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Chapter 2 i Basic mechanics of slope failure [

4
Continvum mechanics approach to slope stability

A question which frequently arises in discussions on slope
stability is how high and how stcep can a rock slope be
One approach tc this problem, which has becn adopted by
number of investigators!!™13) is to assume that the rock
mass behaves as an elastic continuum. The success which has
been achieved by the application of techniaues such as
photoelastic stress analysis or finite clement methods in .
the design of underground excavations has temptcd many
research workers to apply the same techniques to slopes.
Indeed, from the research point of view, the resul ts have
been very interesting but in terms of practical rock slcpe
engineering, these methods have limi ted usefulness. These
limitations arise because our knowledge of the mechanical.
properties of rock masses is so inadequate that the choice
of material properties for use in the analysis Lecomes a- '
matter of pure guesswork. For example, if one attempts 'to
calculate the limiting vertical height of a slope in a very
soft limestone on the basis of its intact strength, a value
in excess of 3500 feef is obtainedl®. Clearly, this height,
bears very little relation to reality and one would have to
reduce the strength properties by a factor of at least 10 in
order to arrive at a reasonable slope height. —_—

cut.

a

|t is appropriate to quote from a paper by Terzaghi 17 yhere,
in discussing the problem of foundation and slope stabhility,
he said '"'..... natural conditions may preclude the possib-
ility of securing all the data required for predicting the.
performance of a real foundation material by analviical

or any other methods. 1F a stability computation is
réquired under these conditions, it is necessarily based on
assumntions which have little in common with rcality. Such
computations do more harm than good because they divert the
designer's attention from the inevitable but important gaps
in his knowledge....'"..

_“_U_]_lﬁlli and his co-workers in Eurcope have emphasised for

many years the fact that a rock mass is not a continuum and
that its behaviour is dominated by discontinuitics such as
faults, joints and bedding planes. Most practical rock
slope designs are currently based upon this discontinuum
approach and this will be the aoproach adopted in all the
techniques presented in this book. However, before leaving
the question of the continuum mechanics approach, the )
authors wish to emphasise that they are not opposed
principle to its application and indeed, when one is
cor:cerned with overall displacement or groundwater flow
patterns, the results obtained from a numerical mcthod such
as the finite element technique can be very useful. '
Developments in numerical methods such as those reported by
Goodman et all? and Cundal 120 show that the gap between thé;
idealised eclastic continuum and the real discontinuum is
gradually being bridged and the authors are optimistic that
the techniques which are currently interesting research
methods will eventually become useful engineering design
tools.

in

Maximum slope height - slope angle relationship for
excavated slopes

Even if one accepts that the stability of a rock mass is

dominated by geological discontinuities, there must be
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situaticns where the orientation and
discontinuilies is such that Cimple s
or wedges is not possible. Fuilure in . Jpe
involve a combination of movement On dlhtun1l11Ullfc? and
failure of intact rock material and one would anticipate
that, in such cases, higher and .
could be excavated. What practical evidence
this is a reasonable assumprion?

Olkg

steeper slopes than average
is there that

of dota on excava ted slopes vas
21 and additional data have been
obtained by Ross-Brown<=. The informatign refers to s lopes
in opencast mines, quarries, dam foundation excavatrions ang
highway cuts. The slope heights and cprrg?pondlng slope
angles for the slopes in materials classified as hard rock
have been plotted in Figure 7 which includes both stable ang
unstable slopes. lgnoring, for the moment, the unstahble
slopes, this plot shows Lhat the highest anq Slecpgs s lopes
which have been successfully excavated, as far as is known
from this collection of data, fall along a Fairly clear line
shown dashed in Figure 7. This line gives a uselul practical
auide to the highest and steepest slopes which can be
&ontemplated for normal open pit mine planning. In some
exceptional circumstances, higher or steeper s lopes may be
feasible but thece could only he justified if a very
comprehensive stability study had shown that there was no
risk of inducing a massive slo?e failure.

A very impartant collection
compiled by Kley and Lutton

Role of discontinuities in slop: failure

Figure 7 shows that, while many slopes are stable at steep
angles and at heights of several hundreds of feet, many flat
sTopss—taTT at heights of only tens of feet. This difference
is due to the fact that the stability of rock slopes varies
with inclination of discontinuity surfaces, such as faults,
joints and bedding planes, within the rock mass. When these
discontinuities are vertical or horizontal, simple sliding
cannot take place and the slope failure will involve tracture
of intact blocks of rock as well as movement along some of
the discontinuities. On the other hand, when the rock mass
contains discontinuity surfaces dipping towards the slope
face at angles of between 300 and 709, simple sliding can
occuF and TiTe STabiTity of these slopes is significantly
lower—Than those in which only horizontal and vertical
discontinuities are present.

The influence of the inclination of a failure plane on the
stability of a slope is strikingly illustrated in Figure 8
in which the critical height of a dry rock slope is plotted
against discontinuity angle. In deriving this curve, it has
been assumed that only one set of discontinuities is-present
in a very hard rock mass and that one of these discontin-
uities ''daylights' at the toe ¢f the vertical slope as shown
in the sketch in Figure 8. 1t will be seen.that the critical
vertical height H decreases from a 'value in ekcess of

200 feet, for vertical and horizontal discontinuities, to
about 70 feet for a discontinuity inclination of 550"

Clearly the presence, or absence, of discontinuities has @
very important influence upon the stability of rock slopes
and the detection of these geological features is cne of the
most critical parts of a stability investigation. Techniquc®
for dealing with this problem are discussed in later chaptef®
of this book. : '
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/ —) Friction, cohesion and unit weight

—

The material properties which are most relevant to the
discussion on slope stability presented in this book are the
anale of friction, the cohesive strength and the unit weight-
of the rock and soil masses.

Friction and cohesion are best defined in terms of the plot
of shear stress versus normal stress given in figure 3.
This plot is a simplified version of the results which
would be obtained if a rock specimen containing a

geological discontinuity such as a joint is subjeccted to a-
loading system which causes sliding along the discontinuity

The shear stress 1 required to cause sliding increases with’

increasing normal stress ¢. -The slope of the line relating
' shear to normal stress defines the angle of friction 4. tf
the discontinuity surface is initially cemented or if it is
rough, a finite value of shear stress 1 will be required to
cause sliding when the normal- stress jevel is zero. This
initial value of shear strength defines the cohesive
strength ¢ of the surface.

-

The relationship between shear and normal stresses for a
typical rock surface or for a soil sample can be expressed

as
(= (4‘\(9{4( S;uﬁjt{‘
er & gLevn 59"‘(;c
Q- F»‘Jv%wf' ,
& = Notwok chriss .

Friction angle
. } 9 ¢
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lI-lormal stress o
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Shear stress T
—<—

Shear stress 1 —————>—
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Cohesion ¢ l

}

Normal stress ¢ — ™

Figure 9 : Relationship between the shear stress T required
to cause sliding along a discontinuity and the
normal stress ¢ acting across it.-
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a5 discussed in Chapter 5.

TABLE 1 - TYPICAL S01L AND ROCK PROGPERTIES
Dezcription ( Unit weight \ Fric:ion “Cohesion
My Sacturated/dry angle
Mipe N . : ;
ype Material Y./)/]"’f.‘ 1 .Z;J'V'/IH'; (‘}’r":’,'l'(:l?f.'l 7‘1—../‘.,',1 T‘t”\
]
Loose sand , uniform grain size 118790 19714 i
b Dense sand, uniform grain size 130/109 21/17 32-hot
& Loose sand, mixed grain size 124/99 20/16 3=
Dense sand, mixed qrain size 135/116 21/18 38-06%
. .
wv ~3
v ; :
= | g|6ravel, uniform grain size 140/130 22/20 =377
-2 & [Sand and gravel, mixed grain size 120/110 19/17 48-45%
2
a | Basalt 140/110 22/17 4o-50%
= | Chalk 80/62 13/10 30-40%
“i‘-: Granite 125/110 20/17 li5-50%
§ Limestone 120/100 19/16 35-40*
1}: Sandstone 110/80 17713 35-45%
:‘ Shale 125/100 20716 30-35%
Hy
Soft bentonite 80/30 13/6 7-13  |200-400 10-20
Very soft organic clay 90/40 176 12-16  |200-600 10-30
Soft, slightly organic clay 100/60 16/10 22-27 [b00-1000 | 20-50
~|Soft glacial clay 110/76 1712 27-312  |600-1500 30-70
& :
G letiff glacial clay 130/105 20/17 30-32  I500-3000] 70-150
Glacial till, mixed grain size 145/130 23720 32-35  RO0O-5000| 150-250
5 Hard igneous, rocks = e 720000~ | 35000-
= ‘ ) 160 to 190 | 25 to 30 35-hs |7¢ 3500
H granite, basalt, porphyry 1150000 | 55000
£
0
= Metamorphic rocks - 160 to 180 | 25 to 28 30-40 hooooo- | 20000~
quartzite. gneiss. slale 800000 | LoOWO
.x\ - UUD-
é Hord sedimentary rocks - 150 to 180 | 23 to 28 3545 |200000- 1(310000
|imestone, dolomite, sandstone 600000
soft sedimentary rock - 110 to 150 | 17 to 23 25-35 210000 = 1[:(6860
candstone, coal, chalk, shale : 100000 =
4-___—‘
in cohesionless materials occur at +ow—soafisirg—or normal

For intact rock, the unit weight of the material does not vary significantly hetween
saturated and dry states with the exception of materials such as porous sandstonce.
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Typical values -for}»e— angle of friction/and cohesiop which
are found in s'nea/g; tests on a range of /frocks and :',m/;/s. are
listed in Table 1 together with'iJnit,x’JEights For fhese '
melzterials. The values quoted in this table are«"‘/intended te
give the reader some idea of the magnitudes which con be
expected and they should only be used for obtaining

preliminary estimates of the stability of a slopc.

There are many factors which cause the shear strength of a
rock or soil to deviate from the simple linear dependence
upon normal stress illustrated in Figure 9. These
variations, togetheér with methods of shear testing, arn

.discussed in Chapter 5.

\/Ag.”é‘SHding due to gravitational loading

Consider a block of weight W resting on a plane surface
which is inclined at an angle ) to the horizontal. The
block is acted upon by gravity only and hence the weight W
acts vertically downwards as shown in the margin sketch.
The resolved part of W which acts down the plane and which
tends to cause the block to slide is W Sin Y. The component

of W which acts across the plane and which tends to stahilise
the slope is W Cos .

The normal stress a which acts across the potential sliding
surface is given: by

B v//f 6 = (W Cos ¢ )/A ] (2

where A is the basé area of the block.

\
/

Assuming that the shear strength of this surface is defined
by equation (1) and substituting for the normal stress From
equation (2)

3 W Cos 1
€T TR

. Tan ¢

R=chA+WCos y . Tan ¢

Puythyf
(3)

P
where[R = TA]iS the shear force which resists
sliding down the plane.

The block will be just on the point of sliding or in a
condition of limiting equilibrium when the disturbing force
acting down the plane is exactly equal to the resisting

force : DSILWJ)'"!F = RM"')‘I'\“JF

WSiny=cA+WCosy . Tan ¢ (4)

f the cohesion ¢ = 0, the condition of limiting equilibrium
defined by equation (4) simplifies to

>, Influence of water pressure on shear streng'th#

The influence of water pressure upon the shear strength of ;
two surfaces in contact can most effectively be demonstratc

. by the beer can experiment.

An opened beer can filled with water rests on an r'\nChn?L:dpam'
i g e nax Q.
piece of wood as shown in the margin sketch on the n
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The forces which act in this case are praci?ely the;same as
those acting on the block of rock as shown in the diagram o
the previous page. For simplicity the cohesion between the
beer can base and the wood is assumed to be zero. According
téequation (5) the can with its contents of water will
slide down the.plank when {1 = ¢-

The base ©f the can is now punctured so that water can enter

the gap between the base and the plank, giving rise to a
water pressure.u or to an uplift force U = uA, where A is
the base area of the can. '

The normal force W Cos y» is now reduced by Lhis uplift
force U and the resistance to sliding is now

‘R = (W Cos Wy - U) Tan ¢ (6)

If the weight per unit volume of the can plus water is
defined as yp while the weight per unit volume of the water
s Yy, then W = y¢.h.A and U = V- D A where h and h are
the heights defined in the smail sketch. From this sketch
it will be seen that h, = h.Cos i2 and hence

U = Y\,«[/Y;_ . W Zns l,-'ﬁz (7)
. .
Substituting in (6)
R =W Cos vo (1 - YW/Yt) Tan ¢ (8)

and the condition for limiting equilibrium defined in
equation (h) becomes g

Tan ¢, = (1 - Yw/Yt) Tan ¢ (9i

Assuming the friction angle of the can/wood interface is
300, the unpunctured can,will slide when the plane is
inclined at ¢); = 30° (from equation (5)). On the other hand,
the punctured can will slide at a much smaller inclination
because the uplift force U has reduced the normal force and
hence reduced the frictional resistance to stiding. The
total weight of the can plus water is only s]ightiy grater
than the.weight of the water. Assuming yw/yt = 0.9 ani

¢ = 300, equation (9) shows that the punctured can will slide
when the plane is inclined at y-» = 3° 18'7/

The effective stress law

The effect of water pressure on the base of the punctured
beer can is the same as the influence of water pressure
acting on the surfaces of a shear specimen as illustrated
in the margin sketch. The normal stress ¢ acting across
the failure surface is reduced to the effective citress

(o - u) by the water pressure/u.) TRe relationship between
shear strength and normal strength defined by equation (1)

now becomes
\ T =c+ (¢~ u) Tan ¢\'\ (10)

In most hard rocks and in many sandy scils and gravels, the
cohesive and. frictional properties ( c and ¢ ) of the
materials are not significantly altered.by the presence af
water and hence, reduction in shear strength of these
materials is due, almost entirely to the reduction of normal




stress across failure surfaces. Consequently, it

presswre rather than moisture content which is
defining the strength characteristics of h
; and gravels.

is water
important in
ard rocks, sands
. In terms of the stability of slopes in these
materials, the presence of a small volume of water at high
pressure, trapped within the rock mass, is more important
than a large volume of water discharging from a free
draining aquifer.

In the case of soft rocks such as mudstones and shales and
also in the case of clays, both cohesion and friction can
change markedly with changes_in moisture content and it is
necessary, when testing thcse materials, to cnsure that the
moisture content of the matefial during test is as close as
possible to that which exists in the field. Note that the
effective stress law defined in equation (10) still applies

/l’.
&4
‘ to these materials but that, in addition, ¢ and

¢ change.

A3 The effect of water pressure in a tension crack

Consider the case of the block resting on the inclined plane v
but, in this instance, assume that the block is split by a o
tension crack which is filled with water. The water

pressure in the tension crack increases linearly w,i""}‘\ depth

and a total force V, due to this water pressure ac%ing on

the rear face of the block, acts down the inclined plane.
Assuming that the water pressure is transmitted across the
intersection of the tension crack and the base of the block,
the water pressure distribution illustrated in the margin
sketch occurs along the base of the block. This water
pressure distribution results in an uplift force U which
reduces the normal force acting across this surface.

-

W Sin -"")-"“}" 6 ’ == condition of limiting equilibrium for this case of a . .
' SR (1/ . -wock acted upon by water forces V and U in addition to its
awn weight W is defined by

/AJ‘,\- W kw Siny +V=cA+ (WCos p - U) Tan cl:\ (11)

From this equation it will be seen that the disturbing

‘ 01/ ﬂw‘j))’ < force tending to induce sliding down the plane 1s increased "
\V 7 s febry S
= {

A=
e ~

and the frictional force resisting sliding is decreased and
hence, both V and U result in Jecreases in stability.
U - Although the water pressures involved a;ehrelatilvely small,
iz these pressures act over large areas and hence the watcr
%CCZ{UH L’IOW forces can be very large. In many of the practical examples
considered in later chapters, the presence of water in the
i slope giving rise to uplift forces and water forces in
QQ tension cracks is found to be critical in controlling the
&Q 0 ;\ stability of slopes. -
@ Al
oS o - ~
. [ ” L
‘5\ &Q’ &5 p s Reinforcement to prevent s1iding.
S Oy s

s

. \G" -Q One of the most effective.means of sFabiliSmg b\c.x;ks or
A‘\‘ Q‘. ' slabs of rock which are likely to-slide dt?wn inclined

) \Qb discontinuity surfaces is to install tensror.wd r.‘ockbolts or
“‘0\ : cables. Consider the block*fecting on the inclined plane

3nd acted upon by the upL'L"Ft force U and the f?rce.v guenzz
water pressure in the tenston crack. A rockbol t, Lel:blo .
to a load T is installed at an angle f to the pl_ane as

.shown. The resolved component of the bolt tensicn T acting

Scanned by CamScanner
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Rockbolt

parallel to the plane is T Cos 3 while the component acting
across the surface upon which the block rests is T Sin £.
The conditicn of limiting equilibrium for this case is

defined by D;(Ildj)’lﬂ - (259[15'4"."5

WSing+V-.TCos £=-cA+ (Wi s §-

in &) Tan 4

5

Uu+T7TS

t

This equation shows that the boit tension reduces the
disturbing force acting down the plane and increases the
normal force and hence the frictional resistance between
the base of the block and the plane

—> Factor of safety of a slope

(5

W Cos y

(All the cquafions defining the stability of a block on &n

ThcTined plane have been presented for the condition of
Limiting equilibrium, i.e.Qhe condition at which the forces

tending to induce sliding are exactly balanced by those

resisting sliding.) In order to compare the stability of
<Topes under conditions other than those of limiting
equilibrium, some form of index is required and the most
comnonly usgd ‘index is the Factor of Suafety. This can be
defined astibe ratio of the total force available to resist
sliding to the total force tending to induce sliding.

Considering the case of the block acted upon by water Lorces
and stabilised by a tensioned rockbolt (equation 12), the
factor of safety is given by

ch+ (WCos w - U+ TSitg) Tan 9

F= WSiny +V -1 CowB

(13)

When the slope is on the point of failure, a condition of
limiting equilibrium egysrs in which the resisting and
disturbing forces are eqﬁf,u as defined by equation 12, and
the factor of safety F =%|ij When the slope is stable, the
resisting forces are greatér than the disturbing forces and
the value of the factor of safety will be greater than
unity.
RD et

)

Suppose that, in a practical mining situation, the observed
behaviour of a slope suggests that it is on the point of
failure and it is decided to attempt to stabilise ‘the slope.
Equation 14 shows that{the value of the factor of safety
can be increased by reducing both U and V, by drainage, or
by Tncreasing the value of T by installing rockbolts or ‘
tensioned cables. 1t is also possible to change the weight
W of the failing mass but the influence of this change on
the Tactor of satety must be carefully evaluated since both

the disturbing and resisting forces are decrecased by a
decrease in W.

The bolt tension required to provide a specified factor of
afety of F is a minimum when the angle g satisfies the
equation[ '

tan B = % tan ¢ l {(1h)

This result is obtained by differentiating equation (13)
with respect to f§ , and setting dT
a= 0 and G-:

= 0.

Pract(cal gxperience suggests that, in a situation such as
that described above, an increase in the factor of safety




P

=T

_slope desigff which are like)

from 1.0 to 1.3 will generally be adequate for mine slopes
which are not required to remain stable for long periods of
time. For critical slopes adjacent to haul roads or
impoItant installations, a factor of safety of 1.5 |

1S

This example has been quoted because it emphasises the fact

that the factor of safety is an index which is most valuable

as a design tool when used on a comparative basis. In this
case, the mine engineers and management have dec ided, on the
basis of the observed behaviour of the slope, that_a
condition of instability exists and that the value of the
factor of safety is 1.0. If remedial measures are taken,
their effect can be measured against the condition of slope
failure by calculating the increase in the factor of safety.
Hoek and Londe, in a general review of rock slope and
foundation design methods?3, conclude that the information
which is most useful to the design engineer is that which
indicates the response of the structure to changes in
significant parameters. Hence, decisions on remedial
measures such as drainage can be based.upon the »rate of
change of the factor of safety, even if the absolute value

of the calculated factor of safety cannot be relied upon 3
with a high degree of certainty. To quote from this
general review : '"The function of the design enginegr is not

to compute accurately but to judge soundly."

i

In carrying out a feasibility study for a proposed open pit
mine or civil engineering project, the geotechnical engineer
frequently is faced with the task of designing s lopes where
noné have previously existed. In this case there is no
background experience of slope behaviour which can be used
as a basis for comparison. The engineer may compute a
factor of safety of 1.3 for a particular slope design, based
upoﬁ‘fﬁg_agzg availablE_Eg_iﬂﬂh_but he has no idea whether

- thTs value represents an adequately stable slope since he
. has not had the opportunity of observing the behaviour of

actual slopes in this particular rock mass. Under these
circumstances, the engineer is well advised to exercise
caution in the choice of the parameters used in the factor
of safety calculation. Conservatively low values of both
cohesion and friction should be used and, if the groundwater
conditions in the slope are unknown, the highest anticipated
groundwater levels should be u~<i in the calculation.
Sensitivity analyses of the effects of drainage and rock-
bolting can still be carried out as in the previous case
but, having chosen conservative rock strength parameters,
the slope designer is unlikely to be faced with unpleasant
surprises when the slope is excayated.

In later chapgy?% of this book,/ a number of practicsl
examples are given to illustrdte the varjdus types of rock
to be engbuntered My the
reader. Thé problems of obfaining rogk streng Va‘i39‘ rock
structurg data and groundwater con tions fof use in/factor
of safgfy calculationsg”are discus ed in thése examples and
quidahce is given on”the values ©f the f ctor o safety
which are appropriate for each type of design

—> Slope failures for which factors of safety can be calculated
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In discussing the basic mechanism of slope fai¥ure, J mode!
of a single block of rock.sliding down an inclined plane has

“been used. JThis 1s the simplest possible model of Fock slope
_______———-'—_‘ .

(4
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failure and, in most practical cases, & more camplex faijure
process has to be considered. In some cases, the hethods of
calculating the factor of safely, presented in this book,
carmotbeUsed because the fallure process does not

involve simple gravitational sliding. These cases will be
discussed later in this chapter. (The method of 1imiting
equilibrium can be used in analysing the slope failures
listed below.

Plane juilure
As shown in the margin sketch,(plane failure occurs when a
geological discontinuity, such_a*_aﬁhﬁﬁﬂinﬂ.ﬁleit:~£ﬂ!!£ff
parallel to the slope face and d;ps into_the excavation at
an angle greater than the angle ©f ﬁriction.S_The calculation
of the factor of safety follows precisely tiHe same pattern
as that used for the single block (equation 1) . The base
area A and the weight W of the sliding mass are calculated
from the geometry of the slope and failure plane. A tension
crack running parallel to the crest of the slope can also
be included in the calculation.

A dgLaﬁled iscu SIO? on the-amalysisvef-plane faiture—is
given in apt ‘

f.’t_(u/a failure

Uhen two discontinuities strike obliquely across the slope
face and their Tine of intersection daylights in the slope
facethe viedge of rock resting on these discontinuities
will slide down the line of intersection, provided that the
inclination of th'é_lJIELJS suggﬁfxcantf?"‘xeater than the
angle of friction.) The calculation of the factor of safety
F~moTe—complicatéd than that for plane failure since the
base areas of both failure planes as well as the normal
forces on these planes must be calculated.

The analysis of wedge failures is discussed in Chapter 8.

_@4) Circular jailura i
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(When the material is very weak, a2s in a soil slope, or when

e rock mass is very heavily jointed or broken, as in a
waste rock dump, the failure will be defined by a single
discontinuity surface but will tend to follow a circular
failure path.) This type of failure, illustrated in
margin sketcH, has been treated in exhaustive detail in
many standard soil mechanics textbooks and no useful purpose
would be served by repetition of these detailed discussions
in this book. A set of circular failure charts is presented
in Chapter 9 and a number of worked examples are included
in this chapter to show how the factor of safety can be
calculated for simple cases of circular failure.

the

Critical slope height versus slope angle relationships

One of the most useful forms in which slope de ann data can
be presented is a graph showing the relationship between
slope heights and slope angles for failure,e.g. the dashed
line in Figure 7. A number of typical slope failure cases
have been analysed and the relationships between critical

slope heights and slope angles have been plotted in Figure 10

This figure is intended to give the rcader an overall

appreciation for the type of relationship which exists for
various materials and for the xolr‘whsch groundwater plays
in slope stability. The reader °Auu]d not alttempt to use

R Do
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Figure 10 Slope angltg'versus slope height relationships for different materials . \
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this figure as a basis for the design of a Pf"thu\.?r slope
since the conditions may difrer'frorll thoseOaJsTmz(} in
deriving the results presented in Figure 1 e n f\fl(lLle';]
slopes should be analysed using the methods described ip

Chapters 7, 8 and 9.

. : cafety cé e calculate
—> __Slopes for which a factor of safety cannot be calculated

The failure modes which have been discussed so far have aly
involved the movement of a mass of material upon a failure
surface. An analysis of failure or 2 §alculatnon of the
factor of safety for these slopes requlres that th¢ shear
‘strength, of the failure surface (‘EiiLﬂSQ-Qi—ﬁi—Qlﬁl_E) b?'
known.;égmre are also a few types of slope fa:{gﬁg which
cannot be analysed by the methods already de?CT'bﬁd,

even if the strength parameters of the mat?ryal are known,
since failure does not involve simple sliding. These cases
are discussed on the following pages.

Toppling failure g

Consider, once again, a block 3f rock resting on an inclined
plane as shown in Figure 1la. in this case, the dimensions
of the block are defined by & height h and a base lengUwp
and it is assumed that the force resisting downward movenient
of the block is due to Frictng_gﬂl¥_+_LL§4_£—:iJ2.

When the vector representing the weight W of the block falls
within the base b, sliding of the block will occur if the
inclination of the plane ¢ is greater than the angle of
friction $. However, when the block is tall and slender

(h > b), the weight vector W can fall outside the base b
and, when this happens, the block will topple i.e. it will
rotate about its lowest contact edge.

The conditions for sliding and/or toppling for this single
block are defined in Figure 11b. The four regions in this
diagram are defined as follows :

e
Region 1 : ¥ < ¢ and b/h > Tan {;, the block is stable and
i will neither slide nor topple.
Region 2 : ¢ > ¢ and b/h > Tan ¢, the block will slide but
it will not topple.

leEQion 3 : ¢ < ¢ and b/h < Tan ¢, the block will topple but

it will not slide.
Region 4 : & » ¢ and b/h < Tan(ﬂ
¢ ¢ topple simultaneously,

the block can slide and

In analysing the stability of this block, the methods of
limiting equilibrium can be used for regions 1 and 2

. . . . 2 only.
Failure involving toppling, i.e. regions 3 and 4 to the

right of the curve in Figure 11b, cannot be analysed in this

. same way. M§thods for dealing with toppling failure in
Toppling fatlure in a slate slopes are discussed in Chapter 10.
quarry - ' Z Ravelling slopes

Travellers in mountain regions will be familiar with the
accumulations of scree which occur at the base of steep
slopes. These screes are generally small pieces of rock
which have becdme detached from the rock mass and which
have fallen as individual pieces into the accumulated pilé:
The cyclic expansion and contraction associated with the
freezing and thawing of water in cracks and fijssures  in the
. v ] rock mass is one of the principal ciuses of slope ravelling
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Figure 113 : Geometry of block on inclined plane.

5
<
Stable block s,
Y < ¢ )
b/h>Tany'
<3 - \\<g\
- 5liding only
0 Jng 8
< b/h>Tan ¢
’ y
////// Sliding & toppling
| d b4
' d b/h < Tan ¢
’/,//’ %/ Toppling only \'
' : l l
O0/1‘0 20 30 4O 50 60 70 80 90

Base plane angle ¥ - degrees

Conditiéns for sliding and toppling of a

g H 5 block on an inclined plane.

Scanned by CamScanner



Rawelling of the weathered
surface material in ¢ slope

of colums in vertically
evite us a vesult of
in an wnderlying shale

Slumping 0J
qointed dol
e thertng

Luer. »

Scanned by CamScanner

the materials vhich cemen
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terioration GJ 5 )
but a gradual det moy also play @ part in this

the individual blocks together
type of slope failure.

Weathering, or the deteriorat
exposure, will give rise élso Eo
and the gradual accumulatjon Oi

at the base of ‘the slope. Some of
jons of weathering have ’been rev! ¢
gives a selection of useful refeeénces C he
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a loosening of & rock S

meteriails on the surface
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Few serious attempts have been made to aqazvsectﬂe process
f slope failure by ravelling since the ra-‘ O: Sma}l
individual pieces of rock does not constitute 3 serious
hazard. When the stability of an accumulation of ?cree or
of weathered material is likely to be altered by':?c )
excavation of a slope in this material, the stability of the
excavation can be assesseg)by on@ of the methods de§cr.bed
in Chapters 7, 8 and 9. eneraliy, e merfiod of circular
failure analysis, dJescribed/in Chagter 2, would‘be.uscq
unless the size of the excavatiod is Such that it is likely
to cut back into the undisturbed rock mass.

It is important. that the slbpe desighcr szgpld recognise the

influence weathering off the nature of the materials with
a AL, % . - .

which he A's copferned arfd this sgbiect will be discussed in

greateZdetail”in Chapéer 7.

Probabilistic approach to slope design

Probability theory has two distinct roles in the design of
rock slopes : : :
~a. . In the analysis of populations or families of
structural discontinuities to determine whether
there are dominant or preferred orientations
within the rock mass.
b. As a replacenent for the factor of safety as
an index of slope stability (or instability).

s discussed
entation of
probabili

The first role
graphical pr

that in whi
safety as an index of
advocatgd by McMahon?

other aGthors3<™3%]

in Chapter 3 which deals with the
eological datd. The second role,
f of failure regflaces factor of

lope stability/ has been strongly

and has been/utilised by a number of

It should clearly be understood that.the use of probability
theory in this latter role does: no ;
in a stability investigation. T
data follows the same basic pa
book. The mechanics of fail

“influence the other steps
collection of geological
ern-as. that described in this
‘e.are 'treated in the same way
and the same limitations apply to the types of failure which
can be analysed. Probability 1heéry’does not, at present,
offer any particular ddvantages in the analysis of toppling,
ravelling or buckling type failures. -

ar -

The authors of this book have chos;
detailed discussions on stabilit
factor of safety. This decisi
believed that the discussion As less confusing for the non-
specialist reader for whom. this book is intended. The
reader who feels that he-has understood the basic principles
of slope analysis iéistkongly recommanded to examine the

-:to present all the
analysis in terms of the
-has been made because it is

N
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