 
  3.408 Cosθ − HA − 0 
 
  HA = 2.045 KN   
 
 
  ∑ Fy = 0 
              −6.726 + 4 + 3.408 Sinθ  = 0 
   0  =  0 Check is OK. 
 
 
  Joint (F) 
 

11.592KN
26.726KN

HF

36KN
  

 
  ∑ FX  = 0 
             − HF + 11.592 Cosθ  =  0 
 
  HF  = + 6.955 KN   
 
    
  ∑ Fy  = 0 
  36 − 27.726 − 11.592 × Sinθ  =  0 
  0  =  0 (check) 
 
 It means solution is correct. Now calculate vertical reactions and show forces in diagram. 
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VA=4KN
6m

VF=+36KN

A  FHA=2.045Kn 3.408
HF=6.955KN

11.592
6.726 26.726

B
E6KN

4.426
1.921

14.463
6.921

18.463

1.153C D3KN

20KN 20KN

8m

8m

 
 
ANALYZED TRUSS 

  ∑ MA  =  0 
                    VF × 6 − 20 × 6 − 3 × 16 − 6 × 8 = 0 
 
   VF  =  + 36 KN   
    
  ∑ Fy  =  0 
  VA + VF  =  40 KN 
 
   VA  =  + 4 KN   
 
EXAMPLE NO. 11: 
CASE  II :  When the Truss is considered as both externally & internally redundant. 
 Taking SCE & HF as redundants. Now Truss is determinate and calculate vertical reactions. 
 

6m
4KN 36Kn

(9-HF) A F HF

8m
Sin

Cos =0.6 8m

6KN
B E

3kn 20KN 20KN

0.8 =0.8

Fy  =  0
VA  +   VF  =  40        

MA  =  0
VFx6 - 3x16-20x6-6x8=0

VF = 36KN
and

 
VA

 
=

 
4KN

C D
X

X

 
Fig. 2.51 
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 Compatibility Equations are: 

 ∑  S.
∂S

∂HF . 
L

AE  =  0 (1) Partial differentiation of strain energy w.r.t. HF = ∆H  =  0. 

(Pin support) 

 ∑  S. 
∂S
∂X  .  

L
AE  =  0 (2) Partial differentiation of strain energy w.r.t. X = elongation of 

member CE due to X = 0. 
 As before determine member forces Si in members by method of joints. 
 
        Joint (A) 
 

(9-HF)

SAB

SAE

4  
  ∑FX  =  0 
  SAE Cosθ − (9 − HF)  =  0 
  SAE  ×  0.6 − (9 − HF)  =  0 

  SAE  =   



9 − HF

0.6  

 
   SAE  = 15 − 1.67 HF  
 
  ∑ Fy  =  0 
  4 + SAB + SAE Sinθ =  0 
  4 + SAB + (15 − 1.670 HF )  ×  0.8  =  0 
  4 + SAB + 12 − 1.33 HF  = 0 
  SAB  =  − 16 + 1.33 HF 
 
   SAB  = − (16 − 1.33 HF )   
 
 Joint  (F) 

SBF SEF

HF

36  
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  ∑ FX  =  0 
  − HF − SBF Cosθ  =  0 
  − HF − 0.6 SBF = 0 
  − HF  =  0.6 SBF 

 

   SBF  = − 1.67 HF  
  ∑ Fy  =  0 
  36 + SEF + SBF Sinθ  =  0 
  36 + SEF − 1.67 HF × 0.8  =  0 
   SEF  = − (36 − 1.33 HF)   
 

 Joint (E) 

SBE

X
SDE

(36  1.33H )- F

(15-1.67HF)  
  ∑ FX  =  0 
  − SBE − X Cosθ − (15 − 1.67 HF) Cosθ  =  0 
  − SBE − 0.6X − ( 15 − 1.67 HF ) × 0.6  =  0 
  − SBE − 0.6X − 9 + HF =  0 
     HF − 0.6X − 9  = SBE 

   SBE  =  (HF − 0.6 X − 9)   

   
  ∑ Fy  =  0 
  SDE  +36 − 1.33 HF + X Sinθ − (15 − 1.67HF ) Sinθ = 0  by putting Sinθ = 0.08 
  SDE + 36 − 1.33 HF + 0.8X − 12 + 1.33 HF = 0 
  SDE  = − 0.8X − 24 
 
   SDE  = − ( 24 + 0.8X)   

 Joint (C)  
20KN

3KN
SCD

X
SBC  
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  ∑ FX  =  0 
  SCD + 3 + X Cosθ  =  0 
 
   SCD  =  − ( 3 + 0.6X)   

  ∑ Fy  =  0 
  − 20 − SBC − X Sin θ =  0 
  − 20 − SBC −   0.8X  =  0 
 
   SBC = − ( 20 + 0.8 X )   

  

 Joint (D) 

SBD
(24+ 0.8X)

20KN

(3+0.6X)

 
 

  ∑FX  =  0  

  3 + 0.6X − SBD Cosθ  =  0 

  3 + 0.6X − 0.6 SBD  =  0 

 

   SBD  =  ( 5 + X)     

 

  ∑ Fy  =  0 

  − 20 + 24 + 0.8X − SBD Sinθ  =  0 

  − 20 + 24 + 0.8X − ( 5 + X ) 0.8 =  0 

  − 20 + 24 + 0.8X − 4 − 0.8X  =  0 

       0 =  0 (check) 

 
 Calculation of HF & X  :− 

From the attached table, picking up the values of summations, we have. 

  ∑. S. 
∂ S
∂HF

.  
L

AE = 0 = (−1247.03 + 175.24 HF − 4.5 × X) 10−6 
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 and ∑. S. 
∂S
∂X . 

L
AE = 0 = (460.6 − 4.5 HF + 65.64X) 10-6 

 
  −1247.03 + 175.24 HF − 4.5X  =  0    →   (1) 
  + 460.6  −  4.5 HF +   65.64X  =  0     →   (2) 
 
 From (1) 

  X = 



 − 1247.03 + 175.24 HF

4.5     →   (3) 

 
 Put in (2)  to get HF  

  460.6 − 4.5 HF + 65.64 



 − 1247.03 + 175.24 HF

4.5   =  0 

 
  460.6 − 4.5 HF − 18190.01 + 2556.17 HF = 0 
             −17729.41 + 2551.67 HF  =  0 
 
   HF  =  6.948 KN   Put this value in 3 to get X. 
 
 

    X = 



−1247.03 + 175.24 ×  6.948

4.5    (3) 

 
  or X =  − 6.541  KN  Now calculate number Forces by putting the values of X and 

    HF in S expressions given in column 5 of the attached table. 
    These final forces appear in last column for SF. 

 
 

6m
4kn 36KN

2.052Kn A F 6.948KN
11.603

26.759 8m6.759
3.392

B E1.8736KN

14.762
6.641

18.767
8m

1.541

0.925
C D3KN

20KN 20KN

 
 

Fig 2.52 ANALYZED TRUSS 
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Equilibrium  checks for the accuracy of calculated member Forces:- 
 Joint (A) 

2.052

6.759
3.397

4  
  ∑ FX =  0 
  3.397 Cosθ − 2.052  =  0 
  0  =  0 Check 
  ∑ Fy  =  0 
             − 6.759 + 4 + 3.397 × 0.8  =  0 
   0  =  0 Check 
 Joint (F) 

11.603 26.759

6.948

36  
  ∑ FX  =  0 
  − 6.948 + 11.603 × 0.6 =  0 
  0  ≅  0 Check 
  ∑ Fy  =  0 
  36 − 26.759 − 11.603 × 0.8  =  0 
  0  ≅  0 Check 
Joint (C) 

20

0.925

6.54114.767

3

 
  ∑ FX  =  0 
  0.925 − 6.541 × 0.6 + 3  =  0 
  0  =  0 Check 
  ∑ Fy  =  0 
  14.767 − 20 + 6.541 × 0.8  =  0 
   0  =  0 Check. This verifies correctness of solution. 
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EXAMPLE NO. 12:- 

 By the unit load−method analyze the internally indeterminate truss shown below. Take the forces 

in members L1U2  and U2L3  as the redundants. 

Note: The same truss has already been solved in Example No. 9, by taking L1U2 and L2U3 as 
redundants. 

E  = 200 × 106 KN/m2 

SOLUTION:- 

4@4.5m 114KN

114KN

F-Diagram
6m

48KN

48KN

96KN

96KN

72KN

72KN

102KN

102KN

L0

L0

L0

L0

L1               L2               L3

L1               L2               L3

L1 L2 L3

L30.6       

0.6       

0.6       

0.6       

L2       L1              

L4

L4

L4

L4

U1             U2              U3

U1             U2              U3

U1             U2              U3

U1             U2              U3

(1.8)           (1.8)

(2.4) (2.4)(1.2) (1.2)
(1.2)

(1.2)0.90 (0.90)
(1.5) (1.5) (1.5) (1.5)

LoU1 = 7.5 m
Cos   = 0.8
Sin    = 0.6

B.D.S. Under applied
load only.

Or  F -Diagram/

102
54

42

702
513459

114

0

0
0

0 0
0

0 0 0

0

0 0

00

0

0

B.M.D.
+

U2-Diagam

U1 -Diagram

0.8

0.8
0.8

0.8

+

1

S.F.D.
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Compatibility equations are : 
  ∆X1 + ∆X1 R1 + ∆X1R2  =  0   →  (1)     Here X1 = R1 
                                      X2 = R2 

 Deflection created by applied loads and redundants shall be zero. 
  ∆X2L + ∆X2R1 + ∆X2R2  =  0   →  (2) 
   

  ∆X1L  = ∑. 
F′U1L

AE   (Change in length of first redundant member by applied loads) 
 

   ∆X1R1  = ∑



U1

2L
AE   X1 (Change in length in first redundant member due to first redundant force) 

 

              ∆X1R2  =  ∑



U1U2L

AE  . X2  (Change in length in first redundant member due to second redundant force) 
 

  ∆X2L  = ∑ 
F′U2L

AE   (Change in second redundant member due to applied load.) 

 

  ∆X2R1  =  ∑ 



U1U2L

AE  . X1 (Change in length of second redundant member due to first redundant force.) 

 

  ∆X2R2  =  ∑ 



U2

2L
AE  . X2 (Change in length of second redundant member due to redundant force in it.) 

 

Picking up the above deformations from the table (158−A) and calculate final member forces by following 
formula. 

 F = F' + U1X1 + U2X2  
  
Forces in chord members and inclineds are determined by the method of moments and shears as explained 
already, while for verticals method of joints has been used. 
Evaluation of force in verticals of F′ − Diagram 
                    (Joint L2) 
 

96

76.5

67.5

85.5

52.5
U2L2

 
  ∑ FX  =  0 
  85.5 − 76.5 + 52.5 Sinθ  − 67.5 Sinθ = 0 
  85.5 − 76.5 + 52.5 × 0.6 − 67.5 × 0.6 = 0 
  0 = 0 (Check) 
 
  ∑ Fy + 0 
  U2L2 + 52.5 Cosθ + 67.5 Cos θ − 96 = 0 
  U2L2 = − 52.5 × 0.8 − 67.5 × 0.8 + 96 = 0 
 
   U2L2  =  0  
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  Picking the following values from attached table  (Table for example No.12) 
∆X1L    = + 1.009 × 10−3 

  ∆X1R1  =  + 125.7 × 10−6 X1   = + 0.1257 × 10−3 X1 
  ∆X1R2  =  + 32 × 10−6 X2 = + 0.032 × 10−3 X2 
  ∆X2L    =  − 0.171 × 10−3 
  ∆X2R1  = + 32 × 10−6 X1 = + 0.032 × 10−3 X1 
  ∆X2R2  = + 125.7 × 10−6 X2  = + 0.1257 × 10−3 X2 
 
 Putting these in compatibility equals. 
  1.009 × 10−3+0.1257 × 10−3 X1+0.032 × 10−3 X2 = 0  (1) 
  − 0.171 × 10−3+0.032 × 10−3X1+0.1257 × 10−3X2 = 0  (2) 
 Simplify 
  1.009 + 0.1257 X1 + 0.032 X2 = 0      →  (1) 
  − 0.171 + 0.032 X1 + 0.1257X2 = 0     →  (2) 
 

 From  (1) X1 = 



−1.009 − 0.032 X2 

0.1257       →  (3) 

 
 Put in (2) & solve for X2 

  − 0.171 + 0.032 



−1.009 − 0.032 X2 

0.1257  + 0.1257 X2 = 0 

 
  − 0.171 − 0.257 − 8.146 × 10−3 X2 + 0.1257X2 = 0 
  − 0.428 + 0.1176 X2 = 0 
 

  X2 =  
0.428
0.1176 

 
   X2  = 3.64 KN    Put this in equation (3) to get X1  
 
  

 (3)  ⇒   X1  =  



 −1.009 − 0.032 × 3.64

0.1257  

 

   X1  = − 8.95 KN   
 
So final forces in members are calculated by the following given formula. 
  F = F′+ U1 X1 + U2 X2 
  FLoL1  = 76.5 + 0 + 0 = + 76.5 KN 
  FL1 L2  = 76.5 + ( − 0.6) ( − 8.95) + 0 = + 81.87 KN 
  FL2 L3  = 85.5 + 0 + 3.64) (− 0.6) = + 83.32 KN 
  FL3 L4  = 85.5 + 0 + 0  = + 85.5 KN 
  FU1 U2 = −117 + (− 0.6) (− 8.95) + 0 = − 111.63 KN 
  FU2 U3 = −117 + o +(− 0.6) (3.64)  = − 119.18 KN 
  FU1 L1 = + 48 + (− 0.8) (− 8.95) + 0 = + 55.16 KN 
  FU2 L2 = 0 + (− 0.8) (− 8.95) + (− 0.8) (3.64) = + 4.25 KN 
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  FU3 L3 = + 72 + 0 + (− 0.8) (3.64) = + 69.09 KN 
  Flo U1 = − 127.5 + 0 + 0 = − 127.5 KN 
  FU1 L2 = + 67.5 + (1) (− 8.95) + 0 = 58.55 KN 
  FL1 U2 = 0 + (1) (− 8.95) + 0 = − 8.95 KN 
  FU2 L3 = 0 + 0 + (1) (3.64) = + 3.64 KN 
  FL2 U3 = 52.5 + 0 + (1) (3.64) = + 56.14 KN 
  FU3 L4 = − 142.5 + 0 + 0  = − 142.5 KN 
 

 CHECK ON FORCE VALUES 
 We may apply check at random at any joint. If solution is correct, equilibrium checks will be 
satisfied at all joint. 
 Joint Lo. 

102

76.5

127.5

 
  ∑ FX = 0 
  76.5 − 127.5 Sinθ  =  0 
  76.5 − 127.5 × 0.6 = 0 
    0 = 0 
 
  ∑ Fy  =  0   
  102 − 127.5 × 0.8 = 0 
                     0 = 0 OK. Results seem to be correct. 
 
The credit for developing method of least work goes to Alberto Castiglianos who worked as an engineer in Italian 
Railways. This method was presented in a thesis in partial fulfillment of the requirement for the award of diploma 
engineering of associate engineer. He published a paper for finding deflections which is called Castiglianos first 
theorem and in consequence thereof, method of least work which is also known as Castiglianos second theorem. 
Method of least work also mentioned earlier in a paper by an Italian General Menabrea who was not able to give a 
satisfactory proof. Leonard Euler had also used the method about 50 years ago for derivation of equations for 
buckling of columns wherein, Daniel Bernolli gave valuable suggestion to him.  

Method of least work or Castiglianos second theorem is a very versatile method for the analysis of 
indeterminate structures and specially to trussed type structures. The method does not however, accounts 
for erection stresses, temperature stresses or differential support sinking. The reader is advised to use some 
other method for the analysis of such indeterminate structures like frames and continuos beams.  

It must be appreciated in general, for horizontal and vertical indeterminate structural systems, carrying various 
types of loads, there are generally more than one structural actions present at the same time including direct forces, 
shear forces, bending moments and twisting moments. In order to have a precise analysis all redundant structural 
actions and hence strain energies must be considered which would make the method laborious and cumbersome. 
Therefore, most of engineers think it sufficient to consider only the significant strain energy. The reader should 
know that most of structural analysis approaches whether classical or matrix methods consider equilibrium of 
forces and displacement/strain compatibility of members of a system. 
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The basis of the method of consistent deformation and method of least work are essentially the same. In 
consistent deformation method, the deformation produced by the applied loads are equated to these 
produced by the redundants. This process usually results in the evolution of redundants. However, in the 
method of least work, total strain energy expression of a structural system in terms of that due to known 
applied loads and due to redundants is established. Then the total strain energy is partially differentiated 
with respect to redundant which ultimately result in the evolution of the redundant. It must be appreciated 
that, for indeterminate structural system like trusses, the unknown redundants maybe external supports 
reaction or the internal forces or both. And it may not be very clear which type of redundants should be 
considered as the amount of work involved in terms of requisite calculation may vary. Therefore, a clever 
choice of redundants (or a basic determinate structure as was the case with consistent deformation method) 
may often greatly reduce the amount of work involved.  
 
There is often a debate going on these days regarding the utility or justification of classical structural 
analysis in comparison to the computer method of structural analysis. It is commented that in case of 
classical methods of structural analysis the student comes across basic and finer points of structural 
engineering after which a computer analysis of a complex structure maybe undertaken.  
 
In the absence of basic knowledge of classical structural analysis, the engineer maybe in a difficult position 
to justify to computer results which are again to be checked against equilibrium and deformation 
compatibility only. 
 
EXAMPLE NO. 13: 

The procedure for analysis has already been given. Utilizing that procedure, analyze the following 
truss by the method of least work. Areas in ( ) carry the units of 10−3 m2  while the value of E can 
be taken as 200 × 106 KN/m2. 

 

A                    
B

                   
C
                   D  

E F

 

4

44 2
2 2

2 2 2
2

4.5m

3@4.5m 15 kN
  

 
 where  i  =  total degree of indeterminacy 
         b =  number of bars. 
  r =  total number of reactive components which the support can  provide. 
  b + r = 2j 

 10 + 3 > 2 × 6 13 > 12 so i= 1 . First degree internal indeterminancy. 

  U  =  
F2L

2 AE  Strain energy due to direct forces induced due to applied loads in a BDS Truss. 

  
∂U
∂X   =  F. 

∂F
∂X  .  

L
AE  =  0 
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Note:− We select the redundants in such a way that the stability  of the structure is not  
 effected. Selecting member EC as redundant. 
 

5 +

+
22.5

45 10

5KN 10KN

4.5m

A                    B                   C                     D  

E F  

15KN

x
x

F-diagram  B.D.S. under the action of applied loads & redundant.

S.F.D. due to applied 
load only.

load only.
 

 
 Method of moments and shears has been used to find forces in BDS due to applied loads. A table 
has been made. Forces vertical in members in terms of redundant X may be determined by the method of 
joints as before. From table. 
  

  ∑ F. 
∂F
∂x  .  

L
AE  =  0       = − 331.22 × 10−6 + 51.49 × 10−6X 

                                     or   − 331.22 + 51.49X  =  0 
 

X  =  + 6.433 KN  
 
 The final member forces are obtained as below by putting value of X in column 5 of the table.  
 
  Member          Force (KN) 
 
    AB   + 5 

    BC   +5.45 

    CD   + 10 

      EF   − 9.55 

      BE   + 0.45 

       CF   + 10.45 

      CE   + 6.43 

     BF   − 0.64 

     AE   − 7.07 

      DF   − 14.14 
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CHECK. 
 
 Joint A. 
 

5

5  
 
 
  ∑ FX  =  0 
  5 − 7.07 Cosθ  =  0 
  5 − 7.07 × 0.707  =  0 
  0  =  0 
 
  ∑ Fy  =  0 
               − 7.07 × 0.707 + 5  =  0 
  0  =  0 Check is OK. 

 
EXAMPLE NO. 14:− Analyze the following symmetrically loaded second degree internally 

indeterminate truss by the method of least work. Areas in ( ) are 10−3m2 . The value of E can be 
taken as 200 × 106 KN/m2 

 

A
B

C

FED

3 3
32 2 2 2

4

4 4

4

3m

2@3m
15KN

A
B

C

FE

X2
X1

  X2
  

15KN  

7.5KN 7.5KN

 

3m

2@3m

D

X1

Selecting member BD and Before as redundants.

BDS under loads
and redundants.
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SOLUTION: 
 
Note :− By virtue of symmetry, we can expect to have same values for X1 and X2. It is known before hand. 
 

+

+

7.5

7.5

22.5

S.F.D.

B.M.D.
 

 

 SFD and BMD in BDS due to applied loads are shown above. 
 As in previous case determine member forces in BDS due to applied loads by the method of 
moments shears while method of joints may be used to determine member forces due to redundants acting 
separately. Apply super position principal. Then these are entered in a table given. 
 
Summation of relavant columns due to X1 and X2 gives two equations from which these can be calculated. 
Putting values from table and solving for X1 and X2. 

[−2.65 × 10−3 (7.5 − 0.707X1 ) − 2.65 × 103 (− 0.707X1 ) −3.53 × 10−3 (− 0.707X1 ) 
  −3.53 × 10−3(15 − 0.707X1 − 0.707X2 ) +10.6 × 10−3 (−10.6+X1 ) + 10.6 × 10−3  (X2 ) ]10−3 = 0 
 

  − 19.875 + 1.874X1 + 1.874 X1 + 2.450 X1 − 52.45 + 2.50 X1 + 2.5 X2 − 112.36 + 10.6 X1 + 10.6 X1  =  0 
     29.898 X1 + 2.50 X2 − 185.185  =  0    →  (1)  ( ∑ col 8 ) 
 
   − 2.65 × 10−3(7.5−0.707 X2) − 2.65 × 10−3  (− 0.707 X2) − 3.53 × 10−3  (15−0.707 X1 − 0.707 X2) 
   − 3.53 × 10−3  (− 0.707 X2 ) + 10.6 × 10−3  (−10.6+X2) + 10.6 × 10−3 X2 = 0 
 
    − 19.875+1.874 X2+1.874 X2−52.95+2.50 X1+2.50X2+2.450 X2−112.36+10.6X2+10.6 X2 =  0 
 
      2.50 X1 + 29.898 X2 − 185.185  =  0   →  (2)  ( ∑ col 9 ) 
 

     From (1), X1 = 



185.185 − 2.50 X2

29.898        →  (3) Put in 2 above 

 

     (2)  ⇒  2.50 



185.185 − 2.50 X2

29.898  + 29.898X2  − 185.185 = 0 

 
      15.465 − 0.21 X2 + 29.898 X2 − 185.185 = 0 
      29.689 X2  − 169.7  =  0 
 

X2  = + 5.716 KN  
 Put X2 in equation 3 to get X1. The final member forces are given in last column. These are 
obtained by putting values of X1 and X2, whichever is applicable, in column 5 of the table. 
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  Then X1  = 



185.185 − 2.50 × 5.716

29.898  

 
X1  =  + 5.716 KN  

Equilibrium Check. 
4.04  

4.884
  

3.459

7.5  
 

  ∑ FX  =  0 
  3.459 − 4.884 × Cosθ  =  0 
  3.459 − 4.884 × 0.707  =  0 
  0  =  0 
 
  ∑ Fy  =  0  
  7.5 − 4.04 − 4.884 × 0.707  =  0   
  0  =  0 Checks are satisfied. Results are OK. 
 
EXAMPLE NO. 15:− Analyze the following internally indeterminate truss by the method of least 
work. Areas in (  ) are 10−3m2 . The value of E can be taken as 200 × 10 6  KN/m2. 
 
SOLUTION:− 

b = 13 , r = 3 , j = 7  so degree of indeterminacy I =( b + r ) –2j =2 
Choosing members EB and BG as redundants, forces due to loads have been determined by the method of 
moments and shears for the BDS and are entered in a table. While forces due to redundants X1 and X2. 
 

A               
B C

              D  

GFE

3m

3@3m

  

10KN  5KN

15KN

10

  

0 0
5

30

15

0

  

0

  

+

+S.F.D

B.M.D

X1 X1 X2
X2
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A               
B C

              D  

GFE

3m

3@3m

X1  X2

X1 X2

10KN  5KN

15KN

10

  

0 0
5

30

15

0

  

0

  

+

+S.F.D

B.M.D
 

Member Forces Due to Redundants Only. 
 Please number that due to separate action of redundants X1 and X2 member forces will be induced 
only in the square whose inclineds are X1 and X2. There will be no reaction at supports. 

 Joint D:− 
DG

CD  
  ∑ Fy  =  0 
  DG Sinθ  −  0 
 
   DG  =  0  
  ∑ FX  =  0 
  DG Cos θ + CD  =  0 
 
   CD  =  0  
 Joint G :− 

FG

CGX2  
  ∑ FX  =  0 
  − FG − X2 Cos θ  =  0 

   FG = − 0.707 X2  

  ∑ Fy  =  0 
  − CG − X2 Sin θ  =  0 

   CG = − 0.707 X2  
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 Joint C :−                                                  

CF

BC

0.707X2

 
  ∑ Fy  =  0 
  CF Sin θ − 0.707 X2  =  0 

  CF  = 
0.707 X2

0.707  

   CF  = + X2  
 
  ∑ FX  =  0 
  − BC − CF Cos θ = 0 
 
   BC = −0.707 X2  
 Joint B.  

AB                          0.707X2

X2BFX1

  
  ∑ FX  =  0 

  − 0.707 X2 − AB + X2 Cos θ − X1 Cos θ  = 0 

   AB  = − 0.707 X1  
 
  ∑ Fy  =  0 

  X1 Sin θ + X2 Sin θ + BF  = 0 

   BF = − 0.707X1 − 0.707X2  
 
 Joint A. 
 

AE
AF

0.707X1 
 
  ∑ FX  =  0 
  − 0.707 X1 + AF Cos θ = 0 

   AF  = X1  



152 THEORY OF INDETERMINATE STRUCTURES 

 

  ∑ Fy  =  0 

  AE + AF Sin θ = 0 

   AE = − 0.707X1  
 Joint E. 

EF

X1
0.707 X1  

 
  ∑ FX  =  0 

  EF + X1 Cos θ  = 0 
 
   EF = − 0.707 X1  
 

  ∑ Fy  = 0 

  0.707 X1 − 0.707 X1  = 0 

  0  =  0 (Check) 

 Entering the values of summations  from attached table, we have. 
 

 ∑ F.  
∂F
∂X1

  .  
L

AE = 0 = − 229.443 × 10−6 +29.848 × 10−6 X1+2.45 × 10−6X2  

 

 ∑ F. 
∂F
∂X2

  .  
L

AE = 0 = −168.9 × 10−6 +2.45 × 10−6 X1+29.848 × 10−6 X2 

 
 Simplifying 

            − 229.443 + 29.848 X1 + 2.45 X2  =  0    →  (1) 

            − 168.9 + 2.45 X1 + 29.848 X2  =  0         →  (2) 

 From (1) 

  X1 = 



 − 2.45 X2 + 229.443

29.848           →  (3) 

 Put in (2) & solve for X2 

  − 168.9 + 2.45 



 − 2.45 X2 + 229.443

29.848  + 29.848 X2 = 0 

  − 168.9 − 0.201 X2 + 18.833 + 29.848 X2 = 0 
  − 150.067 + 29.647 X2 = 0 

        X2  = 
150.067
29.647  

 
   X2  = + 5.062 KN  
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    So       X1 = 
− 2.45 × 5.062 + 229.443

29.848    by putting value of X2 in (3) 

 
   X1 = + 7.272 KN  
 
 
 EQUILIBRIUM  CHECKS :− 
 

A
4.859 6.421 5

7.07

G8.579F5.141E

5.141 6.28
6.87 2.000

5.662
1.421

B C
D7.272

10KN 15KN
5KN 

 
 Joint B:− 

4.859

15

6.421

5.0626.287.272

 
 
  ∑ FX  =  0 
  6.421 + 5.062 Cosθ − 7.272 Cosθ − 4.859  = 0 
  0  =  0 

  ∑ Fy  =  0 
  6.28 − 15 + 5.062 Sinθ + 7.272 Sinθ = 0 
  0  =  0 The results are OK. 
 

Joint C:−  
 
1.421

5

2.008

6.421  
 

  ∑ FX  =  0 
  5 + 2.008 Cosθ − 6.421 = 0 
  0  =  0 
 
  ∑ Fy  =  0 
  1.421 − 2.008 Sinθ = 0 
  0  =  0 Results are OK. 
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