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3.1 COMPARISON OF ELASTIC AND PLASTIC
ANALYSES

CONDITIONS FOR CORRECT PLASTIC ANALYSIS

1. Mechanism: The limit load is reached when the correct mechanism forms.
2. Equilibrium: The sum of all forces and moments is equal to zero.
3. Plastic moment: The moment may nowhere exceed Mp.

CONDITIONS FOR CORRECT ELASTIC ANALYSIS

1. Continuity: The deformations aré proportional to the loads.
2. Equilibrium: The sum of all forces and moments is equal to zero.
3. Yield moment: The moment may nowhere exceed My.
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3.2 FUNDAMENTAL PRINCIPLES
3.21 VIRTUAL WORK

If a system of forces in equilibrium is subjected to a virtual dispiacement, the work
done by the external forces and internal momenis vanishes.

W.+W, =0
The internal work is negative as the plastic moments rotate in a direction opposite

to the plastic hinges. For convenience of solving for the limit [oad, the equation is
written in the form: '

WE - |W1|

3.2.2 ASSUMPTIONS
O Material behavior: The material is elastic-perfectly plastic.

00 Small deformations: The equilibrium equations can be written for the
‘undeformed structure.

L No instability: The structure reaches the limit load without becoming
unstable. :

0 Continuity: The connections can transmit the plastic moment, Mp,
O Axial and shear forces:  zir effects on Mp are neglected.

(3 Proportional loading: All loads applied on a structure are in fixed
proportions to each other,
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3.2.3 LOWER BOUND
Theorem

“If any stress distribution throughout the structure can be found which is
everywhere in equilibrium internally and balances certain external ioads and at the
same time does not violate the yield condition, those loads will be carried safely by
the structure.” (Calladine 1985, p. 96)

“An external load in equilibrium with a distribution of bending moment which
nowhere exceeds the fully plastic value is less than or equal to the collapse load.
Such a distribution of bending moment is referred to as staticaily admissible.”
(Chakrabarty 1987, p. 229)

Proof

The lower bound theorem can be proved in a manner similar to the proof of the
upper bound theorem.
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Fig. 3.2.1 lilustration of Lower Bound Theorem (Beedle 1958, p. 50)
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3.2.4 UPPER BOUND
Theorem

“If an estimate of the plastic collapse load of a body is made by equating internal
rate of dissipation of energy to the rate at which external forces do work in any
postulated mechanism of deformation of the body, the estimate will be either
higher, or correct.” (Calladine 1985, p. 104)

“The load obtained by the external work done by it to the internal work absorbed at
the piastic hinges in any assumed collapse mechanism is greater than or equal to
the collapse load. The deformation mode represented by a collapse mechanssm IS
said to be kinematically admissible.” (Chakrabarty 1987, p. 229)

Proof

The limit load for the correct collapse mechanism of the given structure,
designated by the subscript 1, is determined by equating the external work to the
internal dissipation of energy:

| ZP1,:'”1,.-' = ZMwBu
j J

where
P, = setof external forces applied at locations f
" u, .= mechanism displacements in directions of external forces at

1" . -
locations {

M; ; = setofinternal moments at plastic hinge locations J

mechanism rotations in directions of internal moments at plastic
hinge locations j

_FD
(=

Similarly, the Iimit load for any other geometrically possible mechanism,
designated by the subscript 2, is determined from:

Z Py = ; M, 8, (Eq. 3.2.4)
)

where
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P, = setof external forces applied at locations {
u,; = mechanism displacements in directions of external forces at
locations i

M, , = setofinternal moments at plastic hinge locations k

8,, = mechanism rotations in directions of internal moments at plastic
' hinge locations k »

Now, let the set of equilibrium forces P, ; and internal moments M, ; from the

correct mechanism 1 undergo the displacements u, ; and rotations 8, , from any
other mechanism:

Z P u,; = 2. M, 8 J%2k (Eq. 3.2.5)
I
Subtracting Eq. 3.2.5 from Eq. 3.2.4 gives ,
Z (P~ P yuy; = ) (M, - M,;)8,, (Eq. 3.2.6)
I

At the plastic hinges of the second mechanism, the moments are M, k:Mp.

Since the first mechanism may not have hinges at the same locations as those of
the second mechanism, the moments of the first mechanism at the locations of

the plastic hinges of the second mechanism are M J_M Therefore, the right

side of Eq. 3.2.6 is always greater than or equal to zero. Accordingly, the left side
must aiso be greater than or equal to zero, meaning that

P, = Pi,i

2.§

Or, in other . rds, the correct mechanism is the one that gives the lowest all limit
load values. '
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Fig. 3.2.2 Illustration of Upper Bound Theorem (Beedle 1958, p. 59)

3.25 COROLLARIES OF THE BOUND THEOREMS

“The two limit theorems can be combined to form a uniqueness theorem which
states that if any statically admissible distribution of bending moment can be found
in a structure that has sufficient number of yield hinges to produce a mechanism,
the corresponding load is equal to the collapse load.” (Chakrabarty 1987, p. 229)

“Ifina body we are in position {o investigate all possible distributions of stress
which are in equilibrium and do not violate the yield condition, the highest lower-
bound load discovered must be equal to the collapse load.” (Calladine 1985, p.
110) '

“Addition of material to a (weighﬂess) structure without any change in the position
of the applied loads cannot result in a lower collapse load. The removal of
material cannot strengthen it.” (Calladine 1985, p. 110)
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“Increasing (decreasing) the yield strength of the material cannot weaken
(strengthen) it.” (Calladine 1985, p. 111)

The bound theorems are valid only if the material is elastic-perfectly plastic. In a
possible parallel idea in elasticity theory, it would be false to say that “addition of
material will always decrease stress concentration.”

3.2.6 SUMMARY

If the correct mechanism is selected, the moment does not exceed Mp anywhere,

the solution is exact, and the conditions of plastic analysis are satisfied. If an
incorrect mechanism is assumed, the moment exceeds Mp somewhere, the

solution is an upper bound, and the plastic moment condition is not satisfied.

Example
| l 2P
3P - Y
2L
¥
7777 777 T
| L | L
For this structure and loading, the panel mechanism gives the correct limit load:
p -2
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The combined mechanism gives a limit load greater than the correct limit load
from the panel mechanism and, as a result, the moment at the left beam-to-

column connection exceeds the plastic moment:
3 M

b _3. M,
B2 9

3
2 M A

MP
M, M,

Dividing the moment diagram by 3/2 would satisfy the plaétic moment condition

but violate the mechanism condition.
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2
: =M
? IIVIF" /m’rﬂ3 P
Mng_ / .
gIR‘AP
/777 /777 é
N hani 2 2
(No mechanism) §MP | §MP

Since a mechanism has not formed, the limit load correspondmg to the reduced
bending moment diagram becomes a lower bound:
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3.3

- 3.341

STATICAL METHOD OF ANALYSIS

APPROACH

The objective is to find an equilibrium moment diagram in which M < M such that
a mechanism is formed. The procedure is as follows:

G

U

Select sufficient redundancies to make the structure is statically
determinant.

Draw the moment diagrams due to the redundant reactions and
moments.

Draw the moment diagram due to the applied loads.

Draw the composﬂe moment diagram in such a way that-a mechanism is
formed.

Compute the limit load from an equilibrium equation.

Verify that the plastic moment condition is satisfied, M< Mp.
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3.3.2 EXAMPLE 1: TWO-SPAN CONTINUOUS BEAM

Structure:

Redundants:

Moment diagram due to
redundant moment:

Applied loads:

Moment diagram due to
applied loads:

Composite moment diagram:

From moment equilibrium:

M 6 M
& - M +F P, = P
4 P2 L
Mechanism: W

Fig. 3.3.1 Plastic Analysis of Two-Span Continuous Beam, Statical Method
(Beedie 1958, p. 64)
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3.3.3 . EXAMPLE 2: BEAM FIXED AT ONE END, SUPPORTED AT OTHER

P =
Structure: 21 ¢2 i 3 2
. é W/;/
: . L3 | s | 3
i F e al
M
Redundanis: C 1

Moment diagram due to M W
redundant moment:

Applied loads: T T
y ' . — 7 PL
‘Moment diagram due to applied —
loads: N\U\]K/] ij/ L3
' _ 3 3
Composite moment diagram: Mp
0 Hinges form at 1 and 3: , [\ _____________
- am, , L ‘
Py Mp
O Hinges form at 1 and 2: I\ ______ e,
violates plastic N\/\ZIE
M
moment, M;>M,, P M5 3
0O Hinges form at 2 and 3 v
inges form at 2 and 3: N
violates equilibrium DN —
condition.

Mechanism: | — ] —
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3.4 MECHANISM METHOD OF ANALYSIS

3.4.1 APPROACH
- Find a mechanism (independent or composite} as follows:

1. Determine all locations where plastic hinges could form (load points,
connections, points of zero shear in a prismatic beam loaded uniformly).

2. Determine all independent and composite mechanisms.

3. Calculate the limit load for each mechanism with the virtual work
method.

4. Select the mechanism that gives the lowest limit load and verify that the
plastic moment condition is satisfied at all sections, M < M,,.

Suppose there are N critical sections at which plastic hinges may form under a
given loading system, and let x denote the number of redundants. Since the
bending moments at the critical sections would be completely determined if the
values of these redundants were known, there must be N - x independent
relations connecting the N critical moments. Each of these relations is an
equation of statical equilibrium that can be associated with a possible
independent mechanisms through the virtual work principle. It follows, therefore,
that the number of possible independent mechanisms, from which all other
mechanisms of collapse can be deduced is

= N-Xx

where

number of possible independent mechamsms
number of possible plastic hmges

number of redundanis

X =3
mun

Total number of independent and combined mechanisms:

n

N3 _n,n@-1) an-Nn-2) o0,
mech S Ki(n-k) 1 1-2 1-2-3 |

where
n = number of independent mechanisms
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k = counter

3.4.2 TYPES OF MECHANISMS

For convenience in referring to different modes of failure, the various types of
mechanisms are illustrated in FIG. 3.4.1, using the structure shown in sketch (a):

Beam mechanism Sketch (b)
Four examples are given here of the displacement of single spans under
load. '

Panel mechanism Sketch (c)
This motion is due to side-sway.

Gable mechanism Sketch (d) ‘
This is a characteristic mechanism of gabled frames, involving spreading of
the column tops with respect to the bases.

Joint mechanism Sketch (e)
This independent mechanism forms at the junction of three or more
members and represents motion under the action of an applied moment.
Composite mechanism Sketches (f), (g}
Independent mechanisms may be combined in different ways. A composite
mechanism may be "partial" as indicated by sketch (f) and for which the
frame is still indeterminate at failure; or it may be a "complete" composite
‘mechanism, in which case the frame is determinate at failure.
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(a)

i

Beam mechanisms
|
{b)
, independent
! mechanisms
{c) : Panef mechanism ’
(d) m Gable mechanism
(e) "—‘5*) Joint mechanism .|
{11 Partial mechanism
. Composite
maechanisms
{g) Comuplete mechanism p

FIG. 3.4.1. Types of Mechanism (Beedle 1958, p. 73)
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3.4.3 EXAMPLE 1: TWO-SPAN CONTINUOUS BEAM

2P
P p 3IM
® @m0 (@% 6
/N AN v
3L L
- L R
Mechanism 1 W
1 20 (b)
3M, IM,
Mp 2 2
Mechanism 2 -L—M
8

(c)

FIG. 3.4.2. Unsymmetrical Two-Span Continuous Beam
{Beedle 1958, p. 67}
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Number of Independent Mechanisms
n=-=N-x=4-2-=2
First Beam Mechanism |

w, - P83t - 3g1p
8 8

W, = M‘D (26 +8) = 39!1/]‘p
From W= W,

Second Beam Mechanism

w,-2p-8L - 29, p
33

3M, 3¢ . 3Mp 6

W =M296-+ — =40M
e 2 2 2 2 P
From W= W,
| 6M
P, = Lp . € Controls

Combined Mechanism
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The virtual rotations n8 and 6 are arbitrary. One is not a function of the other.

P-no>Lt - m (2n6+ne)
8 p

3M
2P0t -me. |38 8
3 i 2 2 2
Add the above equations:
LP|3n+2) - m (3n+4)
8 3 P

and solve for the limit load:

_24(3n+4) M,

PL
9n +16 L
M . .
Forn =« P, =8 Tp -»  First beam mechanism
M _ .
Forn=0: P, =6 —I:E = Second beam mechanism

Combinations of the two mechanisms yield limit loads of 6M/L < PL < 8M /L for
0 < n <=, putin this case the combined mechanism is not physically possible.
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3.4.4 EXAMPLE 2: SYMMETRIC PORTAL FRAME

Vi

@ ®
Hl
r'7 L
a P
] 6
Mech. 1 b "’ —t_

Tk

Mech. 2

(a)

(d)

{c)

{d)

{e}

FIG. 3.4.3. Symmetric Rectangular Portal Frame with

Pinned Bases (Beedle 1958, p. 71)
Number of Independent Mechanisms
n=N-x=3-1-=2
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Beam Mechanism

s
P, = d
L
Panel Mechanism
P L 7
—86— =M,(6+0
2 2 p ! )
8\
| oo T
Combined Mechanism -
p.gi +£-e£ = M_(26 +28)
2 2 2 P
16 M :
L= d ¢ Controls
_ 3L
Reactions for Combined Mechanism
\Y/
P v
._.E Y — H
1= H, e Hyg e Hy
b ; 4
1 V5 \/5

- From free-body diagram of right column:
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L
S M, =0 H Lo, -0

2M

H. = R

L

From free-body diagram of portal frame:
16 M 2M
YE =00 Py =127 p - "0 g

2 2 3L L

2M

H, = P

3L

) 16M, L 16Mp_1:
3L 2 3L 4

y>m -0 viL-pE-PL v
- 2 22

4M
V. = P
L
4 M 16 M
> F, =00 V,+V,-P =V, +—E- P =0
Y : L 3L
4M
v, = —2*
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10

~ 3.4.5 EXAMPLE 3: NONSYMMETRIC PORTAL FRAME

L=20m, M, =30kNm, M,=55kN-m M,=20kNm

2P
: |

X w M
2 pp 3
L M,
¥ 1
Ly M 2L
P3
L/2
4 ¥
T
L N
]

Number of Independent Mechanisms
n=N-x=5-3-=2

Beam Mechanism
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8L
2P'7 = Mp19+Mp2'29+Mp39

20P = 30 +2-55 + 20
P, = 8.0 kN

Panel Mechanism

2P
20L & o(2L)
e e

—

P-28L = M, (28 +28) + M, (8 + )
40P = 30-4 + 20-2
P, = 40kN ¢ Controls

Combined Mechanism

20L .
e 5= 20(U2)

, |
P-28L + 2P 20 =M, 20 + M, 48 + M,4(36 + 0)

40P +40P=30-2 + 55-4 + 20-4
P, =4.5kN
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Reactions for P, = 4.0 kN

V3
2P v
. -
& > 3 i <t H,
M 3
p3
1 My
U 2
& ™
1 X
o po

V, V_4
From free-body diagram of right column:
> My =0 2M_;-H,-2L =02-20-H, 40 = 0
| H, = 1.0 kN
From free-body diagram of portal frame:
_ ' L
Ym, =0 VL +My,-H/(L,-L,) —_zp-é -P-L,+M,, =0
V, = 6.5 kN
2. F,=0: V,+V,-2P =0
V, = 1.5kN
SF,=0: -H-H,+P=-H,-10+45=0
H, = 3.0kN
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13

Bending Moment Diagram for Limit Load, P_ = 4.0 kN

30 kKN-m

A

20 kKN-m

30 kN'm

45 kN-m

20 kN'm
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3.4.6 EXAMPLE 4: PORTAL FRAME — INSTANTANEOUS CENTER

Displacement of a Point
| Y Ax =y A6
x = r Af

o y!)m Ay = x A

‘ (X, y} %

r 6

L.et (x, y) be any point as shown in the figure above and let it be rotated about
the origin through a smali angle 8 to a new position (X’,y'). The displacement of
the point is r® and for small displacements it moves along a path perpendicular
to the radius. The horizontal component of this displacement is ré-(sin 8). But
sin 6 = y/r so that the horizontal component of the displacement becomes
(Shermer 1972, p. 291):

A, =y AB
Similarly, the vertical component of the displacement is
A, =x A8

Combined Mechanism

Referring to example 2, calculate the limit load for the combined mechanism
using the instantaneous center method. |
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FIG. 3.4.7. Location of Instantaneous Center for Rectangular Frame
Mechanism of FIG. 3.4.3. (Beedle 1958, p. 77)

Hinge rotations: Load displacements:

' _a.L oL
Assumed: 6, = 8 AZX_91 P ”GE
L a L _ oL
65 Aay-—G,CE—GE
B = —— = 8
2 , Virtual work:
8, =0, +6,, =
s = 0+ Oic = 26 PoL.p.ol - m (20,
L 2 2 2 P
BIC'E‘E
Oy = ———— =9 p - 16 M,
L 2 - 3 L
2
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3.4.7 EXAMPLE 5: GABLE FRAME — INSTANTANEOUS CENTER

Calculate the limit load for the combined mechanism using the instantaneous
center method.

M, = CONSTANT | L
; R
4 ’ 4
= L e il L o
Rotations: ' Load displacements:
8, =0 : _ 30L
T | Bop =8 L = —=
o .8-L _8 4
I 41 4 36L
4 4 A, =86.3L="2C-
8, - 0 56 4
6 = 8748, = — '
4 A, -0,-L=23E
. Sv Ic
0.°3L 3¢ 4
0, = . | --
L 4
0; = 8, +0; = 29
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Virtual work: _
0
p38L  ,p36L, +E}+Mp[e+~
4 4
(a)
< aL |
S
1@ F)E)
%2 /] é (b}
t, €)
3L [# _
Aﬁ: o s 6-D] =3
g. 3.12.

Location of instantaneous center for a gabled frame mechanis;

RNV

Moy m
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3.4.8 EXAMPLE 6: PORTAL FRAME — UNIFORMLY DISTRIBUTED LOAD

w = P/L
P ®1? ¥ % ¥ X 5 ¥ 7 3 ¥
2 3
M, = CONSTANT _
@
’ O
1 4] 5
W V77 7T
F 2L N /

Number of Independent Mechanisms

n=N-x=5
Beam Mechanism
| P/L
LYVYIVVITiIvevey L
20

:

~3 -2
-12L-BL]
PoL

PL

i1

M,(8+28+0)

40 M
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Panel Mechanism

0.96L
-

w = P/L

P-096L = MP(G +8+0+0)
4.44M,
L :—L_

Rotations:

6, = 6

8-0.9L a
e’CZZ—-a ‘ zzmae
0.9L _

a
9,-0,+0,.-—2_8
2-da
8, (2L - al)
.= -9
al
0,=8,+6,= 2 9
2—0(1

Dispiacements:
A, =6,-09L = 0.9L6
A, =6,-al = alLB
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20

Virtual work:

P-o.91_e+_’z{%-21_-al_e] :Mp[9+ 2 g+ -2 g9

2-a 2-d
p_ 8 -2a M,
1.8 +11a-a? L
Minimize the term PL.IMP and solve for a:
EE =0: a = 0.870
da
) 3.13Mp
L L
Reactions
w = P/L
| §v3
H
P»Jrll$wlijr 3
2 3 mM
' P
Mp MP H4
1 2 4 - i L4
H1 \._) H4 M
$ ¢ ¢ 7
V1 V4

_33M, 2.22M, 0.91M,
L L L
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YoM, =0 Vpo2aL+2m -2.200 - poosL =0
| L
LM, 343M, |  3.54M,
! L
| (343m ) 354M, 2.72M
Yv-0 v,-F2r-v -2 LY P 2050
L L L L

Moment equation for beam:

0.18M : L
P

M M -
Y M =o0: 0.18M -2.72 pr+3.13_w+mx=o
M M,
M, =272 Lf’x 313 22 -0.18M,

dm M M
X 2272 P _343_Px =0

dx L L2

11
IN
-\l
X)
~
[l
o
o0
-\]
o
I'N.
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P-0.99L+%[%-2L-8L] - M (8 + 20 + 26 + 6)

3.16 M,
L L

Reaction and moment diagram:

0'154MF—“\*---‘ _________________ 7 P

MP
| S e, 2o\
p P ? L . L ?
ol 2.74M, 3.58M,
L L

Maximum span moment:

w=P/L M, . '—"316!\-%'
IXETIEXE] S 0.154M, - L?
e <
T./H oM, Cﬁ:HHHl:)
M - ?274:\11 M,
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0.18M , (-~ /ﬂ{ M,

0.87L

Approximate Analysis for the Combined Mechanism

Limit load, assuming hinge forms at midspan:
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Y. M, =0: 0.154M, - (al

L2 2
M, = -1.58 M_(a?) +2.74 M, (a) - 0.154 M,

oM,
od

=0 =$ o= 0.870

So:
MA = 1.034Mp > Mp

Bounds on exact solution :

M

P, <316 P

L
346 M _/L M
P,>—* _-306-"°
1.034 L

Exact solution (page 3.4-19):
| M
P = 3.13 -2

2.74 M, . 346 M, (aL)?

A

=0
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3.4.9 EXAMPLE 7: TWO-BAY FRAME — COMBINATION OF MECHANISMS

RN S

2 3 4 5 6
2L
1 8 7
727 70 777
L L |
" = ‘M_= CONSTANT
2L ) 2L P

Number of independent mechanisms:
n=N-x=10-6 =4

Number of independent and combined mechanisms:

| Noech = 2"-1 =15
Independent Mechanisms
(1) Beam mechanism 1:
6L
0o/
6  P-OL = Mp-49
5 _
0 am
P, = — P
L

(2) Beam mechanism 2:
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(Most critical))

(3) Panel mechanism:
2oL

—]  f—
P—-—B-
0 6 4]
0 (4] s}

(4) Joint mechanism:

QORC.

2P6L = M,-40
2M
p = 27p
L L

P-26L = M,- 66

3 M
p - P
Lo
W =
WI = 3GMP
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Combined Mechanisms

(5) Mechanisms 1 and 2 (no physical meaning:

PeL
2POL
3POBL

41,6
4M,0
8M,8

NN =

Y
il

M
= 2672
L

(6) Mechanisms 1 and 3:

POL

: 4M_ 0
3 2PBL

6M_ 6

Il
e

©

o

-3 : —MPB
3PBL BMPB

M
~ P, =267-F
L

(7) Mechanisms 1 and 4:

F | 1:  PeL

I
Y
=
aa]

PBL

I
o
=
@



3.4 MECHANISM METHOD OF ANALYSIS

28

(8) Mechanisms 2 and 3:

W

(9) Mechanisnﬁs 2 and 4:

(10) Mechanisms 3 and 4

S

(11) Mechanisms 1, 2 and 3:

;. 2POL=4M,0
3: 2POL-=6M,6
4POL = 10M,6
M
P, =25_F

L

2: 2P6L-4M,0
4 : 0:3Mpe
-2 —Mpe
-4 -M,0
2POL = 5M,6

M
P, =25_2°

L

3: 2POL=6M08
4 0=3M,6
-3 -M, 8
-4 -M, 9
2POL = 7M,8

M
P, =35 P

L
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(12) Mechanisms 1, 2 and 4:

POL
2POL
2P0L

5POL

I3

41 _86
4M_86
6M_ 8

-M ©

T

O

o]

Lo

-M_3

12

2.4

;v

~ |8
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(13) Mechanisms 1, 3 and 4:

77

PBL
2POL

3PBL

i

4M_6
4M,0
3M,6
-M_6

o]

- -M_ 8

9M_0
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3

(14) Mechanisms 2, 3 and 4.

9

(Third most critical)

(15} Mechanisms 1, 2, 3 and 4:

-

(Second most Critical) _

1, 2 and 3 :
4 :

-1, -3
-2, -3, -4 :

PBL
2P6L

3POL

2POL
2P6L

4P6L

5POL

5P6L
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3.5 MEMBERS OF NONUNIFORM CROSS SECTION

3.5.1 TAPERED MEMBER

NEEEREERT R EERE
P AL ©,

i S
~ ; T @
f } I f..i?

.
| _
=

Redundant
moement \ {c)
Composite
moment (d)
diagram ™ l N
L ,,,, ¢ \ Plastic hinge
a’ - position
Maximum moment
(shear zero)
o= ——'V (e)

FIG. 3.5.1. Plastic Analysis of Tapered Member
(Beedle 1958, p. 97)

In tapered and uniformly loaded members, the hinge in the positive moment
region does not form where the moment is maximum (zero shear). Instead, it



3.5 MEMBERS OF NONUNIFORM CRQSS SECTION

forms where the bending moment diagram induced by the applied loads and the
diagram of plastic moment capacity have the same slopes and ordinates.

Bending Moment Diagram
W

EEEEEEEEEERERER

V‘I _ __ PS5

;

P1

Vi

C D

M

P1L. X

W, X
EMX=0: -V, x+ LZ + p1+MX:_0

Eliminate V, and solve for M,:

2
" :[WLL Mp1—Mp2]x_ w, X

+

2 L




3.5 MEMBERS OF NONUNIFORM CRQSS SECTION

Plastic Moment Capacity

Mpx =+ Zxcry

where the plastic modulus for a tapered beam with a wide flange sect’ 1is

X

tw( X - 2
Z, = byty| dy = Jd =) ~t, [+ d - Ty ) 7 g |

Limit Load

The plastic hinge position x and the limit load w, are obtained by equating the
slopes and ordinates of the bending moment diagram and the diagram of plastic
moment capacity. '

dm, . dex
dx dx
M =M

x px
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3.5.2 COVERPLATED AND HAUNCHED MEMBERS

__© © ®
S — ——
A A

{a)

L]

I I LI
A

FIG. 3.5.2. Plastic Analysis of Members with Prismatic Cross
Section in Positive Moment Region {Beedle 1958, p. 94)

In contrast to tapered members, coverplated and haunched members are
typically prismatic along the positive bending moment region where the diagram
of plastic moment capacity has a zero slope

dex )
dx




3.5 MEMBERS OF NONUNIFORM CROSS SECTION

and constant ordinate

M, = Zo, = constant
where the plastic modulus for a prismatic beam with a wide flange section is
t
Z = b, t(d-t,) +if(d—2tf)2
Limit Load

The plastic hinge position x and the limit load w, are, again, obtained by
equating the slopes and ordinates of the bending moment diagram and the
diagram of plastic moment capacity:

dM, w,L M, -M

x 2 L WX
| w,L M, -M, w, x?
M, = [ - + n X - 5 -M,, = 2o,
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3.6 TESTS OF CONTINUOUS STRUCTURES

3.6.1 RECAPITULATION OF ASSUMPTIONS

(D Ductility a T
Ty
[
Iy

@ Piastic moment c j Mp=a,2

Mp

My ~
(@ Plastic hinge M

¢
(1) Continyous connections ‘ (“? TD
= Moment capacity = M,
(&) Redistribution of moment t' ffl
W,

(® Ultimote iood: mechanism w /t'P\o/+

FIG. 3.6.1. Important Assumptions in Plastic Analysis
: (Beedle 1958, p. 99)

3.6.2 STRENGTH OF CONTINUOUS BEAMS
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STRUCTURE AND % OF
LOADING SHAPE  REFERENCE  opepicTen®p,
2080 100
Chserved
| Maximum
¥ Load
== = BW 40 5.1
Computed
Elastic
8W 40 5.1 Limit
*:ﬁ#__*__i - t awao 51 e
8W 40 5.1
t—% BW 30 5.1 I
it 44 IZW36 55 :m
& = A -

E'L'J'T'Ljﬁ 6112.5° .22 R
A‘:LL%;)J% 6li2.5° .22 -

;—‘—‘-z-un} s112.5° 122
FE-L'LT“} . BWS8 6.16

0246810t
| i |

Scde

*(German St. 37 Stesi, 37 Steei)

FIG. 3.6.2. Summary of Test Results for Continuous Beams Showing
Correlation with Predictions of Plastic Theory
(Plastic Design 1971, p. 50)



3.6 TESTS OF CONTINUOQUS STRUCTURES

STRUCTURE AND | %% OF
LOADING SHAPE REFERENCE  prepicTED P,
20 60 100
rr 1 [ T TE

% 5110 5.9
E_—J_—;;ﬁ_ 5110 5.9

= == =, 6112.5 59 N
§ 4

= o : =9 5110 5.9
§ K]

b = ) Y Y 5.8

E = = 5110 5.9
s b 5710 5.9
= =

8813

F*:q [As4i] 4.8
‘@ 1ow23 4.8
[a4a] ‘

: S 12819 5.6
o~ - [A572(65)]
E TL ? — 2819 5.6
[as72(85)]

Scm'o 2 4 8 Bft,

FIG. 3.6.3. Summary of Test Results for Beams Showing Correlation with
Predictions of Plastic Theory (Plastic Design 1971, p.51)
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3.6.3 STRENGTH OF RIGID FRAMES

STRUCTURE AND % OF

LOADING SHAPE  REFERENCE  opepcrep py
z0 60 100
Observed
* Maximum
Load
| l BW40 511 :
- * Computed
o Elastic
. Limit
i 8B 13 5.11
i J |
P P

p
H L I2W 36 5.12
P-ﬂ
g
P P
{ ¢
P
§-=1
jou ] 12ZW36 5.2 [ mm
8 - . b

-]

IL 12W 386 .12

|

[2W 36 5.5

)

‘02468100
Scale T T

FIG. 3.6.4. Summary of Test Results for Frames Showing Correlation
with Predictions of Plastic Theory {Plastic Design 1971, p. 54)
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| % OF
STRUCTURE AND
LOADING SHAPE REFERENCE  ppenicTeED Py

20 60 100

LS| i

Observed
Maximum

Load
513 ‘

~-Computed
Elastic
Limit

5.13 —

Previously Oeformed Structure

4 B | 201t
Scala c‘lr"-1—r--'~"rz—F§-'-'|o

—_—t 8813
‘ 5.4

l | 4B13 p—
,.J. {two tests) 5.14 —
4813 :
(two tests) 5.14
4813 514
- ﬂv ,UL _ {two tests)
02468 101
Secale 1T

FIG. 3.6.5. Summary of Test Results for Frames Showing Correlation with
Predictions of Plastic Theory (Plastic Design 1971, p. 55)for
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STRUCTURE AND

LOADING SHAPE

= Bx4xi8lb. RSJ
(two frames tested
. in parallel)

P 8x4x181b. RSJ
{two frames tested
in parailel)

two tests

5x3xliIb. RSJ
(two fromes tested
in parailel}

mie

-]
ry

&0
+lo
v

Sx3xilth, RSJ
(two frames tested
in paratlel)

P #1343 tora

lH-t?Ohm
Te4dxiSib. RSJ

{two frames tested
in parailel)

0 5 10 15M.
Seale

REFERENCE

5.5

5.15

5.16

5.16

5.7

20

%Ya OF
PREDICTED Pp

60 100

L

T

il

)

Obsarved
Moximum
Load

~—Computed
Elastic
Limit

FiG. 3.6.6. Summary of Test Results for Frames Showing Correlation
with Predictions of Plastic Theory (Plastic Design 1971, p. 56)
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STRUCTURE AND
LOADING SHAPE

8W17

L rewss

ip P P 3P
)t * == Col. BSWIB.5
{A441)
‘ Beam 10125.4
L L (A36)
4p
] s Col. 4"x3:l01b,
‘f {BS.15)
P Beam 5"x3"xil Ib.
JL | (B.S.15)

3"%3"x 8.5 Ibh.
" {B.S.15)

0 2 & 6 B IOft.
Scale T T T 1

REFERENCE

5.8

5.19

5.20

5.21

% OF
PREDICTED P,

20 &0 I40

T T T .
Observed
Maximum
Load

~~Computed

Elastic
Limit

—
o

,~Clad Frame

Bare Frame

FIG. 3.6.7. Summary of Test Results for Frames Showing Correlation with
Predictions of Plastic Theory (Plastic Design 1971, p. 5§7)
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STRUCTURE AND

LOADING

SHAPE

int. Col. 6W 25

Ext. Col. 6W 20
Beam 12B16.5

int. Col. 6W25
Ext. Col. 6W 20
Beom 12B16.5

Int, Col.6W 25

Ext Col. 6W20
Beam 12B16.5

Int. Col.GWF25
Ext. Col.6W 20
Beam 12 B 6.5

ir 2p -}P%P
I . |
P P gp P
T
tobEh
fpipfj P P
nyby
+° P P IiPLP
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L EE[
i
3P3P 3P3p
le 4 B
¢ P PP P
%-P [ L I
e N
1 }
?P
so .
Scaie 2 '

REFERENCE

.10

10

5.10

5.10
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PREDICTED Py
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-

Maximum
Load

[Observed

~—Compuied

. Elostic
Limit

FIG. 3.6.8. Summary of Test Results for Braced Frames Showing
Correlation with Predictions of Plastic Theory

(Plastic Design 1971, p. 58)



