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The risk of alkali–silica reaction of concrete aggregates in many parts of the world remains largely unexplored. In
particular, a suitable approach for testing aggregates with marginal to moderate alkali–silica reactivity has not been
clearly identified. In this study, the mineralogical compositions of aggregates from five different quarries were
investigated. Mortar bar expansion for these aggregates was tested as per the guidelines of both C 227 and C 1260.
Although the tested aggregate sources proved non-reactive under ASTM C 227 test conditions, ASTM C 260
identified one group of aggregates as potentially reactive. Scanning electron microscopy imaging confirmed that two
sources of aggregates were reactive. The compressive and flexural strength test results of aged specimens with
reactive aggregates indicated that the strength reduction of those subjected to 1 month of ASTM C 260 exposure
was similar to those of specimens under 6 months of ASTM C 227 exposure. Based on the experimental results, it
appears that aggregates with potential alkali–silica damage may be characterised as non-reactive if the appropriate
test method is not adopted. The findings indicate that the ASTM C 1260 procedure is more effective in determining
the reactivity potential of marginally to moderately reactive aggregates.

1. Introduction
Alkali–silica reactivity (ASR) in concrete is one of the primary
mechanisms of concrete damage. It essentially consists of a
chemical reaction (Equation I) between the hydroxyl ions in
the concrete pore solution and the reactive silica in the aggre-
gate. The product of this reaction is an alkali–silica gel that
forms within and around the aggregates. This gel can absorb
moisture and expand, causing distress and damage to the
cementitious matrix (ACI 221 (ACI, 1998); Yildirim and
Sumer, 2014). Minerals such as opal, quartzite and chert are
sources of reactive silica in aggregates (ASTM C 294 (ASTM,
1998)). Such minerals react with alkalis in the presence of
moisture to form alkali silica gel (Dent and Kataoka, 1981)
according to the following equation.

I: SiO2
reactive silicað Þ

þ 2NaOH
alkalisð Þ

þ H2O
moistureð Þ

! Na2SiO3:2H2O
alkalis±silica gelð Þ

ASR is typically a slow process. The associated damage can
take several years to be observed. Expansion of 2–3% (by
volume) can occur as a result of ASR in concrete (Yildirim and
Sumer, 2014) and tends to be larger within the concrete mass
than at its surface (Jones and Clark, 1998), eventually leading

to cracking (Stark et al., 1993). ASR has been under study for
nearly eight decades (Stanton, 1940), and reported in over
60 countries (Fournier and Berube, 2000). For instance, in
Argentina, more than 100 concrete structures have been recog-
nised as affected by ASR since the 1950s (Fava et al., 1991).
Moreover, ASR has caused damage in Norway’s Elgeseter
Bridge (Jensen, 2004) and affected more than 20 bridges in the
Netherlands (Siemes et al., 2002). The effects of ASR on the
mechanical properties of concrete have been widely explored
(Jones and Clark, 1996; Monette et al., 2000; Siemes and
Visser, 2000; Takemura et al., 1996). It was found that ASR sig-
nificantly affects the modulus of elasticity and tensile strength
of concrete (Koyanagi et al., 2000; Larive et al., 1996).

Generally, ASR has been detected and monitored primarily
using field inspection (ACI 221 (ACI, 1998)). Assessing struc-
tures more than 10 years old, made with the aggregate source
under consideration and subjected to wetting and drying can
usually give an indication of the reactivity of an aggregate
source (ACI 221 (ACI, 1998)). The inspection typically
involves visual observations with particular focus on indi-
cations of distress, such as movements and displacements, map
cracking, presence of alkali–silica gel and scaled surfaces
having aggregates surrounded by reaction rims (Stark, 1991a,
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1991b) that usually consist of a calcium–alkali–silicate layer
(Charlwood and Solymar, 1994). Petrographic examination of
concrete cores from such structures should be carried out to
confirm the presence of ASR.

Various methods to evaluate ASR potential have been proposed
(Berube and Fournier, 1994; Diamond, 1978; Grattan-Bellew,
1981, 1989; Kosmatka and Panarese, 1988; Sims, 1981; Stark,
1991a, 1991b), and detailed methodologies for testing, evalu-
ation and management of ASR have been provided, for instance,
by the CSA (2005) and ASTM (Table 1) standards. Different
testing methods for assessing the potential of ASR are presented
in Table 1, among which ASTM C 227 (ASTM, 2010) and
ASTM C 1260 (ASTM, 2014c) are the most commonly used.

ASTM C 227 (ASTM, 2010) has long been a commonly used
method for detecting the potential of ASR. However, it requires
6 months to complete (Raja et al., 2014; Stark, 1980).
Moreover, the exposure conditions of ASTM C 227 (ASTM,
2010) are not sufficiently severe to generate ASR in a short
time. Conversely, while ASTM C 1260 (ASTM, 2014c) is an
improved method, it has been perceived as too severe and does
not replicate field conditions (Lu et al., 2006; Yildirim and
Sumer, 2014). Moreover, there usually are discrepancies between
the results of the two test methods. Thus, this study was carried
out to evaluate the effectiveness of both the ASTM C 227
(ASTM, 2010) and ASTM C 1260 (ASTM, 2014c) guidelines
in detecting the ASR potential of local aggregates.

2. Materials
Aggregates from five different sources were selected because they
are widely used in local concrete construction, yet there is
ongoing ambiguity regarding their potential ASR. The selected
aggregate sources included the Sheikh Hills, Tuguwali Hills and
Mach Hills from the Sargodha region, the Jhelum River at the
Lehri Mangla and the Kamser Mountains from Muzaffarabad
in Kashmir. From the Sargodha and Kashmir sources, large
rock fragments were obtained through blasting, whereas, from
the Jhelum River source, stones were collected from the riverbed.
These rock fragments and stones were then crushed into aggre-
gates at industrial crusher plants. From the Sargodha aggregate
source, the dry technique was used for crushing, whereas aggre-
gates from the Jhelum River and Kashmir sources were crushed
using the wet technique. Samples of the various aggregates are
shown in Figure 1. Locally produced ordinary Portland cement
(Bestway Cement) was used throughout this study. Clean tap
water was used for mixing the mortar.

3. Experimental procedures

3.1 Materials characterisation
To investigate the mineralogical composition of the aggregates,
petrographic examination was performed according to ASTM

C 295 (ASTM, 2012). Moreover, the physical properties of the
various aggregates were characterised. The bulk density and
voids content were evaluated as per ASTM C 29 (ASTM,
2016a). The specific gravity and water absorption of the aggre-
gates were measured according to ASTM C 127 (ASTM,
2015b). The impact and crushing value tests were performed on
the aggregates as per BS 812-112 (BSI, 2014b) and BS 812-110
(BSI, 2014a). The abrasion resistance of the aggregates was
examined using ASTM C 535 (ASTM, 2016e).

The chemical properties of the cement used were quantified
using X-ray fluorescence. To further characterise the cement,
various other tests were carried out, including the standard
consistency test described in ASTM C 187 (ASTM, 2011a);
setting time according to ASTM C 191 (ASTM, 2013); fine-
ness test as per ASTM C 184 (ASTM, 1994); fineness test out-
lined in ASTM C 204 (ASTM, 2016d). Moreover, soundness
was explored using the EN 196-3 procedure (EN, 2005) and
autoclave expansion as per the guidelines of ASTM C 151
(ASTM, 2015c).

3.2 Mortar bar expansion testing

3.2.1 ASTM C 227 test procedure
Mortar bar specimens incorporating aggregates from the
various sources were prepared. Aggregates from the selected
sources were graded according to ASTM C 227 (ASTM,
2010). Figure 2 shows the gradation curve. The mixture pro-
portions for the mortars involved a cement-to-aggregates mass
ratio of 1 to 2·25 and a water-to-cement ratio of 0·47 in accord-
ance with ASTM C 227 (ASTM, 2010). Mixing was conducted
using an electric mortar mixer (Figure 3(a)) according to
ASTM C 305 (ASTM, 2014a). After 5 min of mixing, the flow
diameter of the fresh mortar was determined in accordance
with ASTM C 1437 (ASTM, 2015e). The flow diameter for all
the tested mixtures was within 105–120 mm (Figure 3(b)).
After flow table testing, the mixture was poured into mortar
bar moulds in two layers. The mortar bar moulds were two
gang prism moulds having dimensions of 25� 25� 285 mm
with an effective gauge length of 250 mm (Figure 3(c)). Each
layer was well compacted using a plastic tamper.

The specimens were covered with a plastic sheet to avoid loss
of moisture until demoulding at 24 h. The initial length of
each bar specimen was measured using a digital length com-
parator (Figure 3(d)) as described in ASTM C 490 (ASTM,
2011b). Before measuring the length, a reference bar was used
to calibrate the comparator. Specimens were then stored in air-
tight containers containing water, such that the specimens did
not touch the base of the container (Figure 4(a)). The speci-
men containers were then placed in an oven at 40°C. After
14 d, the containers were stored at 25°C for 16 h, and then
length readings were taken. Readings were taken using a
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Table 1. Test methods for evaluating ASR potential of aggregates

Standards/references Test
Testing material and
status Description

ASTM C 295 (ASTM, 2012) Petrographic examination Aggregates
(indirect method)

Identify reactive aggregates and the amount of potential
reactive materials

ASTM C 227 (ASTM, 2010) Mortar bar test Cement aggregate
combination
(direct method)

6–12 months duration is required. Mortar bars are stored
at 38°C under 100% relative humidity (RH)

ASTM C 1260 (ASTM,
2014c)

Accelerated mortar bar
test

Cement aggregate
combination
(direct method)

Modified form of ASTM C 227 (ASTM, 2010), 14–28 d
duration is required. Mortar bars are stored at 80°C
under 100% RH in 1 N sodium hydroxide solution

ASTM C 289 (ASTM, 2003) Quick chemical test Aggregate
(indirect method)

Crushed material is sealed at 80°C in 1 N sodium
hydroxide solution for 24 h to measure the amount of
dissolved reactive silica. Results can be classified as
aggregate source is reactive or not

ASTM C 1293 (ASTM,
2015d)

Concrete prism test Concrete prisms
(direct method)

365 d are required. Specimens are placed at 38°C in
sodium hydroxide solution having alkali level of 1·25%
Na2Oe

ASTM C 342 (ASTM, 1997) Potential volume change
of cement aggregate

Cement aggregate
combination
(direct method)

365 d are required. Mortar bars are stored in various
temperature and moisture conditions

USACE (1994) US Army Corps of
Engineers modified
mortar bar test

Cement aggregate
combination
(direct method)

Modified form of ASTM C 227 (ASTM, 2010) to detect
slow-reacting aggregates. With the help of
petrographic examination, siliceous aggregates having
strained quartz more than 20% are selected for
evaluation through the mortar bar test. Mortar bars are
stored at 60°C under 100% RH for 365 d

Bonzel and Dahms (1973),
Dahms (1977)

Concrete cube test Cement aggregate
combination
(indirect method)

Specimens are stored in a moist cabinet under 40°C.
Periodic expansion is done for gel exudations and
cracking. However, it is not stated whether aggregate
source is deleterious or not

Chatterji (1978) Nordtest accelerated
ASR test

Cement aggregate
combination
(direct method)

Also a modified form of ASTM C 227 (ASTM, 2010).
However, this method is used only for reactive
aggregates in Denmark. Mortar prisms having smaller
length and greater cross-section than ASTM C 227
(ASTM, 2010) are cured for 4–5 weeks in water and
then saturated in sodium chloride solution at 50°C for
8 weeks

Sims (1981), NBS (1958) Gel pat test Cement aggregate
combination
(indirect method)

Mortar bars having smooth sawn surfaces are placed in
alkali solution for 3 d. Gel will form in the presence of
reactive particles and the percentage of reactive
particles can be estimated

Fournier and Berube (1991) Autoclave mortar bar test Cement aggregate
combination
(direct method)

Also a modified form of ASTM C 227 (ASTM, 2010).
However, sodium hydroxide is added to water to
raise the alkali content. Mortar bars are stored under
100% RH at 23°C for 2 d before autoclave treatment.
Autoclave test is performed with steam curing
at 130°C

Natesaiyer and Hover (1988,
1989)

Uranyl acetate gel
fluorescence test

In situ hardened
concrete
(indirect method)

This test is used in conjunction with petrographic
examination to confirm the presence of ASR products
in hardened concrete. Fluorescence will be produced
by ASR products in concrete treated with uranyl acetate
solution when observed under ultraviolet light. This is a
rapid test. However, it should always be performed by
trained specialists

Stark (1985, 1991a, 1991b) ASR in hardened
concrete

Hardened concrete
(direct method)

To determine the alkalis and reactive silica amounts,
cores are extracted and placed in different conditions –
that is, in water, in 1 N sodium hydroxide solution and
in sealed water at 38°C. The expansion of these cores
is measured for 12 months. The results of length
change under different conditions indicates possible
future ASR expansion in concrete

(continued on next page)
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similar procedure after each month for up to 6 months, and
the water in the containers was replaced. The length change
was quantified using the following equation

1: L ¼ Lx � Lið Þ
G

� 100

where L is the change in length at age x (%), Lx is the compara-
tor reading at age x (mm), Li is the initial comparator reading of
specimens (mm) and G is the nominal gauge length (250 mm).

3.2.2 ASTM C 1260 test procedure
Aggregates from the selected sources were graded according to
ASTM C 1260 (ASTM, 2014c) and used to prepare standard
mortar bars. Similar mixture proportions as described above were
used. After measuring their initial length, the bar specimens were
placed in water in sealed containers. The containers were then
placed inside an oven at 80°C. After 24 h, the initial length of
each specimen was measured. Specimens were then immersed for
14 d in a 1 N sodium hydroxide (NaOH) solution (Figure 4(b))
at 80°C. Length measurements were conducted after 14 and 28 d.

3.3 Mechanical properties
To explore the effects of ASR on the compressive strength and
modulus of rupture of the various mortars, 90 cubes and prisms
incorporating aggregates from the various sources investigated
were cast. Cube specimens were cast in two layers using three
gang 25� 25� 25 mm cube moulds. Each layer was compacted
by tamping it 32 times using a plastic tamper. Prisms of
40� 40� 160 mm size were also cast in layers and compacted in
a similar manner. The specimens were covered with a plastic
sheet for the first 24 h to avoid loss of moisture. After demould-
ing, nine control cubes and prisms for each aggregate source were
cured in fresh water. Moreover, nine cubes and prisms for each
aggregate source were stored in an air-tight container containing
water such that the specimens did not touch the base of the con-
tainer. Six specimens (cubes and prisms) were then kept in an
oven at 40°C according to ASTM C 227 (ASTM, 2010). The
remaining three cubes and prisms for each aggregate source were
kept in water for 1 d at 80°C (Figure 4(c)) and then immersed in

a 1 N sodium hydroxide solution inside air-tight containers
placed in an oven at 80°C according to ASTM C 1260 (ASTM,
2014c). After 1 and 6 months, the control specimens and the
specimens placed at 40°C were removed and tested. Specimens
placed at 80°C were tested after 28 d of exposure.

Compressive testing was conducted at a loading rate of
1000 N/s as per ASTM C 109 (ASTM, 2016c). The modulus
of rupture was obtained by applying a rate of 2640 N/s as per
ASTM C 348 (ASTM, 2014b). Furthermore, scanning electron
microscopy (SEM) imaging of selected mortar bar specimens
was carried out to investigate the microstructural features of
the tested mortars after various regimes of exposure.

4. Results and discussion

4.1 Binder characteristics
Table 2 shows the chemical analysis results of the cement, which
indicates that all chemical compounds were in accordance with
the limits specified in ASTM C 114 (ASTM, 2015a), except for
the alkalis (i.e. 0·85%), which was higher than the ASTM C 114
(ASTM, 2015a) recommended maximum of 0·60%. The
amount of alkalis mainly depends on the nature of the raw
materials of the cement and on the production process. To
reduce the alkali content, modifications in the manufacturing
process of cement may be required, which is typically unecono-
mical (Johansen, 1989). Table 3 reports the results of physical
tests on the cement. Generally, these physical properties were
within ASTM and European (EN) standard limits. For example,
the cement fineness (99% and 2996 cm2/g) satisfy the ASTM C
184 (ASTM, 1994) and C 204 (ASTM, 2016d) standard limits
(fineness of cement should not be <90% and 2250 cm2/g). The
autoclave expansion was 0·075%, which satisfies the ASTM
C 151 (ASTM, 2015c) guidelines. The soundness of the cement
also met the EN 196-3 (EN, 2005) standard requirements.

4.2 Petrographic examination of aggregates

4.2.1 Sheikh Hills aggregates
Figure 5(a) shows the petrographic examination results for the
Sheikh Hills aggregate, which were mainly composed of three

Table 1. Continued

Standards/references Test
Testing material and
status Description

Donnell et al. (2013) Microwave method Cement aggregate
combination
(direct method)

Mortar bar specimens are prepared according to
ASTM C 1260 (ASTM, 2014c) and then sealed in
water at 38°C, and microwave measurements are
made. Specimens are then placed under ambient
conditions for 36 d and final measurements are
taken. This test is based on the property that due to
the formation of gel and attraction of free water from
the environment, readings of microwave methods vary
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(a) (b)

(c)

(e)

(d)

Figure 1. Illustration of samples from the various aggregate sources: (a) Sheikh Hills aggregate, (b) Tuguwali Hills aggregate,
(c) Mach Hills aggregate, (d) Jhelum river stone and (e) Kamser Mountains stone
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rock types: dolerite, quartzite and rhyolite. Dolerite is domi-
nant (56%); with quartzite (27%) and rhyolite (17%) constitut-
ing the rest of the aggregates. The composition of the dolerite
mineral is presented in Figure 5(b). The dolerite was fine- to

medium-grained and micro-porphyritic, having ophitic to sub-
ophitic texture. It was moderately chloritised, sericitised and
calcitised. Dolerite was found to be a non-alkali reactive rock
type (WAPDA, 2004). The mineralogical composition of the
quartzite is outlined in Figure 5(c). The quartzite was mainly
composed of fine-grained to vitreous quartz (about 87% of the
rock) with interstitial muscovite and sericite. Tiny grains of
quartz were interlocking and mono-crystalline. Muscovite and
sericite occur as small anhedral flakes and represent about 8%
of the rock. Some subhedral to anhedral crystals of secondary
calcite were also present (about 3% of the rock). Sporadic
fine grains of haematite were also observed (about 7% of the
rock). According to previous studies (ACI 221 (ACI, 1998);
WAPDA, 2004), quartzite is usually slowly alkali reactive. The
composition of the rhyolite is shown in Figure 5(d). The rhyo-
lite pieces were light to medium grey on fresh surfaces
and rusty brown to yellowish grey on weathered surfaces. The
rock was fine grained and microcrystalline to cryptocrystalline
having about 36% of quartz. Rhyolite is generally alkali reac-
tive (ACI 221 (ACI, 1998); WAPDA, 2004). The presence of
reactive quartzite and rhyolite in the Sheikh Hills aggregates
warrants a careful study of their potential ASR.
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Figure 3. Illustration of (a) mortar mixing procedure, (b) flow table measuring, (c) typical mortar cube and bar casting and (d) digital
length comparator

6

Construction Materials Role of test method in detection of
alkali–silica reactivity of concrete
aggregates
Munir, Abbas, Qazi, Nehdi and Kazmi

Downloaded by [ NEW YORK UNIVERSITY] on [01/04/17]. Copyright © ICE Publishing, all rights reserved.



4.2.2 Tuguwali Hills aggregates
Figure 6(a) displays the petrographic examination results of the
aggregates from Tuguwali Hills. These aggregates were mainly
composed of rhyolite rock, with the presence of several other
minerals. For instance, K-feldspar was around 23% in the

rock. Rhyolite pieces were light to medium grey in fresh
surfaces and rusty brown to yellowish grey on weathered
surfaces. The rock was fine grained and microcrystalline to
cryptocrystalline. Quartz occurs as anhedral to idioblastic,
whereas K-feldspar was anhedral to sub-idioblastic to blasto-
porphyritic. Plagioclase was generally present as micro-
blasto-porphyritic and as tiny crystals in the groundmass.
Calcite was present as groundmass and ilmenite/leucoxene
occurred as fine-grained crystals.

4.2.3 Mach Hills aggregates
Figure 6(b) portrays the results of the petrographic examin-
ation for the Mach Hills aggregate, which were mainly com-
posed of a volcanogenic slate rock type, with the presence of a
variety of other minerals. For example, muscovite represented
35% of the rock. The aggregates were generally uniform in
appearance. Aggregate particles were found to be greyish green
on fresh surfaces and rusty brown on weathered surfaces. Some
particles were spotted with dark-coloured minerals. The rock
pieces exhibited moderate fissility on a macroscopic scale. The
rock was fine grained and showed a faint orientation of the

(a) (b)

(c)

Figure 4. Illustration of (a) specimen positioning in container, (b) mortar bar specimens in sodium hydroxide solution and (c) cube and
prism specimens placed at 80°C in water

Table 2. Chemical analysis of cement

Constituent: %

Ordinary
Portland
cement

ASTM C 114
limits
(ASTM, 2015a)

Silicon dioxide (SiO2) 20·50 20 minimum
Aluminium oxide (Al2O3) 5·08 6 maximum
Ferrous oxide (Fe2O3) 3·18 6 maximum
Calcium oxide (CaO) 62·4 —

Magnesium oxide (MgO) 2·28 6 maximum
Free lime 1·24 2 maximum
Sulfur trioxide (SO3) 1·96 3 maximum
Insoluble residue (IR) 0·60 0·75 maximum
Loss on ignition (LOI) 2·04 3 maximum
Sodium oxide (Na2O) 0·42 —

Potassium oxide (K2O) 0·66 —

Equivalent alkali content (Na2Oe) 0·85 0·60 maximum
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muscovite flakes. Quartz was present as small, rounded frag-
ments and very fine-grained muscovite formed the matrix of
the rock. A significant proportion of the rock was composed
of slowly reactive quartz mineral.

4.2.4 Jhelum riverbed aggregates
Figure 6(c) illustrates the petrographic examination results of
the Jhelum riverbed aggregates, which were mainly composed
of quartzite (54%) and sandstone (36%). The mineralogical
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Figure 5. Mineralogical composition of Sheikh Hills aggregate: (a) composition of Sheikh Hills aggregate, (b) mineralogical composition
of dolerite, (c) mineralogical composition of quartzite and (d) mineralogical composition of rhyolite. * shows reactive minerals

Table 3. Physical properties of cement

Property Standard Value Limits

Standard consistency ASTM C 187 (ASTM, 2011) 24% —

Initial setting time ASTM C 191 (ASTM, 2013) 91 min > 45 min
Final setting time ASTM C 191 (ASTM, 2013) 165 min < 375 min
Fineness (passing no. 200) ASTM C 184 (ASTM, 1994) 98·6% Min. 90%
Fineness (Blaine air permeability) ASTM C 204 (ASTM, 2016d) 2996 cm2/g Min. 2250 cm2/g
Soundness EN 196-3 (EN, 2005) 0·60 mm Max. 10 mm
Autoclave expansion ASTM C 151 (ASTM, 2015c) 0·075% Max. 0·8%
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Figure 6. Mineralogical nature of the various aggregates and their compositions: (a) composition of Tuguwali Hills aggregate,
(b) composition of Mach Hills aggregate, (c) Jhelum River aggregate, (d) quartzite in Jhelum River aggregate, (e) sandstone in Jhelum
River aggregate and (f) composition of Kamser Mountain aggregate. * shows reactive minerals
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composition of the quartzite mineral is shown in Figure 6(d).
The rock pieces were creamy to light grey in colour and
showed no signs of weathering. The grain boundaries of the
quartz were irregular and wavy. Most of the grains were poly-
crystalline and strained. Rare flakes of muscovite were also
present. A small volume of pore spaces was lined with micro-
quartz. Overall, quartz constituted about 99% of the rock. The
composition of the sandstone is outlined in Figure 6(e). Rock
pieces were medium grey, purple grey and greenish grey in
colour. Some pieces were faintly weathered while most were
fresh. Thin sectioning showed that the sandstones possess com-
parable mineralogy to quartzite. Such sandstone-containing
quartz is known to be slowly alkali reactive (Munir et al.,
2016; Rivard et al., 2002; WAPDA, 2004).

4.2.5 Kamser Mountain aggregates
Figure 6(f) portrays the petrographic examination results of
aggregates from Kamser Mountain, which were primarily com-
posed of dolomite (about 96%), with the presence of several
other minerals. For instance, argillaceous and fine-grained
quartz represented about 3% of the rock. Aggregates appeared
medium to dark grey in colour and were found to be non-
reactive using cold diluted hydrochloric acid (HCl). Results
showed that the rock was mainly composed of fine-grained
anhedral to subhedral dolomite crystals. The fabric of the
rock may be described as fine-grained equi-granular to sub-
equi-granular, having intergranular pore spaces between crys-
tals. This may have resulted from the bulk volume shrinkage
that accompanies calcite replacement by dolomite (ACI 221
(ACI, 1998)). Haematite (about 1% of the rock) was present as
fine grains, distributed in the rock and as coating on the grain
boundaries. This rock may cause alkali carbonate reaction,
and is generally considered ASR non-reactive. Yet, a previous
study (Abbas et al., 2017; NESPAK, 2011) concluded that
such rock can be ASR reactive.

4.2.6 Overall reactivity of various aggregate sources
Figure 7 exhibits the amount of reactive constituents in each
aggregate source based on petrographic examination. It can be
observed that some of the aggregate sources present real
alkali–aggregate reactivity potential. For example, the amount
of reactive constituents in the Jhelum River source is 77%.
With respect to ASR, the reactive constituents were more sig-
nificant in the Jhelum River source and the least in the
Kamser source. However, the Mach, Tuguwali and Sheikh
Hills aggregate sources were also considered as slow reactive.
Various researchers proposed different classifications for slow
reactive aggregates. For instance, Magni et al. (1986) suggested
15% as an acceptable limit for the amount of reactive minerals,
whereas, in Norway, if the quantity of reactive constituents is
>20%, further testing is recommended (Borge, 1995). ASTM
C 33 (ASTM, 2016b) recommends testing including the

chemical test and the mortar bar test to qualify ASR when
reactive materials are present even at <1%. Therefore, it can be
argued that all the tested sources of aggregates may possibly
cause ASR, and thus should be further investigated, for
instance under ASTM C 227 (ASTM, 2010) and ASTM
C 1260 (ASTM, 2014c), before using such aggregates in full-
scale construction works to ensure adequate service life per-
formance of structures.

4.3 Physical properties of tested aggregates
Table 4 shows the physical properties of the aggregate sources.
The highest bulk density was measured for the Kamser aggre-
gates and the lowest was for the Mach Hills source. The bulk
density generally ranged from 1200 to 1760 kg/m3. The Mach
Hills aggregate had the highest voids content, whereas the
Kamser source had the least. The volume of voids is typically
governed by the grading and shape of the particles. It normally
ranged from 33 to 42% (ACI 221 (ACI, 2001)), which is within
typical values.

Specific gravity was higher for the Kamser aggregate source and
the least for the Jhelum River source. However, there was an
opposite trend for water absorption. The Kamser aggregates
showed less water absorption compared with the Jhelum River
aggregates (primarily sandstone). According to a previous study
(Carlson, 1938), aggregates composed of sandstones usually
have higher water absorption and relatively lower specific gravity.

Table 4 reports the impact, crushing and abrasion test results
of aggregates from the various sources explored in this study.
The Kamser source aggregate exhibited highest resistance
against impact and abrasion, while the Jhelum River aggregate
had the least. The aggregates from the Tuguwali Hills showed
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the highest resistance against crushing, while the Mach Hills
source showed the least resistance. The impact and abrasion
resistance is usually higher for crushed aggregates than for
round aggregates (Alexander and Mindess, 2005), which
explains the results of the Jhelum River aggregates. Generally,
the abrasion of aggregates ranges from 15 to 50% (Neville,
2000). Abrasion values of all the tested aggregate sources,
which ranged between 17·9 and 26·9%, are within specifica-
tions. The impact value of aggregates is usually <25% and the
crushing value generally ranges from 14 to 30% (Alexander
and Mindess, 2005). Experimental results for the tested aggre-
gates show that the impact and crushing values were <15 and
26%, respectively, indicating suitability of the aggregates for
use in concrete construction works.

4.4 Results of ASTM C 227 and ASTM C 1260 tests

4.4.1 Mortar bar expansion
Figure 8 illustrates the average ASTM C 227 (ASTM, 2010)
mortar bar expansion for specimens incorporating the various
aggregates. After 3 months, mortar bars made with the

Tuguwali aggregate showed less expansion than those made with
the Sheikh Hills aggregate. However, at the end of the 6-month
exposure, the results were reversed. The Tuguwali aggregate had
more reactive minerals than the Sheikh Hills source. Yet, due to
its slower reactivity, more expansion was observed at later ages.
Similar behaviour was reported for other aggregates in previous
studies (Ahmed et al., 2013; Carlson, 1938; Islam and Ghafoori,
2013; Thibodeaux et al., 2003). The average expansion of
mortar bars incorporating the Mach Hills aggregate was the
highest. Specimens incorporating the Mach, Tuguwali and
Sheikh Hills aggregates exhibited expansion in the range of
0·05–0·07% at the end of 6 months. Results were consistent with
findings of the petrographic examination. According to
ASTM C 33 (ASTM, 2016b), aggregates are considered alkali–
silica reactive if the mortar bar expansion is more than 0·10%
after 6 months under the ASTM C 227 (ASTM, 2010) test
conditions. None of the aggregates tested herein has shown
expansion >0·07%. No distress was observed on mortar bar
surfaces after the 6-month exposure period. However, the
ASTM C 227 (ASTM, 2010) is not used for acceptance and
rejection of aggregate sources. The longer term ASTM C 1293
(ASTM, 2015d) is usually adopted for this purpose.

Figure 9 portrays the average ASTM C 1260 (ASTM, 2014c)
accelerated mortar bar expansion values. It can be observed
that the specimens incorporating the Mach Hills aggregate
incurred the highest expansion, whereas those made with the
Kamser aggregate had the least expansion. This is ascribed to
the greater reactive minerals content in Mach Hills aggregates
as observed in the petrographic examination. The specimens
made with the Mach, Tuguwali and Sheikh Hills aggregate
sources, which all come from the Sargodha region, exhibited
expansion values >0·10 and 0·20% after 14 and 28 d, respect-
ively. Hence, based on ASTM C 1260 (ASTM, 2014c), such
aggregates can be considered alkali–silica reactive. These
aggregates were not considered reactive under ASTM C 227
(ASTM, 2010) testing. Generally, ASTM C 1260 (ASTM,
2014c) has been considered as more effective for testing slow
reactive minerals in previous studies (Davies and Oberholster,
1987; Hooton, 1990; Stark et al., 1993).

Table 4. Physical properties of aggregates

Property

Aggregate sources

Sheikh Hills Tuguwali Hills Mach Hills Jhelum Riverbed Kamser Mountain

Bulk density: kg/m3 (ASTM C 29) (2016a) 1551 1548 1535 1596 1699
Voids content: % (ASTM C 29) (2016a) 39·99 41·24 41·66 38·54 37·53
Specific gravity (ASTM C 127) (2015b) 2·73 2·64 2·59 2·56 2·77
Water absorption: % (ASTM C 127) (2015b) 1·03 0·98 1·12 1·47 0·76
Impact value (BS 812-112) (2014b) 11·90 13·10 13·30 14·50 10·10
Crushing value (BS 812-110) (2014a) 18·90 14·80 25·20 21·30 17·10
Abrasion test (ASTM C 535) (2016e) 19·20 21·80 24·20 26·90 17·90
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Figure 8. Mortar bar expansion results according to ASTM C 227
(ASTM, 2010)
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Mortar bar expansion results showed that the aggregates from
the Jhelum River and Kamser are not reactive under both
ASTM C 227 (ASTM, 2010) and C 1260 (ASTM, 2014c) stan-
dard test methods. The results for the Kamser source were
consistent with both the petrographic examination and past find-
ings (Islam and Akhtar, 2013). However, despite petrographic
examination indicating the highest content of reactive minerals
(i.e. 77%) in the Jhelum River aggregate, mortar expansion
results for this aggregate source were <0·04 and 0·085%,
in accordance with ASTM C 227 (ASTM, 2010) and ASTM
C 1260 (ASTM, 2014c), respectively. This can be explained by
the so-called pessimum effect (Ichikawa, 2009; Johansen, 1989).
The pessimum effect is defined as the largest expansion of con-
crete due to a definite proportion of reactive siliceous aggregates.
However, if the reactive aggregates content decreases or increases
from the pessimum level, a decrease in expansion can be
observed (Ichikawa, 2009; Stanton, 1940). It is believed that the
77% reactive mineral content in the Jhelum River aggregate
largely exceeded the pessimum value, thus leading to low expan-
sion. However, this needs to be investigated further using the
ASTM C 1293 (ASTM, 2015d) concrete prism test.

4.4.2 Effect of ASR on compressive strength
Figure 10 displays the compressive strength results of mortar
specimens tested under ASTM C 227 (ASTM, 2010). As
expected, the control specimens reached a higher compressive
strength at 6 months than that at 1 month due to the progress
of hydration reactions. Conversely, the specimens tested under
1 month of ASTM C 227 (ASTM, 2010) ASR exposure con-
ditions had compressive strength values at 6 months comparable
to, and in some cases lower than, that reached at 1 month. For
instance, after 6 months of ASTM C 227 (ASTM, 2010)
exposure, a 25% decrease in compressive strength was recorded

for specimens incorporating the Mach Hills aggregate compared
with that of the control specimens. This decrease in compressive
strength was more prominent for the Sargodha aggregate
sources due to its alkali–silica reaction as discussed earlier and
reported by others (Ahmed et al., 2013; Bignozzi and Saccani,
2012). However, the specimens incorporating the Kamser and
Jhelum aggregates also incurred a slight decrease in compressive
strength (about 3%), likely due to the limited ASR expansion
associated with these aggregates as discussed above. Figure 11
shows the relation between compressive strength and 6-month
mortar bar expansion under ASTM C 227 (ASTM, 2010) test
conditions. A decreasing trend can be observed between

40

35

30

25

20

15

10

5

0
0 0·02 0·04

Expansion: mm

0·06 0·08 0·10

C
om

pr
es

si
ve

 s
tr

en
gt

h:
 M

Pa

Sheikh Hills
Tuguwali Hills
Mach Hills
Jhelum River
Kamser Mountain

Figure 11. Relationship between compressive strength and
expansion of specimens under ASTM C 227 (ASTM, 2010)
exposure conditions

0·35

0·30

0·25

0·20

0·15

0·10

0·05

0

Ex
pa

ns
io

n:
 m

m

Sheikh Hills Tuguwali
Hills

Aggregate source

Mach Hills Jhelum
River

Kamser
Mountain

14 d expansion
28 d expansion
14 d ASTM limit
28 d ASTM limit

Figure 9. Accelerated mortar bar expansion results according to
ASTM C 1260 (ASTM, 2014c)

45

40

35

30

25

20

15

10

5

0
C

om
pr

es
si

ve
 s

tr
en

gt
h:

 M
Pa

Sheikh Hills Tuguwali
Hills

Aggregate source

Mach Hills Jhelum
River

Kamser
Mountain

1 month control sample
1 month sample under ASR condition
6 months control sample
6 months sample under ASR condition

Figure 10. Compressive strength of specimens under ASTM
C 227 (ASTM, 2010) exposure conditions

12

Construction Materials Role of test method in detection of
alkali–silica reactivity of concrete
aggregates
Munir, Abbas, Qazi, Nehdi and Kazmi

Downloaded by [ NEW YORK UNIVERSITY] on [01/04/17]. Copyright © ICE Publishing, all rights reserved.



compressive strength and expansion values, as reported by
others (Giaccio et al., 2008).

Figure 12 portrays the compressive strength of specimens
incorporating the various sources of aggregates under ASTM
C 1260 (ASTM, 2014c) exposure conditions. Results show that
specimens tested under ASTM C 1260 (ASTM, 2014c) demon-
strated a decrease in compressive strength. For instance, speci-
mens incorporating the Mach Hills aggregate incurred a 22%
decrease in compressive strength. Similar to the case of ASTM
C 227 (ASTM, 2010) exposure, specimens incorporating aggre-
gates from the Sargodha region exhibited a significant decrease

in compressive strength under ASTM C 1260 (ASTM, 2014c)
exposure conditions compared with that of the control speci-
mens. Specimens made with aggregates from the Jhelum and
Kamser sources incurred a comparatively lower decrease in com-
pressive strength. This is ascribed to lower ASR expansion as
discussed above. The relationship between compressive strength
and ASTM C 1260 (ASTM, 2014c) expansion also showed a
decreasing trend (Figure 13). Increased expansion due to ASR
resulted in reduced compressive strength (Giaccio et al., 2008).

It can be concluded that the compressive strength of specimens
incorporating aggregates from the Sargodha region was more
affected by ASR, especially at later ages. The more reactive
aggregates yielded a more significant decrease in compressive
strength. The overall reduction in compressive strength for
specimens tested under ASTM C 227 (ASTM, 2010) ranged
from 22 to 25%, while it ranged from 10 to 22% for identical
specimens tested under ASTM C 1260 (ASTM, 2014c) con-
ditions. This is ascribed to the difference in exposure conditions
between the two test methods and to the fact that ASTM
C 227 (ASTM, 2010) results represent later age (6 months)
behaviour, whereas those for ASTM C 1260 (ASTM, 2014c)
are obtained after 1 month of exposure, in accordance with
previous research (Ahmed et al., 2013; Islam, 2010).

4.4.3 Effect of ASR on modulus of rupture
Figure 14 shows the flexural strength results of control speci-
mens and specimens tested under ASTM C 227 (ASTM, 2010)
conditions. For specimens tested under 1-month ASR con-
ditions of ASTM C 227 (ASTM, 2010), an increase in flexural
strength was observed as compared with 1-month control
samples. This may be due to the presence of slow reactive
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(ASTM, 2010) exposure conditions
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Figure 12. Compressive strength of specimens under ASTM
C 1260 (ASTM, 2014c) exposure conditions
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aggregates. As expected, the control specimens gained higher
modulus of rupture after 6 months compared with that at
1 month. However, the 6-month flexural strength of specimens
exposed to ASTM C 227 (ASTM, 2010) conditions was
comparatively lower than that of the control specimens at the
same age. For instance, there was a 22% decrease in flexural
strength of specimens incorporating the Tuguwali Hills aggre-
gate compared with that of the control. This decrease in
flexural strength can be attributed to ASR, which can create
micro-cracks that decrease flexural strength (Thibodeaux et al.,
2003). Specimens incorporating aggregates from the Kamser
and Jhelum sources showed no significant decrease in flexural
strength (< 2%) compared with the control specimens, which is

consistent with the mortar bar expansion results. Figure 15
shows the relation between flexural strength and ASTM C 227
(ASTM, 2010) expansion, indicating decreased flexural
strength with increased expansion.

Figure 16 shows the flexural strength results for specimens tested
under ASTM C 1260 (ASTM, 2014c) exposure. A decrease in
flexural strength for specimens tested under ASTM C 1260
(ASTM, 2014c) compared with the control specimens can be
observed. For example, specimens incorporating aggregates from
the Sheikh Hills source suffered a 22% decrease in flexural
strength compared with the control specimens. All tested aggre-
gates from the Sargodha sources have shown a distinct decrease
in flexural strength under ASTM C 1260 (ASTM, 2014c). This
decrease was more prominent for specimens incorporating the
Mach Hills aggregates, likely due to its higher ASR expansion
and the associated micro-cracking as discussed above. Specimens
made with aggregates from the Jhelum and Kamser sources had
comparatively smaller decrease in flexural strength (up to 8%)
under ASTM C 1260 (ASTM, 2014c) exposure compared with
the control specimens. Furthermore, a decreasing trend was also
observed for flexural strength plotted against ASTM C 1260
(ASTM, 2014c) expansion values (Figure 17).

Similarly to compressive strength, it was observed that the
flexural strength of specimens from the Sargodha aggregate
sources was more significantly affected by ASR. The more reac-
tive the aggregate, the greater the decrease in flexural strength.
The overall reduction in the flexural strength of the specimens
tested under ASTM C 227 (ASTM, 2010) ranged from 23 to
29%, while it ranged between 22 to 34% for those tested under
ASTM C 1260 (ASTM, 2014c). Marzouk and Langdon (2003)
also reported a reduction in flexural strength of up to 24%
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Figure 15. Relationship between modulus of rupture and
expansion of specimens under ASTM C 227 (ASTM, 2010)
exposure conditions
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Figure 16. Modulus of rupture of specimens under ASTM
C 1260 (ASTM, 2014c) exposure conditions

12

10

8

6

4

2

0
0 0·10 0·20

Expansion: mm

0·30 0·40

M
od

ul
us

 o
f 

ru
pt

ur
e:

 M
Pa

Sheikh Hills
Tuguwali Hills
Mach Hills
Jhelum River
Kamser Mountain
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associated with moderately reactive aggregates. Highly reactive
aggregates can drastically decrease flexural strength (up to 84%),
as reported elsewhere (Ahmed et al., 2013).

4.5 Microscopic examination
SEM was performed to examine the microstructure of mortar
bar specimens under different ASR exposure conditions.
Figure 18 shows SEM images of specimens incorporating the
Mach Hills aggregate tested under ASTM C 1260 (ASTM,
2014c) conditions. SEM images (Figures 18(a) and 18(b)) indi-
cate the presence of ASR gel around the reactive aggregate
particle. It was also observed that more abundant cracking
developed in those mortar bar specimens. Such cracks had a
size of 4 μm or less (Figure 18(c)), and were not observed in
the control specimens. This indicates that cracks are not
related to specimen preparation. However, no cracks or ASR

gel formation were observed in specimens incorporating the
Sheikh Hills aggregate source tested under both ASTM C 227
(ASTM, 2010) and C 1260 (ASTM, 2014c) conditions
(Figure 19). Likewise, SEM images of specimens incorporating
the Tuguwali and Mach Hills aggregate sources and tested
under ASTM C 227 (ASTM, 2010) showed no presence of
cracks or ASR gel (Figure 20). Generally, SEM findings ident-
ified ASR gel in those specimens incurring higher expansion
and exhibiting an associated decay in mechanical properties.

5. Conclusions
This study explored the characterisation of ASR risk in aggre-
gates with slow reactivity with an attempt to define a suitable
test method to quantify such a risk. The mineralogy and phys-
ical properties of various aggregate sources were characterised.
The ASR-related expansion of mortar bars incorporating

ASR gel around reactive aggregate

CSSP_PU 25·0 kV ×100 SE CSSP_PU 25·0 kV ×400 SE500 µm 100 µm

CSSP_PU 25·0 kV ×5·00k SE CSSP_PU 25·0 kV ×1·00 SE10·0 µm 50·0 µm

(a) (b)

(c) (d)

Figure 18. SEM images of mortar bar incorporating Mach Hills aggregates under ASTM C 1260 (ASTM, 2014c) exposure conditions:
(a) presence of ASR gel around reactive aggregate particle, (b) cracking observed in mortar specimens around reactive aggregates and
(c), (d) cracks due to ASR
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such aggregates was explored, along with the associated decay
in compressive and flexural strength. SEM imaging was used
to capture the microstructural features related to the measured
expansion and decay in mechanical properties. The following
conclusions can be drawn from the experimental results.

(a) A petrographic examination of the aggregates explored
in the study confirms the presence of reactive minerals
(3–77%). However, the reactive minerals were considered
to be only slowly reactive.

(b) The ASTM C 227 (ASTM, 2010) mortar bar expansion
for specimens incorporating aggregates from the
Sargodha region ranged from 0·05 to 0·07%. However,

specimens made with the Jhelum and Kamser aggregate
sources exhibited lower expansion of <0·04%, either due
to the pessimum effect or due to their non-reactive
nature.

(c) Using the ASTM C 1260 (ASTM, 2014c) test method
provided different results, showing all tested sources of
aggregates from the Sargodha region to be reactive with
an expansion >0·20%.

(d ) The compressive strength of specimens incorporating
aggregates from the Sargodha region was more affected

CSSP_PU 25·0 kV ×100 SE 500 µm

CSSP_PU 25·0 kV ×400 SE 100 µm

(a)

(b)

Figure 19. SEM images of mortar bar incorporating Sheikh Hills
aggregate source: (a) mortar bar under ASTM C 1260 (ASTM,
2014c) condition and (b) mortar bar under ASTM C 227 (ASTM,
2010) condition

(a)

(b)

CSSP_PU 25·0 kV ×500 k SE 10·0 µm

CSSP_PU 25·0 kV ×1·00 k SE 50·0 µm

Figure 20. SEM images of mortar bars incorporating (a) Tuguwali
and (b) Mach Hills aggregate sources tested under ASTM C 227
(ASTM, 2010) exposure conditions
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by ASR, especially at later ages. The more reactive
aggregates yielded a more significant decrease in
compressive strength, as expected.

(e) The overall reduction in compressive strength for
specimens tested under ASTM C 227 (ASTM, 2010)
ranged from 22 to 25%, while it ranged from 10 to 22%
for identical specimens tested under ASTM C 1260
(ASTM, 2014c) conditions.

( f ) A decrease in flexural strength was observed for
Sargodha aggregate sources tested under ASTM C 227
(ASTM, 2010) and ranging from 23 to 29%. Similar
specimens incurred flexural strength reduction under
ASTM C 1260 (ASTM, 2014c) ranging from 22 to 34%.
Specimens incorporating aggregates from the Kamser
and Jhelum sources exhibited a smaller decrease in
flexural strength (i.e. 8%).

(g) Specimens included from the Kamser and Jhelum
aggregate sources did not incur significant reduction
either in compressive strength, or in flexural strength
under conditions of exposure conducive to ASR.

(h) SEM imaging confirmed that the Mach Hills aggregate
source has potential ASR. SEM results obtained on the
Mach Hills aggregates also confirmed the effectiveness of
the ASTM C 1260 (ASTM, 2014c) in better identifying
potential ASR in slow reactive aggregates as opposed to
ASTM C 227 (ASTM, 2010). In addition, ASTM
C 1260 (ASTM, 2014c), which requires less time to
conduct, better agreed with the petrographic analysis
results.

(i) The findings of this study should be substantiated with
additional testing using the ASTM C 1293 (ASTM,
2015d) concrete prism test. In addition, the effectiveness
of using locally available supplementary cementitious
materials in mitigating the reactivity of some of the
tested aggregates needs dedicated future research.
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