

- Geotechnical applications
- K_0 , active & passive states
- Rankine's earth pressure theory
- Coulomb's earth pressure theory

In geotechnical engineering, it is often necessary to prevent lateral soil movements.

Cantilever retaining wall

Braced excavation

Anchored sheet pile

3

Lateral Support

We have to estimate the lateral soil pressures acting on these structures, to be able to design them.

Gravity Retaining wall

Soil nailing

	1.22	J-reli	- 11 - i	20
_ L	1000			
_		-		
-				
_	1.1.1	172	-	
	1.00	1. 14	346	
_	40.00			
_	-	1	51802	
- 1				19.9
_		-		
	l.			
	10			

Reinforced earth wall

Soil Nailing

Sheet Pile

Sheet piles marked for driving

Sheet Pile

During installation

Sheet pile wall

7

Reinforced Earth Wall

Reinforced earth walls are increasingly becoming popular.

9

Crib Wall

For overconsolidated clays,

 $K_{0,overconsolidated} = K_{0,normally consolidated} OCR^{0.5}$

From elastic analysis,

$$K_0 = \frac{\upsilon}{1 - \upsilon} \xrightarrow[ratio]{\text{Poisson's}}$$

smooth wall

Let's look at the soil elements A and B during the wall movement.

Active Earth Pressure

- in granular soils

 $\sigma_{v}{}'=\gamma z$

Initially, there is no lateral movement.

$$\therefore \sigma_{h}' = K_0 \sigma_{v}' = K_0 \gamma z$$

As the wall moves away from the soil,

 σ_{v} ' remains the same; and

 $\sigma_{\rm h}'$ decreases till failure occurs.

Active state

Active Earth Pressure

- in granular soils

As the wall moves away from the soil,

15

 $[\sigma_h]_{active}$

 σ_v

σ

Active Earth Pressure

- in granular soils

As the wall moves away from the soil,

 σ_{h} ' decreases till failure occurs.

Passive Earth Pressure

 σ_{v}

σ

- in granular soils

Initially, soil is in K₀ state.

As the wall moves towards the soil,

 σ_{v} remains the same, and

 σ_{h} ' increases till failure occurs.

Passive state

Passive Earth Pressure

- in granular soils

As the wall moves towards the soil,

Passive Earth Pressure - in granular soils As the wall moves towards the soil, σ_{h} ' increases till failure occurs. σ_{h}' Passive state σ_{v} σ K_0 state wall movement 25 **Passive Earth Pressure** - in **cohesive** soils Follow the same steps as for granular soils. Only difference is that $c \neq 0$. $[\sigma_h']_{passive} = K_P \sigma_v' + 2c \sqrt{K_P}$ \bigcirc Everything else the same as for granular soils.

Rankine's Earth Pressure Theory

$$[\sigma_{h}']_{active} = K_{A}\sigma_{v}' - 2c\sqrt{K_{A}}$$
$$[\sigma_{h}']_{passive} = K_{P}\sigma_{v}' + 2c\sqrt{K_{P}}$$

□ Assumes smooth wall

□ Applicable only on vertical walls

30

Examples 12.5

Coulomb's Active Pressure

