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Chapter 4 
 

Design of Slender Columns 
 
 

By Murat Saatcioglu1 
 
 
4.1 Introduction 
 
The majority of reinforced concrete columns in practice are subjected to very little secondary stresses 
associated with column deformations. These columns are designed as short columns using the column 
interaction diagrams presented in Chapter 3. Rarely, when the column height is longer than typical 
story height and/or the column section is small relative to column height, secondary stresses become 
significant, especially if end restraints are small and/or the columns are not braced against side sway.  
These columns are designed as "slender columns." Fig. 3.1 eloquently illustrates the secondary 
moments generated in a slender column by P-Δ effects. Slender columns resist lower axial loads than 
short columns having the same cross-section. Therefore, the slenderness effect must be considered in 
design, over and above the sectional capacity considerations incorporated in the interaction diagrams. 
The significance of slenderness effect is expressed through slenderness ratio.  
 
4.2 Slenderness Ratio 
 
The degree of slenderness in a column is expressed in terms of "slenderness ratio," defined below: 
 
Slenderness Ratio: r/k ul   
 
where, ul  is unsupported column length; k is effective length factor reflecting the end restraint and 
lateral bracing conditions of a column; and r is the radius of gyration, reflecting the size and shape of a 
column cross-section. 
 
4.2.1 Unsupported Length, ul  
 
The unsupported length ul  of a column is measured as the clear distance between the underside of the 
beam, slab, or column capital above, and the top of the beam or slab below. The unsupported length of 
a column may be different in two orthogonal directions depending on the supporting elements in 
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respective directions. Figure 4.1 provides examples of different support conditions and corresponding 
unsupported lengths ( ul ). Each coordinate and subscript “x” and “y” in the figure indicates the plane 
of the frame in which the stability of column is investigated.   
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Fig. 4.1 Unsupported column length, ul  

 
4.2.2 Effective Length Factor, k 
 
The effective length factor k reflects the end restraint (support) and lateral bracing conditions of a 
column relative to a pin-ended and laterally braced "reference column." The reference column, shown 
in Fig. 4.2(a), follows a half sine wave when it buckles, and is assigned a k factor of 1.0. Therefore, the 
effective length k ul for this column is equal to the unsupported column length ul . A column with fully 



 3

restrained end conditions develops the deflected shape illustrated in Fig. 4.2(b). The portion of the 
column between the points of contraflexure follows a half sine wave, the same deflected shape as that 
of the reference column. This segment is equal to 50% of the unsupported column length ul . 
Therefore, the effective length factor k for this case is equal to 0.5. Effective length factors for columns 
with idealized supports can be determined from Fig. 4.2. It may be of interest to note that k varies 
between 0.5 and 1.0 for laterally braced columns, and 1.0 and ∞  for unbraced columns. A discussion 
of lateral bracing is provided in Sec. 4.3 to establish whether a given column can be considered to be 
as part of a sway or a non-sway frame.  
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Fig. 4.2 Effective Length Factor k for Columns 
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Most columns have end restraints that are neither perfectly hinged nor fully fixed. The degree of end 
restraint depends on the stiffness of adjoining beams relative to that of the columns. Jackson and 
Moreland alignment charts, given in Slender Columns 4.1 and 4.2 can be used to determine the 
effective length factor k for different values of relative stiffnesses at column ends. The stiffness ratios 

Aψ and Bψ  used in Slender Columns 4.1 and 4.2 should reflect concrete cracking, and the effects of 
sustained loading. Beams and slabs are flexure dominant members and may crack significantly more 
than columns which are compression members. The reduced stiffness values recommended by ACI 
318-05 are given in Slender Columns 4.3, and should be used in determining k. Alternatively, 
Slender Columns 4.4 may be used to establish conservative values of k for braced columns2. 
 
4.2.3 Radius of Gyration, r 
 
The radius of gyration introduces the effects of cross-sectional size and shape to slenderness. For the 
same cross-sectional area, a section with higher moment of inertia produces a more stable column with 
a lower slenderness ratio. The radius of gyration r is defined below. 

A
Ir =

       (4-1) 
It is permissible to use the approximations of r = 0.3h for square and rectangular sections, and r = 
0.25h for circular sections, where “h” is the overall sectional dimension in the direction stability is 
being considered. This is shown in Fig. 4.3. 
 

 
Fig. 4.3 Radius of gyration for circular, square and rectangular sections 

 
4.3 Lateral Bracing and Designation of Frames as Non-Sway 
 
A frame is considered to be "non-sway" if it is sufficiently braced by lateral bracing elements like 
structural walls. Otherwise, it may be designated as a "sway" frame. Frames that provide lateral 
resistance only by columns are considered to be sway frames. Structural walls that appear in the form 
of elevator shafts, stairwells, partial building enclosures or simply used as interior stiffening elements 
provide substantial drift control and lateral bracing. In most cases, even a few structural walls may be 
sufficient to brace a multi-storey multi-bay building. The designer can usually determine whether the 
frame is non-sway or sway by inspecting the floor plan. Frames with lateral bracing elements, where 
the total lateral stiffness of the bracing elements provides at least six times the summation of the 
stiffnesses of all the columns, may be classified as non-sway. ACI 318-05 permits columns to be 
designed as part of a non-sway frame if the increase in column end moments due to second-order 
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effects does not exceed 5% of the first-order end moments (Sec. 10.11.4.1). Alternatively, Section 
10.11.4.2 of ACI 318-05 defines a stability index "Q" (given in Eq. 4.2), where, Q ≤ 0.05 indicates a 
non-sway column. 

cus
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P
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l

∑=
Δ

       (4.2) 

 
Where, ∑ uP is total factored axial load acting on all the columns in a story, Vus is total factored story 
shear, Δo is lateral story drift (deflection of the top of the story relative to the bottom of that story) due 
to Vus. The story drift Δ o should be computed using the modified EI values given in Slender Columns 
4.3 with βd defined as the ratio of the maximum factored sustained shear within a story to the 
maximum factored shear in that story. If Q exceeds approximately 0.2, the structure may have to be 
stiffened laterally to provide overall structural stability. 
 
4.4 Design of Slender Columns  
 
Design of a slender column should be based on a second-order analysis which incorporates member 
curvature and lateral drift effects, as well as material non-linearity and sustained load effects. An 
alternative approach is specified in ACI 318-05 for columns with slenderness ratios not exceeding 100. 
This approach is commonly referred to as the "Moment Magnification Method," and is based on 
magnifying the end moments to account for secondary stresses. The application of this procedure is 
outlined in the following sections. 
 
4.4.1 Slender Columns in Non-Sway Frames 
 
Slenderness effects may be neglected for columns in non-sway frames if the following inequality is 
satisfied: 

)M/M(1234
r

k
21

u −≤
l      (4-3) 

Where      40)M/M1234( 21 ≤−       (4-4) 
 
M1/M2 is the ratio of smaller to larger end moments. This ratio is negative value when the column is 
bent in double curvature and positive when it is bent in single curvature. Fig. 4.4 illustrates columns in 
double and single curvatures. Columns in non-sway frames are more stable when they bend in double 
curvature, with smaller secondary effects, as compared to bending in single curvature. This is reflected 
in Eq. (4-3) through the sign of M1/M2 ratio. For negative values of this ratio the limit of slenderness in 
Eq. (4-3) increases, allowing a wider range of columns to be treated as short columns.  
 
Slender columns in non-sway frames are designed for factored axial force Pu and amplified moment 
Mc. The amplified moment is obtained by magnifying the larger of the two end moments M2 to account 
for member curvature and resulting secondary moments between the supports, while the supports are 
braced against sidesway. If Mc computed for the curvature effect between the ends is smaller than the 
larger end moment M2, the design is carried out for M2.   
 

2nsc MM δ=        (4-5) 
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The critical column load, Pc (Euler buckling load) is;   
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Fig. 4.4 Columns in Single and Double Curvature 

 
EI in Eq. (4-7) is computed either with due considerations given to the presence of reinforcement in the 
section, as specified in Eq. (4-8), or approximately using Eq. (4-9). 
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where βd is the ratio of the maximum factored axial dead load to the total factored axial load. The 
moment of inertia of reinforcement about the cross-sectional centroid (Ise) can be computed using 
Slender Columns 4.5. 
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Note that Eq. (4-9) can be simplified further by assuming βd = 0.6, in which case the equation 
becomes; EI = 0.25EcIg.  
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Coefficient Cm is equal to 1.0 for members with transverse loads between the supports. For the more 
common case of columns without transverse loads between the supports;  
 

0.4
M
M0.40.6C

2

1
m ≥+=        (4-10) 

 
Where, M1/M2 is positive if the column is bent in single curvature.   
 
When the maximum factored end moment M2 is smaller than the minimum permissible design moment 
M2,min, specified in Eq. (4-11), the magnification applies to M2,min.  
 

)h03.06.0(PM umin,2 +≥        (4-11) 
 
where h is the cross-sectional dimension in inches in the direction of the eccentricity of load. For 
columns for which M2,min is higher than M2, the values of Cm, in Eq. (4-10) should either be taken 1.0 
or determined based on the computed ratio of end moments (M1/M2). Once the amplified moment Mc 
is obtained, the designer can use the appropriate interaction diagrams given in Chapter 3 to determine 
the required percentage of longitudinal reinforcement. 
 
4.4.2 Slender Columns in Sway Frames 
 
Columns in sway frames are designed for the factored axial load Pu and the combination of factored 
gravity load moments and magnified sway moments. This is specified below, and illustrated in Fig. 
4.5. 
 

s1sns11 MMM δ+=     (4-12) 
        

s2sns22 MMM δ+=      (4-13) 
 
where, M1ns and M2ns are end moments due to factored gravity loads; and M1s and M2s are sway 
moments normally caused by factored lateral loads. All of these moments can be obtained from a first-
order elastic frame analysis. Magnified sway moments δsM1s and δsM2s are obtained either from a 
second order frame analysis, with member flexural rigidity as specified in Slender Columnss 4.3, or 
by magnifying the end moments by sway magnification factor δs. The sway magnification factor is 
calculated either as given in Eq. (4-14) or Eq. (4-15).  
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However, if δs computed by Eq. (4-15) exceeds 1.5, δsMs shall be calculated either through second 
order analysis or using Eq. (4-14). 

 
Fig. 4.5 Design moments in sway frames 

 
In a sway frame, all the columns of a given story participate in the sway mechanism, and play roles in 
the stability of individual columns. Therefore, Eq. (4-14) includes ∑ uP and ∑ cP which give the 
summations of factored axial loads and critical loads for all the columns in the story, respectively. The 
critical column load Pc can be computed using Eqs. (4-7) through (4-9) with the effective length factor 
k computed for unbraced columns (for sway frames) and βd as the ratio of the maximum factored 
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sustained shear within the story to the maximum total factored shear in the story. Eq. (4-14) provides 
an average δs for all the columns in a story. Therefore, it yields acceptable results if all the columns in 
a story undergo the same story drift. When significant torsion is anticipated under lateral loading, a 
second order analysis is recommended for finding the amplified sway moment, δsMs.  
    
The magnification of moments through Eq. (4-15) is applicable only if the sway magnification factor 
δs does not exceed 1.5. If it does, then either the second-order analysis or Eq. (4-14) should be 
employed (Sec. 10.13.4.2).  
 
The sidesway magnification discussed above is intended to amplify the end moments associated with 
lateral drift. Although the amplified end moment is commonly the critical moment for most sway 
columns, columns with high slenderness ratios may experience higher amplification of moments 
between the ends (rather than at the ends) because of the curvature of the column along the column 
height.  This is assumed to occur when the inequality given in Eq. (4-16) is satisfied.  
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The magnification of moment due to the curvature of column between the ends is similar to that for 
braced columns in non-sway frames. Therefore, if Eq. (4-16) is satisfied for a column, then the column 
should be designed for factored axial force Pu and magnified design moment (Mc) computed using Eqs. 
(4-5) and (4-6), with M1 and M2 computed from Eqs. (4-12) and (4-13).  
 
Sometimes columns of a sway frame may buckle under gravity loads alone, without the effects of 
lateral loading. In this case one of the gravity load combinations may govern the stability of columns. 
The reduction of EI under sustained gravity loads may be another factor contributing to the stability of 
sway columns under gravity loads. Therefore, ACI 318-05 requires an additional check to safeguard 
against column buckling in sway frames under gravity loads alone (Sec. 10.13.6). Accordingly, the 
strength and stability of structure is reconsidered depending on the method of amplification used for 
sway moments. If a second order analysis was conducted to find δsM2s, two additional analyses are 
necessary using the reduced stiffness values given in Slender Columns 4.3 with βd taken as the ratio 
of the factored sustained axial dead load to total factored axial load. First, a second-order analysis is 
conducted under combined factored gravity loads and lateral loads equal to 0.5% of the gravity loads. 
Second, a first-order analysis is conducted under the same loading condition. The ratio of lateral drift 
obtained by the second-order analysis to that obtained by the first-order analysis is required to be 
limited to 2.5. If the sway moment was amplified by computing the sway magnification factor given in 
Eq. 4.14, as opposed to conducting second order analysis or using Eq. (4-15), then δs computed by 
using the gravity loads (∑ uP and ∑ cP corresponding to the factored dead and live loads) is required to 
be positive and less than or equal to 2.5 to ensure the stability of the column. If the sway moment was 
amplified using Eq. (4-15), then the value of Q computed using ∑ uP for factored dead and live loads 
should not exceed 0.60.  
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 4.5 Slender Column Design Examples 
 
SLENDER COLUMN EXAMPLE 1 - Design of an interior column braced against sidesway. 
 
Consider a 10-story office building, laterally braced against sidesway by an elevator shaft (Q is computed to be 
much less than 0.05). The building has an atrium opening at the second floor level with a two-story high column 
in the opening to be designed. Design the column for the unfactored design forces given below, obtained from a 
first-order analysis. The framing beams are 16 in wide and 20 in deep with 23 ft (canter-to-centre) spans. The 
beam depth includes a slab thickness of 6 in. The story height is 14 ft (column height is 28 ft). It is assumed that 
the bracing elements provide full resistance to lateral forces and the columns only resist the gravity loads. Start 
the design with an initial column size of 20 in square. f’c = 6,000 psi for all beams and columns; fy = 60,000 psi. 
 
Unfactored Loads Dead Load Live Load 
Axial load:   520 k  410 k 
Top moment:  -1018 k-in -620 k-in 
Bottom moment: -848 k-in -540 k-in 
 
Note: Moments are positive if counterclockwise at column ends. The column is bent in double curvature. 
 
 

cl

l l

cl

cl

 
Slender Column Example 1 
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Procedure Calculation 
ACI 

318-05 
Section 

Design 
Aid 

Determine factored design forces: 
Note: M1 is the lower and M2 is the 
higher end moment. 
 

i) U = 1.4D 
Pu = 1.4 PD = 1.4 (520) = 728 k 
M2 = 1.4 MD2 = 1.4 (1018) = 1425 k-in 
M1 = 1.4 MD1 = 1.4 (848) = 1187 k-in 
 
ii) U = 1.2 D + 1.6 L 
Pu = 1.2 PD + 1.6 PL = 1.2 (520) + 1.6 
(410) = 1280 k 
M2 = 1.2 MD2 + 1.6 ML2 = 1.2 (1018) + 1.6 
(620) = 2214 k-in 
M1 = 1.2 MD1 + 1.6 ML1 = 1.2 (848) + 1.6 
(540) = 1882 k-in 
 
Note: Load Combination (ii) governs the 
design. 

9.2 

 

Calculate slenderness ratio r/k ul  
i)  Find unsupported column length 
ii) Find the radius of gyration 
iii) Find effective length factor "k." This 
requires the calculation of stiffness ratios 
at the ends. First find beam and column 
stiffnesses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Read k from Slender Columns 4.1 
 

 

ul = 28 – 20/12 = 26.3 ft 
r = 0.3 h = 0.3 (20) = 6 in 
(Ig)beam = (Ig)T-beam= 19,527 in4  
(Ig)column = bh3/12=(20)(20)3 /12 = 13,333 
in4  
 
Cracked (reduced) EI values: 
(EI)beam =  (1,545)(19,527) =  30x106 k-in2  
(EI)col =  (3,091)(13,333) = 41x106 k.in2 

 

(EI/ l )beam = (30x106) / (23x12) = 109x103 
k-in for both left and right beams 
 
(EI/ l c)col = (41x106 / (28x12) = 122x103  
k-in  for the atrium column to be designed. 
 
(EI/ l c)col = (41x106) / (14x12) = 244x103  
k-in for columns above and below 
 
Ψ = (ΣEI/ l c)col / (ΣEI/ l )beam  
 
Ψ = [(EI/ l c)col, above+ (EI/ l c)col, below] / 
[(EI/ l )beam, left + (EI/ l )beam, right] 
 
ΨA = (244 + 122)x103 /(109 + 109)x103  
ΨA = 1.7 = ΨB 
for ΨB = ΨA = 1.7;   select  k = 0.83 from  
 
Slender Columns 4.1  
(Note that Slender Columns 4.4 gives a 

 
 
 
 
 
 
 
10.11.1 
 

 
Figure  

4.1 
 
 
 
 
Slender 
Cols. 4.3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Slender 
Cols. 4.1 
Slender 
Col. 4.4 
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Compute the slenderness ratio 

conservative value of k = 0.90) 
ul =28.9 – 1.67 = 26.3 ft 

r/k ul  = 0.83 (26.3x12) / 6 = 45 
Check if slenderness can be neglected 
using Eq.(4-3): 
 
Apply the limit of Eq. (4-4) 
 
 

)M/M(1234
r

k
21

u −≤
l

 

40)M/M1234( 21 ≤−  
Note M1/M2 = - 1882/2214 = -0.85 
(Bending in double curvature) 
or, for Load Combination I; 
M1/M2 = - 11871/1425 = -0.83 
 
[34- 12 (-0.85)] = 44 > 40   use  40 
 

r/k ul  = 45 > 40 (limiting ratio for 
neglecting slenderness) 
 
Therefore, consider slenderness. 

10.12.2 
 
 
 

10.3.4 
9.3.2 

 

Compute moment magnification factor 
(δns) from Eq. (4-6): 
 
 
 
 
i) Compute critical load Pc from Eq (4-7) 
Use Eq. (4-8) to compute EI. Assume 
2.5% column reinforcement, equally 
distributed along the perimeter of the 
square section with γ = 0.75 where γ is 
the ratio of the distance between the 
centres of the outermost bars to the 
column dimension perpendicular to the 
axis of bending.  

 
Alternatively, compute EI from Eq,(4-9)  
Eq. (4-9) may further be simplified by 
assuming a value of βd = 0.6. 
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Ec = 4415 ksi  
 
Es = 29,000 ksi 
 
(Ig)column = 13,333 in4 
  
Ise = 0.18 ρt b h3γ2 (from Slender Col. 4.5) 
 
Ise = 0.18(0.025)(20)(20)3 (0.75)2 = 405 in4  
 
βd =  1.2D / (1.2D + 1.6L) 
    =  1.2 x 520 / (1.2 x 520 + 1.6 x 410) 
    =  624 / 1280 = 0.49       
 
EI = (0.2EcIg + EsIse) / (1 + Bd)  
 
EI = [(0.2 x 4415 x 13,333) + (29,000 x 
405)] / ( 1 + 0.49) = 16 x 106 k-in2 
EI = (0.4 x 4415 x 13,333) / (1 + 0.49) 
EI = 16 x 106 k-in2 
 
EI = 0.25 EcIg = 0.25 x 4415 x 13,333 
EI = 15 x 106 k-in2  
 

10.12.3 
 
 
 
 
 

10.12.3 
 
 

8.5.2 
 
 
 
 
 
 
 

10.12.3 
 
 
 
 

10.12.3 
 
 
 
 
 
 
 
 

R10.12.3 

 
 
 
 
 
 
 
 
Slender 
Cols. 4.3 
 
 
 
Slender 
Cols. 4.5 
 



 13

 
 
 
 
 
ii) Compute Cm from Eq. (4-10): 
 
 
  
iii) Moment magnification factor 

Pc = π2 EI / (k ul )2  
Pc = π2 x 16 x 106 / ( 0.83 x 26.3 x 12)2  
Pc =  2301 k  
 
Cm = 0.6 + 0.4 M1/M2 ≥ 0.4    
Cm = 0.6 + 0.4 (-0.85) = 0.25 < 0.4 use 0.4 
 
 

0.155.1

)2301)(75.0(
12801

4.0
ns ≥=

−
=δ  

 
 
 

10.12.3 
 
 
 
 
 
 
 

10.12.3 

Compute amplified moment Mc  from 
Eq. (4-5) 

2nsc MM δ=  = 1.55 (2214) = 3432 k-in 10.12.3  

Check against minimum design moment 
as per Eq. (4-11). 

)h03.06.0(PM umin,2 +≥  
M2,min = 1280 (0.6 + 0.03 x 20) =1536 k-in 
 
Mc = 3432 k-in > M2,min = 1536 k-in 
Design for Mc = 3432 k-in 

10.12.3.2  

Select reinforcement ratio and design the 
column section:  
 
Use Column Interaction Diagrams R6-
60.7 and R6-60.9 for equal 
reinforcement on all sides and 
interpolate for γ = 0.75 (assumed above) 

A) Compute  
g

'
c

n

Af
P

nK =  

B) Compute 
hAf

M

g
'

c

n
nR =  

 
 
C) Read ρg  for Kn and Rn values from 
the interaction diagrams 
 
 
 
 
 
 
 
D) Compute required Ast from Ast= ρgAg  
 
 
 
E) Find column reinforcement  

Note: γ = 0.75 allows for more than 1.5 in 
clear cover required for interior columns, 
not exposed to weather.  
 
 
 

82.0
)20)(6(
65.0/1280

Af
/P

2
g

'
c

u
nK ===

φ
 

 
 

11.0
)20()20)(6(

65.0/3432
hAf

/M
2

g
'

c

n
nR ===

φ
 

 
For Kn = 0.82 and Rn = 0.11  
Read ρg =  0.031  for  γ = 0.7    and 
          ρg =  0.029 for γ = 0.8  
Interpolating; ρg = 0.030 for γ = 0.75 
 
(Note that the required steel ratio of 3% is 
slightly higher that the 2.5% assumed for 
computing EI. No revision is necessary). 
 
Required Ast = 0.030 x 400 in.2 
                      = 12.0 in.2  
Try # 9 bars; 12.0 / 1.0 =  12.0 
 
Use 12 # 9 Bars. 

7.7.1 
 
 
 
 
 
 
 

Flexure 9 
 
 
Columns 
R6-60.7 
and  
R6-60.8 
 
 
 
 
 
 
 
 
Columns 
R6-60.7 
and  
R6-60.8 
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SLENDER COLUMN EXAMPLE 2 - Design of an exterior column in a sway frame. 
 
A typical floor plan and a section through a multi-story office building are shown below. Design column 3-A at 
the ground level for combined gravity and east-west wind loading. The results of first-order frame analysis 
under factored load combinations are given in the solution. 
 
f'c = 6,000 psi;  fy = 60,000 psi. 

 
 

Slender Column Example 2 
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Procedure Calculation 
ACI 

318-05 
Section 

Design 
Aid 

Consider the applicable load 
combinations: 
 
The structure is not braced against 
sidesway. Therefore, the column will be 
designed considering the loads that cause 
sidesway. Note that sidesway in this 
structure is caused by wind loading. No 
significant sidesway is anticipated due to 
gravity loads since the structure is 
symmetric. However, the possibility of 
sidesway instability under gravity loads 
alone shall be investigated as per Sec. 
10.13.6.   
 

a)Load combinations that include wind; 
 
Comb.  I: U = 1.2D + 1.6Lr + 0.8W 
Comb. II: U = 1.2D + 1.6W + 1.0L + 0.5Lr 
Comb.III: U =  0.9D + 1.6W 
 
b) Load combinations for gravity loads; 
 
Comb. IV:U = 1.4D 
Comb.  V: U = 1.2D + 1.6L + 0.5Lr 
Comb. VI: U = 1.2D+ 1.6 Lr + 1.0L 
 

9.2.1 
 
 
 
 

9.2.1 

 

Using the preliminary column section 
given in the figure, determine the 
effective length factor k for each column 
at the ground level. This requires the 
computation of beam and column 
stiffnesses.  
 
Note: All columns have the same 
section.  
 
 
 
 
 
 
 
Factor k reflects column end restraint 
conditions and depends on relative 
stiffnesses of columns to beams at top 
and bottom joints. 
 
 
 
 
Read k from Slender Columns 4.2 and 
4.1. 
 
 
 
 
 

Ibeam = 87,040 in4 (for T-section) 
Icol = (20)(20)3/12 = 13,333 in4 

 
Find reduced EI values from Slender Col. 
4.3  for 6.0 ksi concrete; 
(EcI)beam = 1545 Ibeam = (1545)(87,040) 
                                 = 134 x 106 k-in2 

(EcI)col = 3091 Icol = (3091)(13,333)  
                            = 41 x 106 k-in2 
(EI/ l )beam = 134 x 106 / (22 x 12) 
                = 507,576 k-in 
(EI/ l c)col, typical = 41 x 106 / (10 x12) 
                      = 341,667 k-in 
(EI/ l c)col, atrium = 41 x 106 / (18 x12) 
                      = 189,815 k-in 
 
Ψ = (3EI/ l c)col / (3EI/ l )beam  
 
 Ψ   = [(EI/ l c)col, above+ (EI/ l c)col, below] / 
        [(EI/ l )beam, left + (EI/ l )beam, right] 
 

i) For exterior columns (columns on lines 
A and D): 
ΨA = (341,667 + 189,815) / 507,576 = 1.05 
ΨB = ΨA = 1.05; from Slender Cols. 4.2: 
k = 1.35 (for unbraced frames) 
k = 0.78 for a braced column, from 
Slender Cols. 4.1. This value is computed 
for further magnification of moments, if 
necessary for column 3-A as per Sec. 
10.13.6. 

 
 
 
 
 
 
 
10.11.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10.13.6 

 
 
 
Slender 
Cols. 4.3  
 
 
 
Slender 
Cols. 4.3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Slender 
Cols. 4.2 
 
 
Slender 
Cols. 4.1 
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Compute the slenderness ratio 

ii) For interior columns (columns on lines 
B and C): 
ΨA = (341,667 + 189,815)/(507,576 + 
507,576) = 0.52 
ΨB = ΨA = 0.52; from Slender Cols. 4.2; 
  k = 1.15 (for unbraced frames) 
 

 
 
 
 
Slender 
Cols. 4.2 

Compute critical load Pc from Eq. 4.7 
and EI from either Eq. 4.8 or 4.9. 
Note, if Eq. 4.9 is used for simplicity 
with βd =  0 (since wind loading is a 
short term load) 

gc
d

gc I0.4E
β1
I0.4E

EI =
+

=  

 
 
 
 
For braced columns, Eq. 4.9 can be 
simplified by substituting βd = 0.6. Then; 
EI = 0.25 Ec Ig 
 
Pc for braced columns may be needed if 
further magnification of moments is 
required as per Sec. 10.13.6.. 
 

i) For exterior columns (columns on lines 
A and D): 
Ec = 4415 ksi for f'c = 6 ksi  
 
For sway columns; 
EI = 0.4EcIg  = 0.4(4415)(13,333)  
      = 23.5 x 106 k-in2 
l u = (18) (12) - 32 = 184 in 
Pc = π2 EI/(k l u)2  
     = π2(23.5x106)/(1.35x184)2   
     = 3759 kips for a sway frame. 
 
For braced columns; 
EI =  0.25EcIg  = 0.25(4415)(13,333)  
     = 14.7 x 106 k-in2 
 
Pc= π2EI/(k l u)2 

     =  π2(14.7x106)/(0.78x184)2  
    = 7044 kips for braced columns.  
 
ii) For interior columns (columns on lines 
B and C): 
 
Pc = π2 EI / (k l u)2  
     = π2 (23.5 x 106) / (1.15 x 184)2  
     = 5180 kips for a sway frame. 
 
ΣPc = 10 (3759) + 10 (5180) = 89,390 kips 
 

 
10.12.13 
 

 
 
 
Slender 
Cols. 4.3 

Compute magnified sway moment δsMs 
Under Load Combination I. 
 
Conduct first-order frame analysis using 
Load Combination I, and the stiffness 
values specified in Slender Cols. 4.3.  
 
 
 
Note: Counterclockwise moment at 
column end is positive. 
 
 
 

i) Load Comb. I: U = 1.2D + 1.6Lr + 0.8W 
 

Load 1.2D +1.6Lr 0.8W 
Pu (kips)  
Corner Column 

425 ±12 

Pu (kips)  
Edge Column 

682 ±12 

Pu (kips) 
Interior Column 

1134 ±4 

(Mu)top  (k-in) 
Column 3-A 

-1296 ±765 

(Mu)bot  (k-in) 
Column 3-A 

-1296 ±1111 

9.2.1 
 
 

10.11.1 
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Compute sway magnification factor δs 
from Eq. 8.12. This requires the 
computation of  ΣPf in addition to ΣPc 
Obtained in the previous step. 
 
 
 
 

Sway magnification factor δs: 
 
ΣPf = 4 (425 + 12) + 10 (682 + 12) + 6 

(1134 + 4) = 15,516 kips 
 
δs = 1 / [1 - ΣPf / [(0.75)ΣPc ]  
    = 1/[1– 15,516 /(0.75 x 89,390)] = 1.30 
 
δs M1s = 1.30 x 765 = 995 k-in 
δs M2s = 1.30 x 1111 = 1444 k-in 
 

 
 
 
 
 

10.13.4.3 

 
 
 
 
 
 
 
 

Compute design moments M1 and M2 M1 = M1ns+δsM1s =1296 + 995 = 2291 k-in 
 M2 = M2ns+δsM2s =1296 +1444= 2738 k-in 
 

 
10.13.3 

 
Fig. 4.5 

Check if further magnification of 
moments is required for Column 3-A 
due to the curvature of columns between 
the ends as per Sec. 10.13.5 
 

)A/(f'P
35

r gcu

u >
l

 

 
Pu = 682 + 12 = 694 k 
l u/r = 184 / (0.3 x 20) = 30.7   

35 / ))694/(6x(20 2  = 65.1 > 30.7 
 Therefore, no further magnification is 
required. 

 
10.13.5 

 

Compute magnified sway moment δsMs 
Under Load Combination II. 
 
Conduct first-order frame analysis using 
Load Combination I, and the stiffness 
values specified in Slender Cols. 4.4.  
 
 
 
 
 
Note: Counterclockwise moment at 
column end is positive. 
 
 
 
Compute sway magnification factor δs 
from Eq. 8.12. This requires the 
computation of  ΣPf in addition to ΣPc 
Obtained in the previous step. 
 
 
 
 

ii) Load Combination II: 
U=1.2D+1.6W+1.0L+0.5Lr  

 
Load 1.2D +1.0L 

+ 0.5Lr 
1.6W 

Pu (kips)  
Corner Column 

493 ±24 

Pu (kips)  
Edge Column 

845 ±24 

Pu (kips) 
Interior Column 

1459 ±8 

(Mu)top  (k-in) 
Column 3-A 

-1756 ±1530 

(Mu)bot  (k-in) 
Column 3-A 

-1756 ±2222 

 
Sway magnification factor δs: 
 
ΣPf = 4 (493 + 24) + 10 (845 + 24) + 6 

(1459 + 8) = 19,560 kips 
 
δs = 1 / [1 - ΣPf / (0.75ΣPc )]  
    = 1/[1– 19,560 /(0.75 x 89,390)] = 1.41 
 
δs M1s = 1.41 x 1530 = 2157 k-in 
δs M2s = 1.41 x 2222 = 3111 k-in 

9.2.1 
 
 

10.11.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10.13.4.3 
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Compute design moments M1 and M2 M1 = M1ns+δsM1s =1756 +2157 = 3913 k-in 

 M2 = M2ns+δsM2s =1756 +3111= 4867 k-in 
 

10.13.3 Fig. 4.5 

Check if further magnification of 
moments is required for Column 3-A 
due to the curvature of columns between 
the ends as per Sec. 10.13.5 
 

)A/(f'P
35

r gcu

u >
l

 

 
Pu = 845 + 24 = 869 k 
l u/r = 184 / (0.3 x 20) = 30.7   

35 / ))869/(6x(20 2  = 58.2 > 30.7 
 Therefore, no further magnification is 
required. 

 
10.13.5 

 

Compute magnified sway moment δsMs 
Under Load Combination II. 
 
Conduct first-order frame analysis using 
Load Combination I, and the stiffness 
values specified in Slender Cols. 4.4.  
 
 
 
 
 
Note: Counterclockwise moment at 
column end is positive. 
 
 
 
Compute sway magnification factor δs 
from Eq. 8.12. This requires the 
computation of  ΣPf in addition to ΣPc 
Obtained in the previous step. 
 
 
 

iii) Load Comb. III: U =  0.9D + 1.6W 
 

Load 0.9D 1.6W 
Pu (kips)  
Corner Column 

258 ±24 

Pu (kips)  
Edge Column 

452 ±24 

Pu (kips) 
Interior Column 

790 ±8 

(Mu)top  (k-in) 
Column 3-A 

-972 ±1530 

(Mu)bot  (k-in) 
Column 3-A 

-972 ±2222 

Sway magnification factor δs: 
ΣPf = 4 (258 + 24) + 10 (452 + 24) + 6 

(790 + 8) = 10,676 kips 
 
δs = 1 / [1 - ΣPf / (0.75ΣPc )]  
    = 1/[1– 10,676 /(0.75 x 89,390)] = 1.19 
 
δs M1s = 1.19 x 1530 = 1821 k-in 
δs M2s = 1.19 x 2222 = 2644 k-in 

9.2.1 
 
 

10.11.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10.13.4.3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Compute design moments M1 and M2 M1 = M1ns+δsM1s = 972 +1821 = 2793 k-in 
 M2 = M2ns+δsM2s = 972 +2644 = 3616 k-in 
 

10.13.3 Fig. 4.5 

Check if further magnification of 
moments is required for Column 3-A 
due to the curvature of columns between 
the ends as per Sec. 10.13.5 
 

)A/(f'P
35

r gcu

u >
l

 

 
Pu = 452 + 24 = 476 k 
l u/r = 184 / (0.3 x 20) = 30.7   

35 / ))476/(6x(20 2  = 78.6 > 30.7 
 Therefore, no further magnification is 
required. 

 
10.13.5 
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Check the stability of column under 
gravity loads only (Load combinations 
IV, V and VI) as per Sec. 10.13.6. 
 
Consider factored axial loads and 
bending moments obtained from a first-
order frame analysis, conducted using 
the flexural rigidities given in Slender 
Cols. 4.3 
 
Note: Counterclockwise moment at 
column end is positive. 
 
 
Compute the sway magnification factor 
δs  
 
 
 
Critical load, from earlier calculation. 
 

iv) Load Comb. IV: U = 1.4D 
 

 Load 1.4D  
Pu (kips)  
Corner Column 

402 

Pu (kips)  
Edge Column 

703 

Pu (kips) 
Interior Column 

1229 

(Mu)top kip-in 
Column 3-A 

-1512 

(Mu)bot kip-in 
 Column 3-A 

-1512 

  
Sway magnification factor δs: 
 
 ΣPf = 4 (402) + 10 (703) + 6 (1229) = 
16,012 kips 
 
ΣPc = 10 (3759) + 10 (5180) = 89,390 kips 
 
δs = 1 / [1 - ΣPf / (0.75ΣPc )]  
     = 1 / [1 – 16,012 / (0.75 x 89,390)]  
     = 1.31 
  
δs = 1.31 < 2.5   O.K. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10.13.4.3 
 
 
 
 

 

 
 
Slender 
Cols. 4.3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Check the stability of column under 
Load combination V as per Sec. 10.13.6. 
 
Consider factored axial loads and 
bending moments obtained from a first-
order frame analysis, conducted using 
the flexural rigidities given in Slender 
Cols. 4.3 
 
Note: Counterclockwise moment at 
column end is positive. 
 
 
 
Compute the sway magnification factor 
δs  
 
 
 
 
 
Critical load, from earlier calculation. 
 

v) Load Comb. V:U =1.2D + 1.6L + 0.5Lr 
 

 Load 1.2D + 1.6L + 0.5Lr 
Pu (kips)  
Corner Column 

568 

Pu (kips)  
Edge Column 

976 

Pu (kips) 
Interior Column 

1687 

(Mu)top kip-in 
Column 3-A 

-2032 

(Mu)bot kip-in 
 Column 3-A 

-2032 

 
Sway magnification factor δs: 
 ΣPf = 4 (568) + 10 (976) + 6 (1687) = 
22,154 kips 
ΣPc = 10 (3759) + 10 (5180) = 89,390 kips 
δs = 1 / [1 - ΣPf / (0.75ΣPc )] 
     = 1 / [1 – 22,154 / (0.75 x 89,390)]  
     = 1.49 
δs = 1.49 < 2.5   O.K. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10.13.4.3 

 
 
 
 
Slender 
Cols. 4.3 
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Check the stability of column under 
Load combination VI as per Sec. 
10.13.6. 
 
Consider factored axial loads and 
bending moments obtained from a first-
order frame analysis, conducted using 
the flexural rigidities given in Slender 
Cols. 4.3 
 
Note: Counterclockwise moment at 
column end is positive. 
 
 
Compute the sway magnification factor 
δs  
 
 
 
 
 
Critical load, from earlier calculation. 
 

vi) Load Comb. VI: U=1.2D+1.6 Lr + 1.0L 
 

 Load 1.2D+ 1.6 Lr + 1.0L 
Pu (kips)  
Corner Column 

548 

Pu (kips)  
Edge Column 

900 

Pu (kips) 
Interior Column 

1514 

(Mu)top kip-in 
Column 3-A 

-1756 

(Mu)bot kip-in 
 Column 3-A 

-1756 

  
Sway magnification factor δs: 
 
 ΣPf = 4 (548) + 10 (900) + 6 (1514) 
       = 20,276 kips 
 
ΣPc = 10 (3759) + 10 (5180) = 89,390 kips 
 
δs = 1 / [1 - ΣPf / (0.75ΣPc )]  
    = 1 / [1 – 20,276 / (0.75 x 89,390)] 
    = 1.43 
  
δs = 1.43 < 2.5   O.K. 
 

 
10.13.5 

 
 
 
 
 
 
Slender 
Cols. 4.3 

Design the Column for the governing 
load combination. 
 
 
 
 
 
Note: Counterclockwise moment at 
column end is positive. 
 
 
 
Select the interaction diagrams given in 
Columns  3.4.3 from Chapter 3 for equal 
reinforcement on all sides for γ = 0.80 
(assumed) 

Compute;  
g

'
c

n

Af
P

nK =  

Compute; 
hAf

M

g
'

c

n
nR =  

 

Summary of Design Loads: 
 

Load Combinations Pu 
(kN) 

(Mu) 
(kN.m) 

I   -  U = 1.2D + 
          1.6Lr + 0.8W 682 -2738 

II  - U =1.2D+1.6W 
           +1.0L+0.5Lr  

845 -4867 

III - U = 0.9D + 
           1.6W 452 -3616 

IV -  U = 1.4D 703 -1512 
V  - U =1.2D + 1.6L 
           + 0.5Lr 

976 -2032 

VI - U=1.2D+1.6 Lr  
          + 1.0L 900 -1756 

For Load Combination II; 

0.54
(6)(20)
845/0.65

Af
/φP

2
g

'
c

u
nK ===  

0.16
(20)(6)(20)

4867/0.65
hAf

/φM
2

g
'

c

n
nR ===  

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Columns 
3.4.3 
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Read ρg  for Kn and Rn values from the 
interaction diagrams 
 

For Kn = 0.54 and Rn = 0.16  
Read ρg =  0.030   
 
Required Ast = 0.030 x 400 in.2 
                      = 12.0 in.2  
Try # 9 bars; 12.0 / 1.0 =  12.0 
 
Try 12 # 9 Bars. 
 
Check for Load Combination V; 
 

0.63
(6)(20)
976/0.65

Af
/φP

2
g

'
c

u
nK ===  

 

0.065
(20)(6)(20)

2032/0.65
hAf

/φM
2

g
'

c

n
nR ===  

 
For Kn = 0.63 and Rn = 0.065  
ρg =  0.030 is sufficient   
 
Therefore, use 12 # 9 Bars. 
 
Note: For further details of cross-sectional 
design refer to Chapter 3. 
 

 
Columns 

3.4.3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Columns 
3.4.3 
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4.6 Slender Column Design Aids 
 

Slender Column - 4.1 Effective Length Factor – Jackson and Moreland Alignment Chart for 
Columns in Braced (Non-Sway) Frames3 

 

                                                 
3 “Guide to Design Criteria for Metal Compression Members,” 2nd Edition, Column Research Council, Fritz Engineering 
Laboratory, Lehigh University, Bethlehem, PA, 1966 
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Slender Columns - 4.2 Effective Length Factor – Jackson and Moreland Alignment Chart for 

Columns in Unbraced (Sway) Frames4 

 
                                                 
4 “Guide to Design Criteria for Metal Compression Members,” 2nd Edition, Column Research Council, Fritz Engineering 
Laboratory, Lehigh University, Bethlehem, PA, 1966 
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Slender Columns - 4.3 Recommended Flexural Rigidities (EI) for use in First-Order and 
Second Order Analyses of Frames for Design of Slender Columns 

 
 

f’c (ksi) 3 4 5 6 7 8 9 10 

Ec (ksi) 3120 3605 4031 4415 4769 5098 5407 5700 

Ec I / Ig (ksi) 

I/Ig 

Beams 1092 1262 1411 1545 1669 1784 1892 1995 0.35

Columns 2184 2524 2822 3091 3338 3569 3785 3990 0.70

Walls 
(Uncracked) 2184 2524 2822 3091 3338 3569 3785 3990 0.70

Walls 
(Cracked) 1092 1262 1411 1545 1669 1784 1892 1995 0.35

Flat Plates  
Flat Slabs 780 901 1008 1104 1192 1275 1352 1425 0.25

 
Notes:  

 
1. The above values will be divided by (1+βd), when sustained lateral loads act 

or for stability checks made in accordance with Section 10.13.6 of ACI 318-
05. For non-sway frames, βd is ratio of maximum factored axial sustained 
load to maximum factored axial load associated with the same load 
combination, βd =  1.2D / (1.2D + 1.6L). 

2. For sway frames, except as specified in Section 10.13.6 of ACI 318-05, βd is 
ratio of maximum factored sustained shear within a story to the maximum 
factored shear in that story. 

3. The above values are applicable to normal-density concrete with wc between 
90 and 155 lb/ft3. 

4. The moment of inertia of a T-beam should be based on the effective flange 
width, shown in Flexure 6. It is generally sufficiently accurate to take Ig of a 
T-beam as two times the Ig for the web. 

5. Area of a member will not be reduced for analysis. 
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Slender Column - 4.4 Effective Length Factor “k” for Columns in Braced Frames 
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Slender Columns - 4.5 Moment of Inertia of Reinforcement about Sectional Centroid5 

 

                                                 
5 This table is based on Table 12-1 of MacGregor, J.G., Third Edition, Prentice Hall, Englewood Cliffs, New Jersey, 1997. 
 


