

ROCK QUALITY DESIGNATION (RQD)

ROCK CORE EVALUATION

ROCK QUALITY DESIGNATION (RQD)

- Developed by Don U. Deere in 1964
- Significantly expanded by Deere, et al in 1967
- A useful index for determining rock quality from core recovery
- RQD= Length of "sound" core > 10 cm (4 in) X 100 Total Core Run Length
- Core measured along centerline
- NX or NQ size core should be used

RQD MEASUREMENTS

CORRELATION BETWEEN RQD AND ROCK MASS QUALITY (DEERE, 1964)

ROCK CORE DETERIORATION WITH TIME

PROPOSED USE OF RQD FOR ROCK SUPPORT (MERRITT, 1972)

GROUND SUPPORT BY RQD FOR 6m TO 12m DIAMETER (DEERE, ET AL, 1970)

Pock Construction		Stee	Steel Sets		ck Bolt	Shotcrete		Additional
Quality	Method	Weight of Steel Sets	Spacing	Spacing of Pattern Bolt	Additional Requirements	Total Thicknes	s (cm)	Supports
Stark mp				T attern Don	Requirements	Crown	Sides	E HERON
	Boring	Light	None to	None to	Para	None to	Nono	Nono
Excellent	Machine	Ligin	Occasional	Occasional	Rait	Occasional	None	None
RQD > 90	Drilling &	Light	None to	None to	Dara	None to	Nono	Nono
	Blasting	Ligin	Occasional	Occasional	Raie	Occasional	NOTE	None
Good	Boring	Light	Occasional to	Occasional to	Occasional mesh	Local Application	Nono	Nono
ROD	Machine	Ligiti	1.5 to 1.8 m	1.5 to 1.8 m	and straps	5 to 7.5 cm	None	None
75 to 90	Drilling &	Light	15 to 18 m	15 to 18 m	Occasional mesh	Local Application	None	None
10 10 00	Blasting	Ligin	1.0 to 1.0 m	1.0 to 1.0 m	and straps	5 to 7.5 cm	None	None
	Boring	Light to	15 to 18 m	12 to 18 m	Mesh and straps	5 to 10 cm	None	Rock
Fair RQD	Machine	Medium	1.0 to 1.0 m	1.2 to 1.0 m	as required		None	Bolts
50 to 75	Drilling &	Light to	12 to 15 m	09 to 15 m	Mesh and straps	10 cm or more	10 cm or	Rock
	Blasting	Medium	1.2 to 1.5 m	0.0 10 1.0 11	as required		more	Bolts

GROUND SUPPORT BY RQD FOR 6m TO 12m DIAMETER (DEERE, ET AL, 1970)(Cont.)

Pock	Construction	Steel	l Sets	Ro	ock Bolt	Shotcrete		Additional	
Quality	Method	Weight of	Spacing	Spacing of	Additional	Total Thickne	Total Thickness (cm)		
C. C.		Sleer Sels	The Land Land	Fallem Duit	Requirements	Crown	Sides		
Poor RQD 25 to 50	Boring Machine	Medium Circular	0.6 to 1.2 m	0.9 to 1.5 m	Anchorage may be hart to obtain. Considerable mesh and straps required	10 to 15 cm	10 to 15 cm	Rockbolt as required (1.2 to 1.8 m center to center)	
2010 00	Drilling & Blasting	Medium to Heavy circular	0.2 to 1.2 m	06 to 1.2 m	as above	15 cm or more	15 cm or more	as above	
Very Poor RQD < 25	Boring Machine	Medium to Heavy circular	0.6 m	0.6 to 1.2 m	Anchorage may be impossible. 100 % mesh and straps required	15 cm or more on whole section		Medium sets as required	
	Drilling & Blasting	Heavy circular	0.6 m	0.9 m	as above	15 cm or more on whole section		Medium sets as required	
Very Poor Squeezing and Swelling	Both methods	Very Heavy circular	0.6 m	0.6 to 0.9 m	Anchorage may be impossible. 100 % mesh and straps required	15 cm or more on whole section		Heavy sets as required	

LIMITATIONS ON RQD

- Does not account for the existence, thickness and strength characteristics of joint coating or filling material
- Does not account for joint roughness or interlock
- Can be significantly influenced by angle of boring
- "Sound" rock can be very subjective
- Core may deteriorate between drilling and logging
- 100 mm core length may be arbitrary for some excavations, e.g. NORAD Icelandic Power Chamber
- What RQD <u>really</u> means

ROCK MASS RATING (RMR)

- Originally developed by Z.T. (Dick) Bieniawski in 1973
- Also called "Geomechanics Classification of Rock Masses"
- Incorrectly called the "CSIR rating" or "CSIR Classification"
- Currently based on 351 case histories
- Modified several times must state reference
- "not the answer to all design problems"

RMR SYSTEM (GEOMECHANICS CLASSIFICATION)

Based on six geotechnical parameters:

- Uniaxial compressive strength of rock
- Rock quality designation (RQD)
- Spacing of discontinuities
- Condition of discontinuities
- Groundwater conditions
- Orientation of discontinuities

STRENGTH OF INTACT ROCK MATERIAL (BIENIAWSKI, 1979)

Qualitative Description	Compressive Strength (MPa)	Point Load Strength (MPa)	Rating
Exceptionally strong	>250	8	15
Very strong	100 – 250	4-8	12
Strong	50 – 100	2-4	7
Average	25 – 50	1-2	4
Weak	10 – 25	Use of Uniaxial compressive strength is preferred	2
Very weak	2 – 10	-do-	1
Extremely weak	1 – 2	-do-	0

Note: At compressive strength less than 0.6 Mpa, many rock material would be regarded as soil

DRILL CORE QUALITY – RQD (BIENIAWSKI, 1979)

Description	Rating
90 – 100 %	20
75 – 90 %	17
50 – 75 %	13
25 – 50 %	8
< 25%	3

SPACING OF DISCONTINUITIES (BIENIAWSKI, 1979)

Description	Spacing (m)	Rating
Very wide	>2	20
Wide	0.6 – 2	15
Moderate	0.2 – 0.6	10
Close	0.06 – 0.2	8
Very Close	<0.06	5

Description	Rating
Very rough and unweathered	30
Rough and slightly weathered	25
Slightly rough and moderately to highly weathered	20
Slickensided wall rock surface or 1-5mm thick gouge or 1-5mm wide continuous discontinuity	10
5mm thick soft gouge, 5mm wide continuous discontinui	ity 0

GROUND WATER CONDITION (BIENIAWSKI, 1979)

Inflow per 10m t Length (litre/min	unnel none 1.)	<10	10.25	25-125	>125
Joint water pres major principal s	sure / 0 stress	0-0.1	0.1-0.2	0.2-0.5	>0.5
General description	completely dry	damp	wet	dripping	flowing
Rating	15	10	7	4	0

ADJUSTMENT FOR JOINT ORIENTATION (BIENIAWSKI, 1979)

Joint Orientation Assessment for	Very Favorable	Favorable	Fair	Unfavor- able	Very Un- favorable
Tunnels	0	-2	-5	-10	-12
Raft Foundatio	n 0	-2	-7	-15	-25
Slopes	0	-5	-25	-50	-60

ROCK MASS CLASSES DETERMINED FROM TOTAL RATINGS

Rating	100-81	80-61	60-41	40-21	<20
Class no.	I	II	III	IV	V
Description	Very good rock	Good rock	Fair rock	Poor rock	Very poor rock

MEANING OF ROCK MASS CLASSES (BIENIAWSKI, 1974)

Class no.	I	II	III	IV	V
Average stand-up time	20y for 15m span	1yr for 10m span	1wk for 5m span	10h for 2.5m span	30min for 1 m span
Cohesion of rock mass (kPa)	>400	300 – 400	200 – 300	100 – 200	<100
Friction angle of rock mass (deg)	>45	35 – 45	25 – 35	15 – 25	<15

DESIGN PARAMETERS & ENGINEERING PROPERTIES OF ROCK MASS (BIENIAWSKI, 1979 & BIS CODE)

S. No.	Parameter/Properties of Rock Mass	Rock Mass Rating (Rock Class)				
		100-81(I)	80-61 (II)	60-41 (III)	40-21 (IV)	<20 (V)
1.	Classification of rock mass	Very good	Good	Fair	Poor	Very poor
2.	Average stand-up time	10 years for 15 m span	6 months for 8 m span	1 week for 5 m span	10 hrs. for 2.5 m span	30 min. for 1 m span
3.	Cohesion of rock mass (MPa)	>0.4	0.3-0.4	0.2-0.3	0.1-0.2	<0.1
4.	Angle of internal friction	>45°	35°-45°	25°-35°	15°-25°	15°

GUIDELINES FOR EXCAVATION AND SUPPORT OF ROCK TUNNELS IN ACCORDANCE WITH THE ROCK MASS RATING SYSTEM (BIENIAWSKI, 1989)

RMR APPLIED TO STAND-UP TIME (BIENIAWSKI, 1989)

ROCK MASS RATING AND STAND-UP TIME (BIENIAWSKI, 1974)

STAND-UP TIME - HOURS

CORRELATION BETWEEN SPAN, ROCK LOAD AND RMR, (BIENIAWSKI, 1989)

METHOD OF EXCAVATION BASED ON RMR (ABDULLATIF AND CRUDEN, 1983)

RMR Value	Excavation Method
< 30	Digging
31 - 60	Ripping
61 – 100	Blasting

CORRELATION BETWEEN Ed AND RMR (BIENIAWSKI, 1984)

Q-SYSTEM

Developed by Nick Barton, Lien and Lund, 1974

Also known as the Norwegian Geotechnical Institute (NGI) Classification

Originally based on 212 case histories; updated to now include more than 1500 case histories

Modified in 1993 by Barton and Grimstad to include ground support systems not available in 1974

"An engineering system facilitating the design of tunnel supports"

A numerical assessment of the rock mass quality based on seven parameters:

- RQD
- Number of joint sets
- Roughness of the most unfavorable joint or discontinuity
- Degree of alteration of filling along the weakest joint
- Water inflow
- Stress condition
- Equivalent dimension a function of size and purpose of the excavation

The first six parameters are grouped into three quotients to give the overall rock mass quality Q:

$$Q = (\underline{RQD}) \times (\underline{Jr}) \times (\underline{Jw})$$

Jn Ja SRF

Where:

RQD = rock quality designation

Jn = joint set number

Jr = joint roughness number

Ja = joint alteration number

Jw = joint water reduction number

SRF = stress reduction factor

	Conditions	J _n
Α.	Massive, none or few joints	0.5-1.0
В.	One joint set	2
C.	One joint set plus random	3
D.	Two joint sets	4
Е.	Two joint sets plus random	6
F.	Three joint sets	9
G.	Three joint sets plus random	12
Н.	Four or more joint sets, random, heavily jointed, "sugar cube", etc.	15
Н.	Crushed rock, earth like	20
Not	<u>e</u> :(i) For intersections use (3.0.J _n)	

(ii) For portals use (2.0.J_n)

JOINT ROUGHNESS NUMBER J_r (BARTON ET AL , 1974)

Conditions

	(a) Rock wall contact and	J _r
	(b) Rock wall contact before 10cm shear	
Α.	Discontinuous joint	4
Β.	Rough or irregular, undulating	3
C.	Smooth, undulating	2.0
D.	Slickensided, undulating	1.5
Ε.	Rough or irregular, planar	1.5
F.	Smooth, planar	1.0
G.	Slickensided, planar (c) No rock wall contact when sheared	0.5
Н.	Zone containing clay minerals thick enough to prevent rock wall contact	1.0
I.	Sandy, gravelly, or crushed zone thick enough to prevent rock wall contact	1.0

RATING DUE TO JOINT WATER (Jw)

	Classification of joint water	J _w	Approx. water pressure (kg/cm ²)
Α.	Dry excavations or minor inflow	1.0	<1
B.	Medium inflow or pressure	0.66	1-2.5
C.	Large inflow or high pressure with unfilled joints	0.5	2.5-10
D.	Large inflow or high pressure, outwash of joint fillings	0.33	2.5-10
E.	Exceptionally high inflow, decaying with time	0.2-0.1	>10
F.	Exceptionally high inflow, without noticeable decay	0.1-0.05	>10

JOINT ALTERATION NUMBER J_a (BARTON ET AL, 1974)

Ĵ, (degree) Tightly healed, hard, non-softening, impermeable filling, Α. 0.75 i.e., quartz or epidote Β. 25-35 Unaltered joint walls, surface staining only 1.0

- Slightly altered joint walls, Non-softening mineral coatings, 25-30 C. 2.0 sandy particles, clay-free disintegrated rock, etc.
- D. Silty or sandy clay coatings, small clay fraction 20-25 3.0 (non-softening)
- Ε. Softening or low-friction clay mineral coatings, 8-16 4.0 i.e., kaolinite, mica, chlorite, talc, gypsum, and graphite, etc.

Conditions

Φ,

JOINT ALTERATION NUMBER Ja (BARTON ET AL, 1974)

Conditions

(c) No rock wall contact when sheared

- J. Zones or bands of disintegrated or crushed rock 6-24 8-12
- L. Zones or bands of silty or sandy clay, small clay, 5 fraction (non-softening)
- M. Thick continuous zones or bands of clay 6-24 13-20
- <u>Note:</u> (i) Values of Φ , are intended as an approximate guide to the mineralogical properties of the alteration products.

 Φ_r Ja (degree)

STRESS REDUCTION FACTOR, SRF (BARTON ET AL, 1974 AND GRIMSTAD AND BARTON, 1993)

	Conditions	SRF	
(a)	Weakness zones intersecting excavation, which may cause loosening of rockmass when	tunnel is exca	avated
Α.	Multiple occurrences of weakness zones containing cla chemically disintegrated rock	y or	10.0
В.	Single-weakness zones containing clay or chemically disintegrated rock (depth [≤] 50 m)		5.0
C.	Single-weakness zones containing clay or chemically disintegrated rock (depth >50m)		2.5
D.	Multiple-shear zones in competent rock (clay-free)		7.5
E.	Single shear zones in competent rock (clay-free) (depth	≤50m)	5.0
F.	Single-shear zones competent rock (clay-free) (depth of	⁻ >50m)	2.5
G.	Loose open joints, heavily jointed or "sugar cube", etc.		5.0

STRESS REDUCTION FACTOR SRF (BARTON ET AL, 1974 AND GRIMSTAD AND BARTON, 1993)

	Conditions	SRF
(b)	Competent rock, rock stress problems	
Н.	Low stress, near surface open joints	2.5
J.	Medium stress, favorable stress condition	1.0
K.	High stress, very tight structure	0.5-2.0
L.	Moderate slabbing after >1 hr in massive rock	5-50
Μ.	Slabbing and rock burst after a few minutes, massive rock	50-200
N.	Heavy rock burst and immediate deformations, massive rock	200-400

DESCRIPTION OF RANGES IN THE Q-SYSTEM

0.001-0.01	Exceptionally poor	
0.01-0.1	Extremely poor	
0.1-1	Very poor	
1-4	Poor	
4-10	Fair	
10-40	Good	
40-100	Very good	
100-400	Extremely good	
400-1000	Exceptionally good	

Equivalent dimension is defined as follows:

De = <u>excavation span, diameter, or height,</u> excavation to support ratio (ESR)

VALUES OF EXCAVATION SUPPORT RATIO, ESR (BARTON ET AL, 1974)

S. No.	Type of Excavation	ESR
1	Temporary mine openings, etc.	3 – 5 ?
2	Vertical shafts:	
	(i) Circular section	2.5 ?
	(ii) Rectangular / square section	2.0 ?
3.	Permanent mine openings, water tunnels for hydro power, etc.	1.6
4.	Storage rooms, water treatment plants, minor road and railway tunnels, etc.	1.3
5.	Oil storage caverns, power stations, major road and railway tunnels, civil defense chambers, etc.	1.0
6.	Underground nuclear power stations, railway stations, sports and public facilities, factories, etc.	0.8 ?

Q-SYSTEM GROUND SUPPORT

REINFORCEMENT CATEGORIES

- 1) Unsupported
- 2) Spot bolting, sb
- 3) Systematic bolting, B
- 4) Systematic bolting, (and unreinforced shotcrete, 4-10 cm), B(+S)
- 5) Fibre reinforced shotcrete and bolting, 5-9 cm, Sfr+B

- 6) Fibre reinforced shutcrete and bolting, 9-12 cm, Sfr+B
- 7) Fibre reinforced shotcrete and bolting, 12-15 cm, Sfr+B
- 8) Fibre reinforced shotcrete, >15 cm,
- reinforced ribs of shotcrete and bolting, Sfr, RRS+B 9) Cast concrete lining, CCA

Q-SYSTEM, EXCAVATION SUPPORT CHART (BARTON ET AL, 1974)

SUMMARY OF COMPARISON BETWEEN RQD AND Q-SYSTEM

Rock quality	Best	Medium	Poor
J _n	3	4	9
J_r	2	2	1
J _a	1	2	4
J_{w}	1	1	0.66
SRF	1	1	2.5
RQD	100	90	70
Q	67	22	0.5

Q-SYSTEM USED TO ESTIMATE TUNNEL OVERBREAK (FRANKLIN, 1993)

COMPARISON OF RMR TO Q (SINGH AND GOEL, 1999)

Q AND RMR USED TO ESTIMATE MODULUS OF DEFORMATION (BARTON, 1993)

RECOMMENDATIONS ON THE USE OF ROCK MASS CLASSIFICATIONS (BIENIAWSKI, 1988, LACHEL, 2003)

- Do not use the classification schemes as rigid guidelines or a substitute for sound engineering judgment
- Consider alternate classifications schemes
- Classification schemes are not applicable to all situations
- Classification schemes are based on successfully completed projects and as such are typically conservative
- Generally, RMR and the Q-system appear to give better, more consistent results
- Integrate classification schemes with analytical and observational approaches

RECOMMENDATIONS ON THE USE OF ROCK MASS CLASSIFICATIONS (BIENIAWSKI, 1988, LACHEL, 2003) cont.

- There is still a great deal of subjectivity is assigning values to the factors
- Anisotropy and inhomogeneity must always be considered
- At least two schemes should be applied and it may be possible to develop a site related approach
- One classification will normally not be applicable to an entire site
- The results of all analysis must be confirmed during construction
- A complete record or database of experience with the classification system should be maintained