567

A series of continuous beams are indicated in which the relative M_p values and the applied **collapse** loadings are given in Problems 8.1 to 8.5. Determine the required value of M_p to ensure a minimum load factor $\lambda = 1.7$.

Problem 8.5

8.5 Solutions: Plastic Analysis - Continuous Beams

Solution

Topic: Plastic Analysis – Continuous Beams Problem Number: 8.1 – Kinematic Method

Page No. 1

 $\lambda = 1.7$

Factored loads: Beam ABC = (1.7×20) = 34 kN, Beam CDE = (1.7×15) = 25.5 kN

Kinematic Method:

Span ABC

Internal Work = External Work $M_{\rm p}(\theta) + M_{\rm p}(\theta + \beta) + M_{\rm p}(\beta) = (34 \times 2\theta)$ $4M_{\rm p}\theta = 68\theta$

 $M_p = 17.0 \text{ kNm}$

Span CDE

$$\delta = 2\beta = 2\theta$$
 : $\beta = \theta$

Internal Work = External Work $M_{p}(\theta) + M_{p}(\theta + \beta) + M_{p}(\beta) = (25.5 \times 2\theta)$

 $4M_{\rm p}\theta = 51.0\theta$

 $\therefore M_p = 12.75 \text{ kNm}$ Critical value of $M_p = 17.0 \text{ kNm}$

Topic: Plastic Analysis - Continuous Beams

Problem Number: 8.1 – Static Method

Page No. 2

Static Method:

Span ABC

17.0 kN (17.0 × 2.0) = 34.0 kNm

Free Bending Moment Diagram

Fixed Bending Moment Diagram

Combined Bending Moment Diagram

$$(M_p + M_p) = 2M_p = 34.0 \text{ kNm}$$

 $\therefore M_p = 17.0 \text{ kNm}$

Span CDE

Free Bending Moment Diagram

Fixed Bending Moment Diagram

Combined Bending Moment Diagram

$$(M_p + M_p) = 2Mp = 25.5 \text{ kNm}$$

 $\therefore M_{\rm p} = 12.75 \text{ kNm}$ As before the critical value of $M_{\rm p} = 17.0 \text{ kNm}$

Topic: Plastic Analysis – Continuous Beams Problem Number: 8.2 – Kinematic Method

Page No. 1

Factored loads: Beam ABC = $(1.7 \times 20) = 34 \text{ kN}$, Beam CDE = $(1.7 \times 15) = 25.5 \text{ kN}$

Kinematic Method:

Span ABC

Internal Work = External Work $M_{\rm p}(\theta + \beta) + M_{\rm p}(\beta) = (34 \times 2\theta)$ $3M_{\rm p}\theta = 68\theta$

 $\therefore M_p = 22.67 \text{ kNm}$

Span CDE

Internal Work = External Work $M_p(\theta) + M_p(\theta + \beta) = (25.5 \times 2\theta)$ $3M_p\theta = 51.0\theta$

 $\therefore M_p = 17.0 \text{ kNm}$ Critical value of $M_p = 22.67 \text{ kNm}$

Topic: Plastic Analysis – Continuous Beams

Problem Number: 8.2 - Static Method

Page No. 2

Static Method:

Free Bending Moment Diagram

Fixed Bending Moment Diagram

Combined Bending Moment Diagram

 $0.5M_{\rm p}$

$$(M_p + 0.5M_p) = 1.5M_p = 34.0 \text{ kNm}$$

$$\therefore M_p = 22.67 \text{ kNm}$$

Span CDE

34.0 kNm

Free Bending Moment Diagram

Combined Bending Moment Diagram

Fixed Bending Moment Diagram

$$(M_{\rm p} + 0.5M_{\rm p}) = 1.5M_{\rm p} = 25.5$$

$$\therefore M_{\rm p} = 17.0 \text{ kNm}$$

As before the critical value of $M_p = 22.67 \text{ kNm}$

Topic: Plastic Analysis - Continuous Beams Problem Number: 8.3 - Kinematic Method

Page No. 1

$$\lambda = 1.7$$

Factored loads =
$$(1.7 \times 10) = 17.0 \text{ kN/m}$$

= $(1.7 \times 20) = 34.0 \text{ kN}$

$$(1.7 \times 15) = 25.5 \text{ kN}$$

$$(1.7 \times 30) = 51.0 \text{ kN}$$

Kinematic Method:

Note: Span AB is effectively a propped cantilever and the bending moment diagram is asymmetric. The hinge between A and B does not develop at the mid-span point and should be evaluated in a manner similar to that indicated in Section 8.2.3. The reader should carry-out this calculation to show that the hinge develops at a position equal to 2.582 m from the free support at A as shown below, (see page 3 of this solution).

$$\delta = 3.418\beta = 2.582\theta \quad \therefore \quad \beta = 0.755\theta$$

Internal Work = External Work

Internal Work = External Work
$$[2.0M_{\rm p}(\theta + \beta) + (1.5M_{\rm p}\beta)] = [(17 \times 6.0) \times (0.5 \times \delta)] = (102 \times 0.5 \times 2.582\theta)$$

$$4.643M_{\rm p}\theta = 131.682\theta$$

 $\therefore M_{\rm p} = 28.36 \text{ kNm}$

Topic: Plastic Analysis – Continuous Beams Problem Number: 8.3 – Kinematic Method

Page No. 2

Span BCDE

$$\delta_1 = 4\beta = 2\theta$$
 \therefore $\beta = 0.5\theta$ $\delta_2 = 2\beta = \theta$

Internal Work

1.5
$$M_{\rm p}$$
 (θ) + 1.5 $M_{\rm p}$ (θ + β) + $M_{\rm p}$ (β) = 4.25 $M_{\rm p}\theta$

External Work

$$(51.0 \times \delta_1) + (25.5 \times \delta_2) = (51.0 \times 2\theta) + (25.5 \times 2\beta) = 127.5\theta$$

$$4.25M_p\theta = 127.5\theta$$

 $\therefore M_{\rm p} = 30.0 \text{ kNm}$

Internal Work

1.5
$$M_{\rm p}$$
 (θ) + 1.5 $M_{\rm p}$ (θ + β) + $M_{\rm p}$ (β) = 8.0 $M_{\rm p}\theta$

External Work

$$(51.0 \times \delta_1) + (25.5 \times \delta_2) = (51.0 \times 2\theta) + (25.5 \times 4\theta) = 204.0\theta$$
$$8.0M_p\theta = 204\theta$$

 $M_p = 25.5 \text{ kNm}$

Topic: Plastic Analysis - Continuous Beams

Problem Number: 8.3 - Static Method

Page No. 3

No internal work done here
$$G$$

$$+ (\theta + \beta)$$

$$\delta = 2\beta = 2\theta$$
No internal work done here G

$$\delta$$

$$\delta = 2\beta = 2\theta$$

$$\beta = \theta$$

Internal Work = External Work $M_{\rm p}(\theta+\beta) + M_{\rm p}(\beta) = (34 \times 2\theta)$ $3M_{\rm p}\theta = 68\theta$

 $\therefore M_{\rm p} = 22.67 \text{ kNm}$ The critical value of $\dot{M}_p = 30.0 \text{ kNm}$

Static Method: Span AB

+ve
$$\sum M_A = 0$$

 $(17.0x^2)/2 - 2M_p = 0$
 $8.5x^2 - 2M_p = 0$ $\therefore M_p = 4.25x^2$

+ve
$$\Sigma M_B = 0$$

 $2M_p + 1.5M_p - 17.0(6.0 - x)^2/2 = 0$
 $M_p = 2.429(6.0 - x)^2 0$

Equate the
$$M_p$$
 values to determine x :
 $4.25x^2 = 2.429(36.0 - 12x + x^2)$ $\therefore 1.821x^2 + 29.148x - 87.44 = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-29.148 \pm \sqrt{29.148^2 + (4 \times 1.821 \times 87.44)}}{(2 \times 1.821)} = +2.582 \text{ m}$$

$$M_{\rm p} = 4.25x^2 = (4.25 \times 2.582^2)$$

 $\therefore M_{\rm p} = 28.33 \text{ kNm}$

Topic: Plastic Analysis – Continuous Beams

Problem Number: 8.3 – Static Method

Page No. 4

Span BCDE

 $(42.5 \times 2.0) = 85.0 \text{ kNm}$

Free Bending Moment Diagram

Fixed Bending Moment Diagram

Combined Bending Moment Diagram

$$(1.5M_p + 1.33M_p) = 85.0 \text{ kNm}$$

2.83 $M_p = 85.0 \text{ kNm}$

 $\therefore M_p = 30.0 \text{ kNm}$

Free Bending Moment Diagram

Fixed Bending Moment Diagram

Combined Bending Moment Diagram

$$(1.5M_p + 1.17M_p) = 68.0 \text{ kNm}$$

 $2.67M_p = 68.0 \text{ kNm}$

 $\therefore M_{\rm p} = 25.5 \text{ kNm}$

Topic: Plastic Analysis – Continuous Beams

Problem Number: 8.3 - Static Method

Page No. 5

Span EFG

Free Bending Moment Diagram

Fixed Bending Moment Diagram

Combined Bending Moment Diagram

$$(M_p + 0.5M_p) = 25.5$$
 : $M_p = 22.67 \text{ kNm}$

$$\therefore M_{\rm p} = 22.67 \text{ kNm}$$

As before the critical value of $M_p = 30.0 \text{ kNm}$

Topic: Plastic Analysis - Continuous Beams Problem Number: 8.4 - Kinematic Method

Page No. 1

$$\lambda = 1.7$$

Factored loads:
$$(1.7 \times 10) = 17.0 \text{ kN}$$

$$(1.7 \times 15) = 25.5 \text{ kN}$$

$$(1.7 \times 20) = 34.0 \text{ kN}$$

 $(1.7 \times 30) = 51.0 \text{ kN}$

Kinematic Method:

Span ABC

Note: The bending moment diagram on span ABC is asymmetric and in this case the hinge between A and C does not necessarily develop under the point load.

The position should be evaluated in a manner similar to that indicated in Section 8.2.3. The reader should carry-out this calculation to show that the hinge develops at a position equal to 2.333 m from the support at A as shown below, (see

$$\delta_1 = 3.667\beta = 2.333\theta$$
 : $\beta = 0.635\theta$ $\delta_2 = 2.0\theta$

Internal Work =
$$[1.5M_p(\theta) + 1.5M_p(\theta + \beta) + (1.5M_p\beta)] = 4.91M_p\theta$$

External Work = $[(34 \times \delta_2)] + [(17 \times 6.0) \times (0.5 \times \delta_1)]$
= $[(34 \times 2\theta)] + [(102.0) \times (0.5 \times 2.333\theta)] = 186.98\theta$

$$4.91M_{\rm p}\theta = 186.98\theta$$

 $\therefore M_p = 38.08 \text{ kNm}$

Topic: Plastic Analysis - Continuous Beams Problem Number: 8.4 - Kinematic Method

Page No. 2

Span CDEF

$$\delta_1 = 4\beta = 2\theta$$
 : $\beta = 0.5\theta$ $\delta_2 = 2\beta = \theta$

Internal Work

Internal Work

$$1.5M_{\rm p}(\theta) + 2.0M_{\rm p}(\theta + \beta) + M_{\rm p}(\beta) = [1.5M_{\rm p}(\theta) + 2.0M_{\rm p}(1.5\theta) + M_{\rm p}(0.5\theta)] = 5.0M_{\rm p}\theta$$

External Work

External Work
$$(51.0 \times \delta_1) + (25.5 \times \delta_2) = [(51.0 \times 2\theta) + (25.5 \times 2\beta)] = [(102\theta) + (25.5\theta)] = 127.5\theta$$

$$5.0M_{\rm p}\theta=127.5\theta$$

 $M_{\rm p} = 25.5 \text{ kNm}$

$$\delta_1 = 2\theta$$
 $\delta_2 = 2\beta = 4\theta$ $\therefore \beta = 2\theta$

Internal Work

Internal Work

$$1.5M_{\rm p}(\theta) + 2.0M_{\rm p}(\theta + \beta) + M_{\rm p}(\beta) = [1.5M_{\rm p}(\theta) + 2.0M_{\rm p}(3.0\theta) + M_{\rm p}(2.0\theta)]$$

 $= 9.5M_{\rm p}\theta$

External Work

External Work
$$(51.0 \times \delta_1) + (25.5 \times \delta_2) = [(51.0 \times 2\theta) + (25.5 \times 4\theta)] = [(102\theta) + (102\theta)] = 204.0\theta$$

$$9.5M_{\rm p}\theta=204.0\theta$$

 $\therefore M_{\rm p} = 21.47 \text{ kNm}$

Solution Topic: Plastic Analysis - Continuous Beams **Problem Number: 8.4 – Kinematic Method**

Page No. 3

Span FG

Note: Span FG is effectively a propped cantilever and the bending moment diagram is asymmetric. The hinge between F and G develops at a position 0.4142L from the simply supported end as indicated in Section 8.2.3.

Internal Work = External Work

$$[M_{\rm p}(\theta) + M_{\rm p}(\theta + \beta)] = [(34.0 \times 4.0) \times (0.5 \times \delta)]$$

$$[M_{\rm p}(\theta) + M_{\rm p}(0.414\theta)] = (136 \times 0.5 \times 2.343\theta)$$

$$3.414M_{\rm p}\theta = 159.32\theta$$

 $M_p = 46.67 \text{ kNm}$

Static Method:

Span ABC

Topic: Plastic Analysis - Continuous Beams

Problem Number: 8.4 - Static Method

Page No. 4

+ve
$$\Sigma M_{\Lambda} = 0$$

 $-1.5M_{\rm p} + (34 \times 2.0) + (17.0x^2)/2 - 1.5M_{\rm p} = 0$
 $68.0 + 8.5x^2 - 3.0M_{\rm p} = 0$ $\therefore M_{\rm p} = 22.667 + 2.833x^2$

+ve
$$\sum \Sigma M_{\rm C} = 0$$

1.5 $M_{\rm p} - 17.0(6.0 - x)^2/2 + 1.5M_{\rm p} = 0$: $M_{\rm p} = 2.833(6.0 - x)^2$

$$M_{\rm p} = 2.833(6.0 - x)^2$$

Equate the
$$M_p$$
 values to determine x :
 $22.667 + 2.833x^2 = 2.833(36.0 - 12x + x^2)$ $\therefore 33.996x - 79.321 = 0$

$$33.996x - 79.321 = 0$$

 $x = 2.333 \text{ m}$

$$M_{\rm p} = 2.833(6.0 - x)^2 = 2.833(6.0 - 2.333)^2$$

 $M_{\rm p} = 38.09 \text{ kNm}$

Span CDEF

Free Bending Moment Diagram

Fixed Bending Moment Diagram

Combined Bending Moment Diagram

$$(2.0M_p + 1.33M_p) = 85.0 \text{ kNm}$$

3.33 $M_p = 85.0 \text{ kNm}$

 $\therefore M_{\rm p} = 25.5 \text{ kNm}$

Topic: Plastic Analysis – Continuous Beams

Problem Number: 8.4 – Static Method

Page No. 5

Free Bending Moment Diagram

Fixed Bending Moment Diagram

Combined Bending Moment Diagram

$$(2.0M_p + 1.17M_p) = 68.0 \text{ kNm}$$

 $3.17M_p = 68.0 \text{ kNm}$

$$\therefore M_{\rm p} = 21.47 \text{ kNm}$$

Span FG

$$M_{\rm p}$$
 (4.0 - x) $V_{\rm G}$

+ve
$$\sum \Sigma M_{\rm F} = 0$$

 $(34.0x^2)/2 - M_{\rm p} - M_{\rm p} = 0$
 $17.0x^2 - 2.0 M_{\rm p} = 0$
 $M_{\rm p} = 8.5x^2$

+ve
$$\sum \Sigma M_G = 0$$

 $M_p - 34.0(4.0 - x)^2 / 2 = 0$
 $M_p = 17.0(4.0 - x)^2$

Topic: Plastic Analysis - Continuous Beams

Problem Number: 8.4 - Static Method

Page No. 6

Equate the M_p values to determine x: $8.5x^2 = 17.0(16.0 - 8x + x^2)$ $\therefore 8.5x^2 - 136x + 272 = 0$

$$8.5x^2 = 17.0(16.0 - 8x + x^2)$$

$$8.5x^2 - 136x + 272 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{136 \pm \sqrt{136^2 - (4 \times 8.5 \times 272)}}{(2 \times 8.5)} = +2.343 \text{ m}$$

$$M_p = 8.5x^2 = (8.5 \times 2.343)^2$$

 $M_{\rm p} = 46.67 \text{ kNm}$

As before the critical value of $M_p = 46.67$ kNm

Note: Span FG is the same as the standard propped cantilever in Example 8.3 in which the hinge develops at a point 0.414L from the simply supported end and the M_p value equals $0.0858wL^2$, i.e.

Distance of hinge from support $F = [4.0 - 0.414L] = [4.0 - (0.414 \times 4.0)] = 2.344 \text{ m}$ $M_p = (0.0858 \times 34.0 \times 4.0^2) = 46.67 \text{ kNm}$

Topic: Plastic Analysis - Continuous Beams Problem Number: 8.5 – Kinematic Method

Page No. 1

$$\lambda = 1.7$$

Factored loads:
$$(1.7 \times 15) = 25.5 \text{ kN}$$
 $(1.7 \times 20) = 34.0 \text{ kN}$ $(1.7 \times 30) = 51.0 \text{ kN}$

Kinematic Method:

Span ABC

Note: The bending moment diagram on span ABC is asymmetric and in this case the hinge between A and C does not necessarily develop under the point load and its position should be evaluated in a manner similar to that indicated in Section 8.2.3. The reader should carry-out this calculation to show that the hinge develops at a position equal to 3.725 m from the support at A as shown below, (see page 2 of this solution).

$$\delta_1 = 4.275 \beta = 3.725 \theta$$
 : $\beta = 0.871 \theta$; $\delta_2 = 2.0 \beta$

Internal Work =
$$[2.0M_p (\theta + \beta) + (1.5M_p\beta)] = 5.05M_p\theta$$

External Work = $[(51 \times \delta_2)] + [(34 \times 8.0) \times (0.5 \times \delta_1)]$
= $[(51 \times 1.742\theta)] + [(272.0) \times (0.5 \times 3.725\theta)] = 595.44\theta$

$$5.05M_{\rm p}\theta = 595.44\theta$$

 $\therefore M_{\rm p} = 117.91 \text{ kNm}$

Topic: Plastic Analysis – Continuous Beams Problem Number: 8.5 – Kinematic Method

Page No. 2

Span CDE

$$\delta_1 = 4\beta = 2\theta$$
 $\therefore \beta = 0.5\theta$

Internal Work = External Work

1.5
$$M_{\rm p}$$
 (θ) + 1.5 $M_{\rm p}$ (θ + β) + 1.5 $M_{\rm p}$ (β) = (51.0 × δ_1) = (51.0 × 2 θ)

$$4.5M_{\rm p}\theta = 102\theta$$

 $M_p = 22.67 \text{ kNm}$

Span EF

$$\delta_1 = 2\theta$$

Internal Work = External Work

$$1.5M_{\rm p}(\theta) = (25.5 \times \delta_{\rm l}) = (25.5 \times 2\theta) = 51.0\theta$$

 $\therefore M_{\rm p} = 34.0 \text{ kNm}$

The critical value of $M_p^r = 117.91 \text{ kNm}$

Static Method: Span ABC

Topic: Plastic Analysis - Continuous Beams

Problem Number: 8.5 – Static Method

Page No. 3

+ve
$$\sum M_A = 0$$

 $(34.0x^2)/2 - 2M_p = 0$
 $17.0x^2 - 2M_p = 0$
 $M_p = 8.5x$

+ve
$$\Sigma M_{\rm C} = 0$$

 $2M_{\rm p} - 34.0(8.0 - x)^2/2 - (51.0 \times 2.0) + 1.5M_{\rm p} = 0$
 $M_{\rm p} = 4.857(8.0 - x)^2 - 29.143$

Equate the M_p values to determine x:

$$8.5x^2 = 4.857(64.0 - 16x + x^2) - 29.143$$

$$\therefore 3.643x^2 - 77.712x + 339.991 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-77.712 \pm \sqrt{77.712^2 + (4 \times 3.643 \times 339.991)}}{(2 \times 3.643)} = +3.725 \text{ m}$$

$$M_{\rm p} = 8.5x^2 = (8.5 \times 3.725^2)$$

∴
$$M_{\rm p} = 117.94 \text{ kNm}$$

Span CDE

Combined Bending Moment Diagram

$$(1.5M_p + 1.5M_p) = 68.0 \text{ kNm}$$

Free Bending Moment Diagram

Fixed Bending Moment Diagram

$$M_p = 22.67 \text{ kNm}$$

Span EF

$$1.5M_p = PL = (25.5 \times 2.0) = 51.0 \text{ kNm}$$

$$\therefore M_p = 34.0 \text{ kNm}$$

Critical value of $M_p = 117.94 \text{ kNm}$