
Plastic Analysis ofPlastic Analysis of 
Continuous Beams1

Increasing the applied load until 
yielding occurs at some locations 
will result in elastic plastic deforwill result in elastic-plastic defor-
mations that will eventually reach 
a fully plastic condition.a fully plastic condition.

Fully plastic condition is 
defined as one at which adefined as one at which a 
sufficient number of plastic 
hinges are formed to transform g
the structure into a mecha-
nism, i.e., the structure is 

t i ll t bl
1

geometrically unstable. 
1See pages 142 – 152 in your class notes.



Addi i l l di li dAdditional loading applied to 
the fully plastic structure 
would lead to collapsewould lead to collapse.

Design of structures based on g
the plastic or limit state 
approach is increasingly used 

d t d b i d fand accepted by various codes of 
practice, particularly for steel 
construction Figure 1 shows aconstruction.  Figure 1 shows a 
typical stress-strain curve for mild 
steel and the idealized stress-
strain response for performing 
plastic analysis. 
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Figure 1. Mild Steel Stress-
Strain CurveStrain Curve

σy = yield stress 

3
εy = yield strain



ULTIMATE MOMENTULTIMATE MOMENT
Consider the beam shown in Fig. 
2.  Increasing the bending 
moment results in going from 
elastic cross section behaviorelastic cross section behavior 
(Fig. 2(a)) to yield of the 
outermost fibers (Figs. 2(c) and ( g ( )
(d)) and finally the two yield 
zones meet (Fig. 2(e)); the 

i i hi icross section in this state is 
defined to be fully plastic. 
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Figure. 2. Stress distribution in a sym-
metrical cross section subjected to ametrical cross section subjected to a 
bending moment of increasing magni-
tude: (a) Cross section, (b) Elastic, (c) 
Top fibers plastic (d) Top and bottom
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Top fibers plastic, (d) Top and bottom 
fibers plastic, and (e) Fully plastic 



The ultimate moment isThe ultimate moment is 
determined in terms of the yield 
stress     .  yσ

Since the axial force is zero in 
this beam case the neutral axis

y

this beam case, the neutral axis 
in the fully plastic condition 
divides the section into two 
equal areas, and the resultant 
tension and compression are 
each equal to A/2 forming aeach equal to     A/2, forming a 
couple equal to the ultimate 
plastic moment Mp

yσ

plastic moment Mp

1
p y c t2M A(y y )= σ + (1)
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The maximum moment which a 
section can resist without 
exceeding the yield stress 
(defined as the yield moment 
My) is the smaller of 

y y tM S= σ

M S= σ
(2a)

(2b)y y cM S= σ (2b)

St = tension section modulus t
(           )

Sc = compression section 
tI / c≡

c p
modulus (           )cI / c≡
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ct = distance from neutral axisct  distance from neutral axis 
to the extreme tension fiber

c = distance from neutralcc = distance from neutral 
axis to the extreme com-
pression fiber p

I = moment of inertia

α = Mp/My > 1 = shape factor
= 1 5 for a rectangular= 1.5 for a rectangular 

section
= 1.7 for a solid circular 1.7 for a solid circular 

section
= 1.15 – 1.17 for I- or C-
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 1.15 1.17 for I or C
section



PLASTIC BEHAVIOR OF A 
SIMPLE BEAMSIMPLE BEAM
If a load P at the mid-span of a 
simple beam (Fig. 3) is 
increased until the maximum 

id t h thmid-span moment reaches the 
fully plastic moment Mp, a plastic 
hinge is formed at this sectionhinge is formed at this section 
and collapse will occur under 
any further load increase.  Since 
this structure is statically deter-
minate, the collapse load PC can 
easil be calc lated to gi eeasily be calculated to give

CP 4M / L= (3)
9

C pP 4M / L= (3)
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10Figure 3. Simple Beam



Plastic Hinge Along thePlastic Hinge Along the 
Length of the Simple Beam
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The collapse load of the beamThe collapse load of the beam 
can be calculated by equating 
the external and internal work 
during a virtual movement of 
the collapse mechanism (this 
approach is eq all applicableapproach is equally applicable 
to the collapse analysis of sta-
tically indeterminate beams)tically indeterminate beams).  
Equating the external virtual 
work We done by the force PC to 
the internal virtual work Wi
done by the moment Mp at the 
plastic hinge:plastic hinge:
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Lθ
e i C p

LW W P M (2 )
2

P 4M / L

θ
= ⇒ = θ

⇒ C pP 4M / L⇒ =

which is identical to the result 
given in (3). 
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ULTIMATE STRENGTH OF 
FIXED ENDED BEAMFIXED-ENDED BEAM
Consider a prismatic fixed-ended 
beam subjected to a uniformbeam subjected to a uniform 
load of intensity q (Fig. 4(a)).
Figure 4(b) shows the momentFigure 4(b) shows the moment 
diagram sequence from the yield 
moment Mymoment My

2
yq LI

y yM S( )= σ ≡ =y y c 12

y

M S( )

12M
q

σ ≡

⇒ =y 2q
L

⇒ =

through the fully plastic condition
14

through the fully plastic condition 
in the beam.
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Figure 4. Fixed-Fixed Beam



The collapse mechanism is 
shown in Fig 4(c) and the col-shown in Fig. 4(c) and the col-
lapse load is calculated by equa-
ting the external and internal 

Cq L L2 M ( 2 )θ⎛ ⎞ θ θ θ⎜ ⎟

g
virtual works, i.e.

C
p

q2 M ( 2 )
2 4

16M

⎛ ⎞ = θ+ θ+θ⎜ ⎟
⎝ ⎠

p
C 2

16M
q

L
⇒ =

S f Pl i Hi

(1) Fi d d i

Sequence of Plastic Hinge 
Formation:
(1) Fixed-end supports – maxi-

mum moment (negative)
(2) Mid i iti
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(2) Mid-span – maximum positive 
moment



ULTIMATE STRENGTH OFULTIMATE STRENGTH OF 
CONTINUOUS BEAMS
N id h hNext consider the three span 
continuous beam shown in Fig. 5 
with each span having a plasticwith each span having a plastic 
moment capacity of Mp.  Values 
of the collapse load correspond-p p
ing to all possible mechanisms 
are determined; the actual 

ll l d i th ll t fcollapse load is the smallest of 
the possible mechanism 
collapse loadscollapse loads.  
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(b) Mechanism 1 
(c) Mechanism 2



For this structure, there are two 
possible collapse mechanisms 
are shown in Figs. 5(b) and (c).  
Using the principle of virtual workUsing the principle of virtual work 
(We = Wi) for each mechanism 
leads to

Figure 5(b) (Δ1 = Lθ/2):

C1 p
LP M ( 2 )
2
θ⎛ ⎞ = θ+ θ+θ⎜ ⎟

⎝ ⎠
C1 p

C1 p

( )
2

P 8M / L

⎜ ⎟
⎝ ⎠
⇒ = p
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Figure 5(c) (Δ2 = Lθ/3):

C2 p
LP M ( )θ⎛ ⎞ = θ+θ+β⎜ ⎟

⎝ ⎠

2

C2 pP M ( )
3

θ+θ+β⎜ ⎟
⎝ ⎠

2L Lβ θΔ2L L
23 3

β θ

θ

= Δ =

⇒ β =

p5ML θθ⎛ ⎞

2⇒ β =

p
C2

5LP
3 2
P 15M / 2L

θθ⎛ ⎞∴ =⎜ ⎟
⎝ ⎠

C2 pP 15M / 2L⇒ =
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The smaller of these two values 
i th t ll l d This the true collapse load.  Thus, 
PC = 7.5Mp/L and the corres-
ponding bending momentponding bending moment 
diagram is shown below. 

When collapse occurs theWhen collapse occurs, the 
part of the beam between A 
and C is still in the elastic 
range.

MpM M MpM < Mp

CA B

-Mp-M > -Mp

DE F

21Collapse BMD
pp
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Figure 6. (a) Continuous Beam 
(b) Mechanism 1 
(c) Mechanism 2



The two span continuous beam 
shown in Fig 6 exhibits someshown in Fig. 6 exhibits some  
unique considerations:

1.the plastic moment capacity of 
span 1-2 is different than the 
l ti t it fplastic moment capacity of 

span 2-3; and

2.the location of the positive 
moment plastic hinge in span 
2 3 is unknown2-3 is unknown.
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Mechanism 1:

C
e C 1

P LW P
2
θ= Δ =

i p p pW 2M 2M (2 ) M

7M

= θ+ θ + θ

= θp7M= θ

p
Ce i

14M
PW W == ⇒ (A)Ce i PW

L
W ⇒ (A)

Mechanism 2:
2 2Δ Δ2 2

e C 1 C 1

2

W q L q (L L )
2 2
Δ Δ= + −

Δ
24

2
Cq L

2
Δ=



i p pW M M ( )= θ+ θ+βi p pW ( )θ θ β

1 2 1L (L L )θ = Δ = − β

1
1

L
L L

β =
−

⇒ θ

1
i p

2L LW M
L L

⎛ ⎞−∴ = θ⎜ ⎟
⎝ ⎠

i p
1

1
e C 12

L L

W q LL

⎜ ⎟−⎝ ⎠

∴ = θe C 12q

e iW W=

C
1

p
1 1

2 2L Lq L M
L LL

⎛ ⎞−= ⎜ ⎟−⎝ ⎠
⇒ (B)
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The problem with this solution 
for qCL is that the length L1 is 
unknown.  

L1 can be obtained by differen-
tiating both sides of qCL with 
respect to L1 and set the result to 
zero, i.e.

C 1 1
p2 21 1 1

d(q L) 2L (L L ) M
dL (L ) (L L )

− −=
−1 1 1

1 1
p2 2

(L ) (L L )
2(2L L )(L 2L ) M− −− p2 2

1 1(L ) (L L )
0

−
= (C)
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Solving (C) for L1:

2 2
1 12L 8LL 4L 0− + =

2 2
1

8L (8L) 4(8L )L
4

± −⇒ =

2L 2L
0.5858L

= −
= (D)( )

Substituting (D) into (B):

11 66Mp
C

11.66M
q L

L
=

(E)
27
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Comparing the result in (A) with 
(E) d f L P h th t th(E) and for qL = P shows that the 
failure mechanism for this 
beam structure is in span 2-3beam structure is in span 2 3. 

L1

Mp

M < 2Mp

Mp

-Mp-M > -2Mp pM > 2Mp

BMD for Collapse Load qC
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Direct Procedure to 
Calculate Positive Moment 
Plastic Hinge Location for 

Unsymmetrical Plastic 
Moment Diagramg

Consider any beam span that is 
loaded by a uniform load and theloaded by a uniform load and the 
resulting plastic moment diagram is 
unsymmetric.  Just as shown 
above the location of the maximum 
positive moment is unknown.  For 
example assume beam span Bexample, assume beam span B –
C is subjected to a uniform load 
and the plastic moment capacity at 
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a d t e p ast c o e t capac ty at
end B is Mp1, the plastic moment



capacity at end C is Mp2 and the p
plastic positive moment capacity is 
Mp3. 

Mp1 ≤ Mp3;  Mp2 ≤ Mp3

Mp3

x

-Mp1

-Mp2
LL1

L
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The location of the positive plastic 
t b d t i d imoment can be determined using 

the bending moment equation

M(x) = ax2 + bx + c

and appropriate boundary 
conditions.

(i) x = 0:   M = -Mp1 = c

(ii) x = L1: M = Mp3 = aL1
2 

+ bL1 + c

⇒ aL1
2 + bL1 = Mp3 + Mp1

31(iii) x = L1: dM/dx = 0 = 2aL1 + b



Solving for a and b from (ii) and 

(M M )+

(iii):

p1 p3
2
1

(M M )
a

L

− +
=

1

p1 p3

L
2(M M )

b
+

=
1

b
L

=
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(iv) x = L:
M = -Mp2 = aL2 + bL + c 

= -(Mp1+ Mp3)(L/L1)2

+ 2(Mp1+ Mp3) (L/L1) - Mp1

0 (M + M )(L/L )20 = -(Mp1+ Mp3)(L/L1)2

+ 2(Mp1+ Mp3) (L/L1)
- Mp1+ Mp2

Solving the quadratic equation:
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L 1
⎛ ⎞

=⎜ ⎟
1

2
p1 p3 p1 p2 p1 p3

1
L

4(M M ) 4(M M )(M M )

=⎜ ⎟
⎝ ⎠

+ − − +p1 p3 p1 p2 p1 p3

p1 p3

M M

4(M M ) 4(M M )(M M )

2(M M )

+ +
±

+

⎛ ⎞p1 p2

p1 p3

M M
M M1 1

−
+

⎛ ⎞= ± − ⎜ ⎟
⎝ ⎠

LL
p1 p2

1 M M
L

1 1
−

∴ =
⎛ ⎞+ −⎜ ⎟

p1 p3M M1 1 ++ ⎜ ⎟
⎝ ⎠
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EPILOGUEEPILOGUE
The process described in theseThe process described in these 
notes and in the example pro-
blems uses what is referred to as 
an “upper bound” approach; 
i.e., any assumed mechanism can 
pro ide the basis for an anal sisprovide the basis for an analysis.  
The resulting collapse load is an 
upper bound on the true col-upper bound on the true col
lapse load.  For a number of 
trial mechanisms, the lowest 
computed load is the best 
upper bound. A trial mecha-
nism is the correct one if thenism is the correct one if the 
corresponding moment 
diagram nowhere exceeds the
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diagram nowhere exceeds the 
plastic moment capacity. 


