
Analysis of Statically 

Indeterminate Indeterminate 

Structures by the 

Displacement Method 



Methods of structural analysis

� The methods are classified into two groups:

1.1.1.1. Force method of analysis Force method of analysis Force method of analysis Force method of analysis (Statics of building structures IIII)

� Primary unknowns are forces and compatibility of � Primary unknowns are forces and compatibility of 

displacements is written in terms of pre-selected 

redundant reactions and flexibility coefficients using 

force displacement relations.

� The unknown redundant reactions are evaluated 

solving these equations.

� The remaining reactions are obtained from equations 

of equilibrium.of equilibrium.



Methods of structural analysis

� The methods are classified into two groups:

2.2.2.2. Displacement method of analysisDisplacement method of analysisDisplacement method of analysisDisplacement method of analysis

� Primary unknowns are displacements.� Primary unknowns are displacements.

� Equilibrium equations are written by expressing 

the unknown joint displacements in terms of loads 

by using load-displacement relations.

� Unknown joint displacements are calculated by 

solving equilibrium equations. 

� In the next step, the unknown reactions are � In the next step, the unknown reactions are 

computed from compatibility equations using 

force displacement relations.



Displacement method

� This method follows essentially the same steps for 

both statically determinate and indeterminate 

structures.

� Once the structural model is defined, the unknowns 

(joint rotations and translations) are automatically 

chosen unlike the force method of analysis (hence, 

this method is preferred to computer implementation).



Displacement method

1. Slope-Deflection Method 

� In this method it is assumed that all deformations 

are due to bending only. Deformations due to axial are due to bending only. Deformations due to axial 

forces are neglected. 

2. Direct Stiffness Method 

� Deformations due to axial forces are not neglected.

The Slope-deflection method was used for many 

years before the computer era. After the revolution 

occurred in the field of computing direct stiffness 

method is preferred. 



Slope-Deflection Slope-Deflection 

Method: Beams 



Slope-Deflection Method: Beams 

� Application of Slope-Deflection Equations to Statically Statically Statically Statically 

Indeterminate BeamsIndeterminate BeamsIndeterminate BeamsIndeterminate Beams::::

� The procedure is the same whether it is applied to 

beams or frames. beams or frames. 

� It may be summarized as follows: 

1. Identify all kinematic degrees of freedom for the given 

problem. Degrees of freedom are treated as unknowns 

in slope-deflection method. 

2. Determine the fixed end moments at each end of the 

span to applied load (using table).span to applied load (using table).

3. Express all internal end moments by slope-deflection 

equations in terms of:

� fixed end moments

� near end and far end joint rotations



Slope-Deflection Method: Beams  

4. Write down one equilibrium equation for each unknown 

joint rotation. Write down as many equilibrium 

equations as there are unknown joint rotations. 

Solve the set of equilibrium equations for joint rotations. Solve the set of equilibrium equations for joint rotations. 

5. Now substituting these joint rotations in the slope-

deflection equations evaluate the end moments. 

6. Evaluate shear forces and reactions.

7. Draw bending moment and shear force diagrams.



Slope-Deflection Method: Beams 

Example 1Example 1Example 1Example 1

q1 = 2 kN/m
q2 = 4 kN/m

F = 20 kN

1. Degrees of freedom 

� The continuous beam is kinematically indeterminate to 

first degree. Only one joint rotation ϕϕϕϕ is unknown.

a
3

EI = const.

3 4

b c

first degree. Only one joint rotation ϕϕϕϕb is unknown.



Slope-Deflection Method: Beams 

Example 1Example 1Example 1Example 1

a

q1 = 2 kN/m

EI = konst. b c

q2 = 4 kN/m
F = 20 kN

2. Fixed end moments are 

calculated referring to the table.
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Slope-Deflection Method: Beams 

Example 1Example 1Example 1Example 1

a

q1 = 2 kN/m

3

EI = konst.

3 4

b c

q2 = 4 kN/m
F = 20 kN

3. Express internal end moments by slope-deflection equations.
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Slope-Deflection Method: Beams 

Example 1Example 1Example 1Example 1

a

q1 = 2 kN/m

3

EI = konst.

3 4

b c

q2 = 4 kN/m
F = 20 kN

4. Equilibrium equations (write one equilibrium equation for 

each unknown joint rotation)

� End moments are expressed in terms of unknown rotation ϕb. 

Now, the required equation to solve for the rotation ϕb is the 

moment equilibrium equation at support b.
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Slope-Deflection Method: Beams 

Example 1Example 1Example 1Example 1

a

q1 = 2 kN/m

3

EI = konst.

3 4

b c

q2 = 4 kN/m
F = 20 kN

5. End moments 

� After evaluating ϕb, substitute it to evaluate beam end moments.
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Slope-Deflection Method: Beams 

Example 1Example 1Example 1Example 1
6.6.6.6. Shear forcesShear forcesShear forcesShear forces and reactions

� Now, reactions at supports are evaluated using equilibrium 

equations. Shear forces are equal to plus/minus this reactions.
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Slope-Deflection Method: Beams 

Example 1Example 1Example 1Example 1

6. Shear forces and reactionsreactionsreactionsreactions

� Now, reactions at supports are evaluated using equilibrium 

equations. Shear forces are equal to plus/minus this reactions.

a

q1 = 2 kN/m

3 3
b

F = 20 kN

4
b c

q2 = 4 kN/mMab Mba Mbc Mcb

Rab= 17,57 Rba= 14,43 Rbc= 11,53 Rcb= 4,47
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Slope-Deflection Method: Beams 

Example 1Example 1Example 1Example 1

7. Draw shear forceshear forceshear forceshear force and bending moment diagrams.

Vab=17,57Vab=17,57

Vba=-14,43

Vbc=11,53

Vcb=-4,47

11,57

-8,43
xn = 2,88 m

+
+

_
_

Vba=-14,43



Slope-Deflection Method: Beams 

Example 1Example 1Example 1Example 1

7. Draw shear force and bending moment bending moment bending moment bending moment diagrams.
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Slope-Deflection Method: Beams 

Example Example Example Example 2222

q = 3 kN/m
EIab = EI

F1 = 10 kN
F2 = 5 kN

1. Degrees of freedom 

� The continuous beam is kinematically indeterminate to 

second degree.

a

8

EIab = EI
EIbc = 2EI

3

b c

3 3

d

second degree.

� The 1111stststst possibility of solution possibility of solution possibility of solution possibility of solution – two unknown joint rotation ϕϕϕϕb, ϕϕϕϕc

(ϕϕϕϕa = 0) - two required equations to solve for the rotation ϕb, ϕc

are the moment equilibrium equations at support b and c.



Slope-Deflection Method: Beams 

Example Example Example Example 2222

a

q= 3 kN/m

b c

F1 = 10 kN
F2 = 5 kN

2. Fixed end moments are calculated referring to the table.
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Slope-Deflection Method: Beams 

Example Example Example Example 2222

a

q = 3 kN/m

8 3

b c

F1 = 10 kN

3 3

F2 = 5 kN

EIab = EI
EIbc = 2EId

3. Express internal end moments by slope-deflection equations.
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Slope-Deflection Method: Beams 

Example Example Example Example 2222

4. Equilibrium equations (write two equilibrium equations for 

a

q = 3 kN/m

8 3

b c

F1 = 10 kN

3 3

F2 = 5 kN

d

4. Equilibrium equations (write two equilibrium equations for 

two unknown joint rotations) 

� End moments are expressed in terms of unknown rotations. Now, the 

required equations to solve for the rotations are the moment equilibrium 

equations at supports b and c.
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Slope-Deflection Method: Beams 

Example Example Example Example 2222

a

q= 3 kN/m

8 3

b c

F1 = 10 kN

3 3

F2 = 5 kN

5. End moments 

� After evaluating ϕb, ϕc, substitute them to evaluate beam end 

moments.
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Slope-Deflection Method: Beams 

Example Example Example Example 2222
6.6.6.6. Shear forcesShear forcesShear forcesShear forces and reactions.

a

q = 3 kN/m

b b c

Mab Mba Mbc Mcb

F1 = 10 kN
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Slope-Deflection Method: Beams 

Example Example Example Example 2222

6. Shear forces and reactionsreactionsreactionsreactions....

q = 3 kN/mMab Mba Mbc Mcb

F1 = 10 kN
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Slope-Deflection Method: Beams 

Example Example Example Example 2222

7. Draw shear force and bending moment diagrams.
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Slope-Deflection Method: Beams 

Example Example Example Example 2, 2, 2, 2, the 2222ndndndnd possibility of solutionpossibility of solutionpossibility of solutionpossibility of solution

q = 3 kN/m
EIab = EI

F1 = 10 kN
F2 = 5 kN

1. Degrees of freedom 

� The continuous beam is kinematically indeterminate to 

second degree.

a

8

EIab = EI
EIbc = 2EI

3

b c

3 3

second degree.

� The 2222ndndndnd possibility of solution possibility of solution possibility of solution possibility of solution – solve only only only only one one one one unknown joint 

rotation ϕϕϕϕb (ϕϕϕϕa = 0, joint rotation ϕϕϕϕc is not necessary to solution 

because the moment in the cantilever portion Mc is known ⇒
beam portion bc is taken as fixed fixed fixed fixed ---- hingedhingedhingedhinged).



Slope-Deflection Method: Beams 

Example Example Example Example 2, 2, 2, 2, the 2222ndndndnd possibility of solutionpossibility of solutionpossibility of solutionpossibility of solution

a

q = 3 kN/m

b c

F1 = 10 kN
F2 = 5 kN

2. Fixed end moments are 

calculated referring to the table.
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Slope-Deflection Method: Beams 

Example Example Example Example 2, 2, 2, 2, the 2222ndndndnd possibility of solutionpossibility of solutionpossibility of solutionpossibility of solution

a

q = 3 kN/m

8 3

b c

F1 = 10 kN

3 3

F2 = 5 kN

EIab = EI
EIbc = 2EI

3. Express internal end moments by slope-deflection equations.
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Slope-Deflection Method: Beams 

Example Example Example Example 2, 2, 2, 2, the 2222ndndndnd possibility of solutionpossibility of solutionpossibility of solutionpossibility of solution

a

q = 3 kN/m

b c

F1 = 10 kN
F2 = 5 kN

4. Equilibrium equations (write one equilibrium equation for 

each unknown joint rotation)

� End moments are expressed in terms of unknown rotation ϕb. 

Now, the required equation to solve for the rotation ϕb is the 

moment equilibrium equation at support b.

8 3 3 3

moment equilibrium equation at support b.
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Slope-Deflection Method: Beams 

Example Example Example Example 2, 2, 2, 2, the 2222ndndndnd possibility of solutionpossibility of solutionpossibility of solutionpossibility of solution

a

q= 3 kN/m

b c

F1 = 10 kN
F2 = 5 kN
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5. End moments 

� After evaluating ϕb, substitute it to evaluate beam end moments.

Then the procedure is the same as Then the procedure is the same as Then the procedure is the same as Then the procedure is the same as 

for the 1for the 1for the 1for the 1st st st st possibility of solution.possibility of solution.possibility of solution.possibility of solution.
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