
In Chapter 2 we analyzed the simplest possible circuits,
those containing only a single-node pair or a single loop. We found that

these circuits can be completely analyzed via a single algebraic

equation. In the case of the single-node-pair circuit (i.e., one containing

two nodes, one of which is a reference node), once the node voltage is

known, we can calculate all the currents. In a single-loop circuit, once

the loop current is known, we can calculate all the voltages.

In this chapter we extend our capabilities in a systematic manner so

that we can calculate all currents and voltages in circuits that contain

multiple nodes and loops. Our analyses are based primarily on two laws

with which we are already familiar: Kirchhoff’s current law (KCL) and

Kirchhoff’s voltage law (KVL). In a nodal analysis we employ KCL

to determine the node voltages, and in a loop analysis we use KVL to

determine the loop currents. ●

3
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In a nodal analysis the variables in the circuit are selected to be the node voltages. The node
voltages are defined with respect to a common point in the circuit. One node is selected as the
reference node, and all other node voltages are defined with respect to that node. Quite often
this node is the one to which the largest number of branches are connected. It is commonly
called ground because it is said to be at ground-zero potential, and it sometimes represents
the chassis or ground line in a practical circuit.

We will select our variables as being positive with respect to the reference node. If one or
more of the node voltages are actually negative with respect to the reference node, the analy-
sis will indicate it.

In order to understand the value of knowing all the node voltages in a network, we consider
once again the network in Fig. 2.32, which is redrawn in Fig. 3.1. The voltages, and

are all measured with respect to the bottom node, which is selected as the reference and
labeled with the ground symbol . Therefore, the voltage at node 1 is with

respect to the reference node 5; the voltage at node 2 is with respect to the reference
node 5, and so on. Now note carefully that once these node voltages are known, we can imme-
diately calculate any branch current or the power supplied or absorbed by any element, since we
know the voltage across every element in the network. For example, the voltage across the
leftmost 9-k� resistor is the difference in potential between the two ends of the resistor; that is,

This equation is really nothing more than an application of KVL around the leftmost loop; that is,

In a similar manner, we find that

and

Then the currents in the resistors are

In addition,

since the reference node 5 is at zero potential.

 I4 =
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4k
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=
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=
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Figure 3.1
Circuit with known node voltages.
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Figure 3.2
Circuit used to illustrate Ohm’s law in
a multiple-node network.

1 2

3

R1

R2

R3

V1=4 V V2=–2 VFigure 3.3
An illustration of node voltages.

Thus, as a general rule, if we know the node voltages in a circuit, we can calculate the cur-
rent through any resistive element using Ohm’s law; that is,

3.1

as illustrated in Fig. 3.2.
Now that we have demonstrated the value of knowing all the node voltages in a network,

let us determine the manner in which to calculate them. In a nodal analysis, we employ KCL
equations in such a way that the variables contained in these equations are the unknown node
voltages of the network. As we have indicated, one of the nodes in an N-node circuit is selected
as the reference node, and the voltages at all the remaining nonreference nodes are
measured with respect to this reference node. Using network topology, it can be shown that
exactly linearly independent KCL equations are required to determine the 
unknown node voltages. Therefore, theoretically once one of the nodes in an N-node circuit
has been selected as the reference node, our task is reduced to identifying the remaining 
nonreference nodes and writing one KCL equation at each of them.

In a multiple-node circuit, this process results in a set of linearly independent
simultaneous equations in which the variables are the unknown node voltages. To help
solidify this idea, consider once again Example 2.5. Note that in this circuit only four (i.e.,
any four) of the five KCL equations, one of which is written for each node in this five-node
network, are linearly independent. Furthermore, many of the branch currents in this example
(those not contained in a source) can be written in terms of the node voltages as illustrated in
Fig. 3.2 and expressed in Eq. (3.1). It is in this manner, as we will illustrate in the sections
that follow, that the KCL equations contain the unknown node voltages.

It is instructive to treat nodal analysis by examining several different types of circuits and
illustrating the salient features of each. We begin with the simplest case. However, as a prel-
ude to our discussion of the details of nodal analysis, experience indicates that it is worth-
while to digress for a moment to ensure that the concept of node voltage is clearly understood.

At the outset it is important to specify a reference. For example, to state that the voltage at
node A is 12 V means nothing unless we provide the reference point; that is, the voltage
at node A is 12 V with respect to what? The circuit in Fig. 3.3 illustrates a portion of a network
containing three nodes, one of which is the reference node.

N - 1
N - 1

N - 1

N - 1N - 1

N - 1

i =

vm - vN

R

IRWI03_082-132-hr  9/30/04  8:54 AM  Page 84



S E C T I O N  3 . 1 N O D A L  A N A LY S I S 85

The voltage is the voltage at node 1 with respect to the reference node 3.
Similarly, the voltage is the voltage at node 2 with respect to node 3. In addition,
however, the voltage at node 1 with respect to node 2 is ±6 V, and the voltage at node 2 with
respect to node 1 is –6 V. Furthermore, since the current will flow from the node of higher
potential to the node of lower potential, the current in is from top to bottom, the current in

is from left to right, and the current in is from bottom to top.
These concepts have important ramifications in our daily lives. If a man were hanging in

midair with one hand on one line and one hand on another and the dc line voltage of each line
was exactly the same, the voltage across his heart would be zero and he would be safe. If,
however, he let go of one line and let his feet touch the ground, the dc line voltage would then
exist from his hand to his foot with his heart in the middle. He would probably be dead the
instant his foot hit the ground.

In the town where we live, a young man tried to retrieve his parakeet that had escaped its
cage and was outside sitting on a power line. He stood on a metal ladder and with a metal pole
reached for the parakeet; when the metal pole touched the power line, the man was killed
instantly. Electric power is vital to our standard of living, but it is also very dangerous. The
material in this book does not qualify you to handle it safely. Therefore, always be extreme-
ly careful around electric circuits.

Now as we begin our discussion of nodal analysis, our approach will be to begin with sim-
ple cases and proceed in a systematic manner to those that are more challenging. Numerous
examples will be the vehicle used to demonstrate each facet of this approach. Finally, at the
end of this section, we will outline a strategy for attacking any circuit using nodal analysis.

CIRCUITS CONTAINING ONLY INDEPENDENT CURRENT
SOURCES Consider the network shown in Fig. 3.4. Note that this network contains
three nodes, and thus we know that exactly N-1=3-1=2 linearly independent KCL
equations will be required to determine the N-1=2 unknown node voltages. First, we
select the bottom node as the reference node, and then the voltage at the two remaining nodes
labeled and will be measured with respect to this node.

The branch currents are assumed to flow in the directions indicated in the figures. If one
or more of the branch currents are actually flowing in a direction opposite to that assumed,
the analysis will simply produce a branch current that is negative.

Applying KCL at node 1 yields

Using Ohm’s law (i=Gv) and noting that the reference node is at zero potential, we obtain

or

KCL at node 2 yields

or

which can be expressed as

-G2 v1 + AG2 + G3Bv2 = -iB

-G2Av1 - v2B + iB + G3Av2 - 0B = 0

- i2 + iB + i3 = 0

AG1 + G2Bv1 - G2 v2 = iA

-iA + G1Av1 - 0B + G2Av1 - v2B = 0

-iA + i1 + i2 = 0

v2v1

R3R2

R1

V2 = -2 V
V1 = 4 V

H I N T
Employing the passive sign
convention.

1 2

3

R1 R3

R2

iB

i3

i1

i2

iA

v1 v2 Figure 3.4
A three-node circuit.
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Therefore, the two equations for the two unknown node voltages and are

3.2

Note that the analysis has produced two simultaneous equations in the unknowns and 
They can be solved using any convenient technique, and modern calculators and personal
computers are very efficient tools for their application.

In what follows, we will demonstrate three techniques for solving linearly independent
simultaneous equations: Gaussian elimination, matrix analysis, and the MATLAB mathemat-
ical software package. A brief refresher that illustrates the use of both Gaussian elimination
and matrix analysis in the solution of these equations is provided in the Problem-Solving
Companion for this text. Use of the MATLAB software is straightforward, and we will
demonstrate its use as we encounter the application.

The KCL equations at nodes 1 and 2 produced two linearly independent simultaneous
equations:

The KCL equation for the third node (reference) is

Note that if we add the first two equations, we obtain the third. Furthermore, any two of the
equations can be used to derive the remaining equation. Therefore, in this N=3 node cir-
cuit, only N-1=2 of the equations are linearly independent and required to determine the
N-1=2 unknown node voltages.

Note that a nodal analysis employs KCL in conjunction with Ohm’s law. Once the direction of
the branch currents has been assumed, then Ohm’s law, as illustrated by Fig. 3.2 and expressed by
Eq. (3.1), is used to express the branch currents in terms of the unknown node voltages. We can
assume the currents to be in any direction. However, once we assume a particular direction, we
must be very careful to write the currents correctly in terms of the node voltages using Ohm’s law.

+iA - i1 - iB - i3 = 0

 -i2 + iB + i3 = 0

 -iA + i1 + i2 = 0

v2 .v1

 -G2 v1 + AG2 + G3Bv2 = -iB

 AG1 + G2Bv1 - G2 v2 = iA

v2v1
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Example 3.1
Suppose that the network in Fig. 3.4 has the following parameters: 

, and Let us determine all node voltages and
branch currents.

SOLUTION For purposes of illustration we will solve this problem using Gaussian elimina-
tion, matrix analysis, and MATLAB. Using the parameter values Eq. (3.2) becomes

where we employ capital letters because the voltages are constant. The equations can be writ-
ten as

Using Gaussian elimination, we solve the first equation for in terms of :

V1 = V2 a 2

3
b + 4

V2  V1

 -  
V1

6k
+

V2

3k
= -4 * 10-3

 
V1

4k
-

V2

6k
= 1 * 10-3

 -V1 c 1

6k
d + V2 c 1

6k
+

1

6k
d = -4 * 10-3

 V1 c 1

12k
+

1

6k
d - V2 c 1

6k
d = 1 * 10-3

R3 = 6 k�.R1 = 12 k�, R2 = 6 k�, IB = 4 mA
IA = 1 mA,
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This value is then substituted into the second equation to yield

or

This value for is now substituted back into the equation for in terms of which yields

The circuit equations can also be solved using matrix analysis. The general form of the matrix
equation is

GV=I

where in this case

and 

The solution to the matrix equation is

V=G–1I

and therefore,

To calculate the inverse of G, we need the adjoint and the determinant. The adjoint is

and the determinant is

Therefore,

 = B -6

-15
R

 = 18k2D 1

3k2 -

4
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1
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 ∑G∑ = a 1
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b a 1
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b a -1

6k
b
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1
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The MATLAB solution begins with the set of equations expressed in matrix form as

G*V=I

where the symbol * denotes the multiplication of the voltage vector V by the coefficient
matrix G. Then once the MATLAB software is loaded into the PC, the coefficient matrix (G)
and the vector V can be expressed in MATLAB notation by typing in the rows of the matrix
or vector at the prompt >>. Use semicolons to separate rows and spaces to separate columns.
Brackets are used to denote vectors or matrices. When the matrix G and the vector I have been
defined, then the solution equation

V=inv(G)*I

which is also typed in at the prompt >>, will yield the unknown vector V.
The matrix equation for our circuit expressed in decimal notation is

If we now input the coefficient matrix G, then the vector I and finally the equation V=inv(G)*I,
the computer screen containing these data and the solution vector V appears as follows:

>> G = [0.00025 -0.000166666;

-0.000166666 0.00033333]

G = 

1.0e-003 *

0.2500     -0.1667

-0.1667      0.3333

>> I = [0.001 ; -0.004]

I = 

0.0010

-0.0040

>> V = inv(G)*I

V = 

-6.0001

-15.0002

Knowing the node voltages, we can determine all the currents using Ohm’s law:

and

Figure 3.5 illustrates the results of all the calculations. Note that KCL is satisfied at every node.

 I3 =

V2

6k
=

-15

6k
= - 

5

2
 mA

 I2 =

V1 - V2

6k
=

-6 - (-15)

6k
=

3

2
 mA

 I1 =

V1

R1
=

-6

12k
= - 

1

2
 mA

B 0.00025

-0.00016666

-0.00016666

0.0003333
R BV1

V2
R = B 0.001

-0.004
R
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6 k�

6 k�1 mA 4 mA12 k�

V1=–6 V V2=–15 V

1 
2
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3
2
— mA 5

2
— mA

Figure 3.5
Circuit used in
Example 3.1.
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1 2 3

v1 v2 v3

R1

R2 R5

R3

R4

i2

i4i1

i5

i3

iA iB

Figure 3.6
A four-node circuit.

Let us now examine the circuit in Fig. 3.6. The current directions are assumed as shown in
the figure.

We note that this network has four nodes. The node at the bottom of the circuit is selected
as the reference node and labeled with the ground symbol. Since N=4, N-1=3 linearly
independent KCL equations will be required to determine the three unknown nonreference
node voltages labeled and .

At node 1, KCL yields

or

At node 2, KCL yields

or

At node 3, the equation is

or

Grouping the node equations together, we obtain

3.3

 -v1 
1

R3
- v2 

1

R5
+ v3 a 1

R3
+

1

R5
b = -iB

 -v1 
1

R2
+ v2 a 1
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+

1
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1
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b - v3 

1

R5
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 v1 a 1
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+

1
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+

1
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1
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1

R3
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 -v1 
1

R3
- v2 

1

R5
+ v3 a 1

R3
+

1

R5
b = -iB

 
v3 - v1

R3
+

v3 - v2

R5
+ iB = 0

i3 + i5 + iB = 0

 -v1 
1

R2
+ v2 a 1

R2
+

1

R4
+

1

R5
b - v3 

1

R5
= 0

 - 
v1 - v2

R2
+

v2

R4
-
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R5
= 0

-i2 + i4 - i5 = 0

 v1 a 1
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+

1

R2
+

1

R3
b - v2 

1

R2
- v3 

1

R3
= iA

 
v1

R1
- iA +

v1 - v2

R2
-

v3 - v1

R3
= 0

i1 - iA + i2 - i3 = 0

v3 v2 ,v1 ,

IRWI03_082-132-hr  9/30/04  8:54 AM  Page 89



Note that our analysis has produced three simultaneous equations in the three unknown node
voltages and The equations can also be written in matrix form as

3.4

At this point it is important that we note the symmetrical form of the equations that
describe the two previous networks. Equations (3.2) and (3.3) exhibit the same type of sym-
metrical form. The G matrix for each network is a symmetrical matrix. This symmetry is not
accidental. The node equations for networks containing only resistors and independent cur-
rent sources can always be written in this symmetrical form. We can take advantage of this
fact and learn to write the equations by inspection. Note in the first equation of (3.2) that the
coefficient of is the sum of all the conductances connected to node 1 and the coefficient of

is the negative of the conductances connected between node 1 and node 2. The right-hand
side of the equation is the sum of the currents entering node 1 through current sources. This
equation is KCL at node 1. In the second equation in (3.2), the coefficient of is the sum of
all the conductances connected to node 2, the coefficient of is the negative of the conduc-
tance connected between node 2 and node 1, and the right-hand side of the equation is the
sum of the currents entering node 2 through current sources. This equation is KCL at node 2.
Similarly, in the first equation in (3.3) the coefficient of is the sum of the conductances
connected to node 1, the coefficient of is the negative of the conductance connected
between node 1 and node 2, the coefficient of is the negative of the conductance con-
nected between node 1 and node 3, and the right-hand side of the equation is the sum of the
currents entering node 1 through current sources. The other two equations in (3.3) are
obtained in a similar manner. In general, if KCL is applied to node j with node voltage 
the coefficient of is the sum of all the conductances connected to node j and the coeffi-
cients of the other node voltages are the negative of the sum of the con-
ductances connected directly between these nodes and node j. The right-hand side of the
equation is equal to the sum of the currents entering the node via current sources.
Therefore, the left-hand side of the equation represents the sum of the currents leaving
node j and the right-hand side of the equation represents the currents entering node j.

Ae.g., vj -1 , vj +1B
vj

vj ,
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v2

v1

v1

v2
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+
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+
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Example 3.2
Let us apply what we have just learned to write the equations for the network in Fig. 3.7 by
inspection. Then given the following parameters, we will determine the node voltages using
MATLAB: and iB = 2 mA.iA = 4 mA,R5 = 1 k�,R3 = R4 = 4 k�,R1 = R2 = 2 k�,

v2
v3v1

R2 R3 R5

R1

R4

iB

iA

Figure 3.7
Circuit used in
Example 3.2.
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SOLUTION The equations are

which can also be written directly in matrix form as

Both the equations and the G matrix exhibit the symmetry that will always be present in cir-
cuits that contain only resistors and current sources.

If the component values are now used, the matrix equation becomes

= 

or

=

If we now employ these data with the MATLAB software, the computer screen containing the
data and the results of the MATLAB analysis is as shown next.

>> G = [0.001 0 -0.0005 ; 0 0.0005 -0.00025 ; 

-0.0005 -0.00025 0.00175]

G = 

0.0010           0     -0.0005

0     0.0005   -0.0003

-0.0005     -0.0003      0.0018

>> I = [-0.004 ; 0.002 ; 0]

I = 

-0.0040

0.0020

0

>> V = inv(G)*I

V = 

-4.3636

3.6364

-0.7273

C -0.004

0.002

0

SC v1

v2

v3

SC  

 0.001

 0

 -0.0005

0

0.0005

-0.00025

-0.0005

-0.00025

0.00175

S

C-0.004

0.002

0

SCv1

v2

v3

SF
1

2k
+

1

2k

0

- 
1

2k

0

1

4k
+

1

4k

- 
1

4k

-  
1

2k

-  
1

4k

1

2k
+

1

4k
+

1

1k

V

C - iA

iA - iB

0

S=C v1

v2

v3

SF
1

R1
+

1

R2

0

- 
1

R1

0

1

R3
+

1

R4

- 
1

R4

- 
1

R1

- 
1

R4

1

R1
+

1

R4
+

1

R5

V

 -v1 a 1

R1
b - v2 a 1

R4
b + v3 a 1

R1
+

1

R4
+

1

R5
b = 0

 -v1(0) + v2 a 1

R3
+

1

R4
b - v3 a 1

R4
b = iA - iB

 v1 a 1

R1
+

1

R2
b - v2(0) - v3 a 1

R1
b = -iA

IRWI03_082-132-hr  9/30/04  8:54 AM  Page 91



L E A R N I N G  E X T E N S I O N S

E3.1 Write the node equations for the circuit in Fig. E3.1. ANSWER:

-1

12k
 V1 +

1

4k
 V2 = -2 * 10-3.

1

4k
 V1 -

1

12k
 V2 = 4 * 10-3

 ,

E3.2 Find all the node voltages in the network in Fig. E3.2 using MATLAB. ANSWER:
 V3 = 3.1429 V. V2 = 2.000 V,

 V1 = 5.4286 V,

CIRCUITS CONTAINING DEPENDENT CURRENT SOURCES The
presence of a dependent source may destroy the symmetrical form of the nodal equations that
define the circuit. Consider the circuit shown in Fig. 3.8, which contains a current-controlled
current source. The KCL equations for the nonreference nodes are

and

where Simplifying the equations, we obtain

or in matrix form

=

Note that the presence of the dependent source has destroyed the symmetrical nature of the
node equations.

B 0

iA
RB v1

v2
RB AG1 + G2B

-G2

- AG2 - �G3BAG2 + G3B R
 -G2 v1 + AG2 + G3Bv2 = iA

 AG1 + G2Bv1 - AG2 - �G3Bv2 = 0

io = v2�R3 .

v2 - v1

R2
+ io - iA = 0

�io +

v1

R1
+

v1 - v2

R2
= 0
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4 mA

V1 V2

12 k�

6 k� 6 k� 2 mA

Figure E3.1

V1 V3
V22 k� 4 k�

1 k�

1 k� 2 mA4 mA

Figure E3.2

v1 v2

R2

R1 R3

io

iA
�io

Figure 3.8
Circuit with a dependent source.
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Example 3.3
Let us determine the node voltages for the network in Fig. 3.8 given the following parameters:

SOLUTION Using these values with the equations for the network yields

Solving these equations using any convenient method yields and We
can check these answers by determining the branch currents in the network and then using that
information to test KCL at the nodes. For example, the current from top to bottom through is

Similarly, the current from right to left through is

All the results are shown in Fig. 3.9. Note that KCL is satisfied at every node.

I2 =

V2 - V1

R2
=

12�5 - (-24�5)

6k
=

6

5k
 A

R2

Io =

V2

R3
=

12�5

3k
=

4

5k
 A

R3

V2 = 12�5 V.V1 = -24�5 V

 -  
1

6k
 V1 +

1

2k
 V2 = 2 * 10-3

 
1

4k
 V1 +

1

2k
 V2 = 0

 R3 = 3 k� R1 = 12 k�

 iA = 2 mA R2 = 6 k� � = 2

Example 3.4
Let us determine the set of linearly independent equations that when solved will yield the
node voltages in the network in Fig. 3.10. Then given the following component values, we
will compute the node voltages using MATLAB: 

and � = 2.iB = 4 mA,iA = 2 mA,
R4 = 4 k�,R2 = R3 = 2 k�,R1 = 1 k�,

6 k�

12 k� 3 k�

V1=— V–24 
  5

I2=— A6
5k

2Io=— A8
5k

V2=— V12
5

I1=— A–2
5k

Io=— A4 
5k

10
5k
— A

Figure 3.9
Circuit used in Example 3.3.

R2R1

R3 R4

iA

iB

v2 v3vxv1 + -

�vx

Figure 3.10
Circuit containing a voltage-
controlled current source.
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SOLUTION Applying KCL at each of the nonreference nodes yields the equations

where Simplifying these equations, we obtain

Given the component values, the equations become

=

or

=

The MATLAB input and output listings are shown next.

>> G = [0.0015 -0.001 0 ; -0.001 2.0015 -2.0005 ; 

0 -0.0005 0.00075]

G = 

0.0015  -0.0010         0

-0.0010    2.0015  -2.0005

 0  -0.0005    0.0008

>> I = [0.002 ; -0.002 ; 0.004]

I = 

0.0020

-0.0020

0.0040

>> V = inv(G)*I

V = 

11.9940

15.9910

15.9940

C 0.002

-0.002

0.004

SC v1

v2

v3

SC 0.0015

-0.001

0

-0.001

2.0015

-0.0005

0

-2.0005

0.00075

S

C 0.002

-0.002

0.004

SC v1

v2

v3

SF
1

1k
+

1

2k

-  
1

k

0

-  
1

k

1

k
+ 2 +

1

2k

-  
1

2k

0

-  a2 +

1

2k
b

1

2k
+

1

4k

V

 -G2  v2 + AG2 + G4Bv3 = iB

  -G1  v1 + AG1 + � + G2Bv2 - A� + G2Bv3 = - iA

 AG1 + G3Bv1 - G1  v2 = iA

vx = v2 - v3  .

 G2Av3 - v2B + G4  v3 - iB = 0

 iA + G1Av2 - v1B + �vx + G2Av2 - v3B = 0

 G3 v1 + G1Av1 - v2B - iA = 0
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Example 3.5
Consider the circuit shown in Fig. 3.11a. Let us determine all node voltages and branch currents.

SOLUTION This network has three nonreference nodes with labeled node voltages 
and Based on our previous discussions, we would assume that in order to find all the node
voltages we would need to write a KCL equation at each of the nonreference nodes. The
resulting three linearly independent simultaneous equations would produce the unknown
node voltages. However, note that and are known quantities because an independent
voltage source is connected directly between the nonreference node and each of these nodes.
Therefore, and Furthermore, note that the current through the 9-kΩ
resistor is from left to right. We do not know or the current in the
remaining resistors. However, since only one node voltage is unknown, a single-node equa-
tion will produce it. Applying KCL to this center node yields

or

from which we obtain

Once all the node voltages are known, Ohm’s law can be used to find the branch currents
shown in Fig. 3.11b. The diagram illustrates that KCL is satisfied at every node.

Note that the presence of the voltage sources in this example has simplified the analysis,
since two of the three linear independent equations are and We will
find that as a general rule, whenever voltage sources are present between nodes, the node
voltage equations that describe the network will be simpler.

V3 = -6 V.V1 = 12 V

V2 =

3

2
 V

 
V2 - 12

12k
+

V2

6k
+

V2 - (-6)

12k
= 0

 
V2 - V1

12k
+

V2 - 0

6k
+

V2 - V3

12k
= 0

V2[12 - (-6)]�9k = 2 mA
V3 = -6 V.V1 = 12 V

V3V1

V3  .
V2  ,V1  ,

CIRCUITS CONTAINING INDEPENDENT VOLTAGE SOURCES As is
our practice, in our discussion of this topic we will proceed from the simplest case to those
cases that are more complicated. The simplest case is that in which an independent voltage
source is connected to the reference node. The following example illustrates this case.

H I N T
Any time an independent
voltage source is connected
between the reference node
and a nonreference node,
the nonreference node
voltage is known.

L E A R N I N G  E X T E N S I O N S

E3.3 Find the node voltages in the circuit in Fig. E3.3. ANSWER:
V2 = -8 V.

V1 = 16 V,

E3.4 Find the voltage in the network in Fig. E3.4.Vo ANSWER: Vo = 4 V.

4 mA

10 k�

10 k�10 k�

Io

2Io

V1 V2Figure E3.3

3 k�2 mA 12 k� 12 k� Vo

+

-

Vx
6000
—

VxFigure E3.4
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L E A R N I N G  E X T E N S I O N

E3.5 Use nodal analysis to find the current in the network in Fig. E3.5.Io ANSWER: Io =

3

4
 mA.

±
–

±
–

Vo

Io

6 k� 6 k�

6 V 3 k� 3 V

Figure E3.5

Example 3.6
Suppose we wish to find the currents in the two resistors in the circuit of Fig. 3.12a.

SOLUTION If we try to attack this problem in a brute force manner, we immediately
encounter a problem. Thus far, branch currents were either known source values or could be
expressed as the branch voltage divided by the branch resistance. However, the branch cur-
rent through the 6-V source is certainly not known and cannot be directly expressed using
Ohm’s law. We can, of course, give this current a name and write the KCL equations at the
two nonreference nodes in terms of this current. However, this approach is no panacea
because this technique will result in two linearly independent simultaneous equations in terms
of three unknowns—that is, the two node voltages and the current in the voltage source.

To solve this dilemma, we recall that N-1 linearly independent equations are required
to determine the N-1 nonreference node voltages in an N-node circuit. Since our network
has three nodes, we need two linearly independent equations. Now note that if somehow one
of the node voltages is known, we immediately know the other; that is, if is known, then

If is known, then Therefore, the difference in potential between
the two nodes is constrained by the voltage source and, hence,

This constraint equation is one of the two linearly independent equations needed to determine
the node voltages.

V1 - V2 = 6

V1 = V2 + 6.V2V2 = V1 - 6.
V1

Next let us consider the case in which an independent voltage source is connected between
two nonreference nodes.

-
+

±
–

±
–

V3V1
V212 k� 12 k�

9 k�

6 k� 6 V12 V

(a)

-
+

12 k� 12 k�

9 k�

6 k� 6 V12 V

(b)

3 
2
— V

2 
k

— A

7 
8k
— A

23 
8k
— A 1 

4k
— A 21 

8k
— A

5 
8k
— A

+12 V –6 V

Figure 3.11 Circuit used in Example 3.5.
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–±

6 mA

4 mA

6 k� 12 k�

V1 V2
6 V

–±

6 mA

4 mA6 k� 12 k�

V1 V2

6 V

I1 I2

(a) (b)

Figure 3.12
Circuits used in Example 3.6.

Next consider the network in Fig. 3.12b, in which the 6-V source is completely enclosed
within the dashed surface. The constraint equation governs this dashed portion of the network.
The remaining equation is obtained by applying KCL to this dashed surface, which is com-
monly called a supernode. Recall that in Chapter 2 we demonstrated that KCL must hold for
a surface, and this technique eliminates the problem of dealing with a current through a volt-
age source. KCL for the supernode is

Solving these equations yields and and, hence, and
A quick check indicates that KCL is satisfied at every node.

Note that applying KCL at the reference node yields the same equation as shown above.
The student may feel that the application of KCL at the reference node saves one from having
to deal with supernodes. Recall that we do not apply KCL at any node—even the reference
node—that contains an independent voltage source. This idea can be illustrated with the cir-
cuit in the next example.

I2 = 1�3 mA.
I1 = 5�3 mAV2 = 4 VV1 = 10 V

-6 * 10-3
+

V1

6k
+

V2

12k
+ 4 * 10-3

= 0

Example 3.7
Let us determine the current in the network in Fig. 3.13a.

SOLUTION Examining the network, we note that node voltages and are known and the
node voltages and are constrained by the equation

The network is redrawn in Fig. 3.13b.

V1 - V3 = 12

V3V1

V4V2

Io

-
+

±
–

±
–

Io

12 V

12 V

6 V

2 k� 2 k�

2 k�

1 k�1 k�

V2 V3 V4

V1

-
+

±
–

±
–

Io

12 V

12 V

6 V

2 k� 2 k�

2 k�

1 k�1 k�

V3

V3+12

(a) (b)

Figure 3.13
Example circuit with
supernodes.

IRWI03_082-132-hr  9/30/04  8:54 AM  Page 97



98 C H A P T E R  3 N O D A L  A N D  L O O P  A N A LY S I S  T E C H N I Q U E S

L E A R N I N G  E X T E N S I O N

E3.6 Use nodal analysis to find in the network in Fig. E3.6.Io ANSWER: Io = 3.8 mA.

Since we want to find the current (in the supernode containing and ) is written
as . The KCL equation at the supernode is then

Solving the equation for yields

can then be computed immediately as

Io =

-  
6

7

2k
= -  

3

7
 mA

Io

V3 = -  
6

7
 V

V3

V3 - (-6)

1k
+

V3 - 12

1k
+

V3

2k
= 0

V3 + 12 - (-6)

2k
  +  

V3 + 12 - 12

2k
  +  

V3 + 12
V3V1Io  , V1

Example 3.8
We wish to find in the network in Fig. 3.14.

SOLUTION Since the dependent voltage source is connected between the node labeled 
and the reference node,

KCL at the node labeled is

where

Solving these equations yields and Therefore

 = 4 mA

 Io =

V1 - V2

2k

V1 = 16 V.V2 = 8 V

Ix =

V2

1k

V2 - V1

2k
-

4

k
+

V2

1k
= 0

V2

V1 = 2kIx

V1

Io

±
-

±
-

±-

6 V 4 V

12 V

1 k� 2 k�

2 k�2 k�

V1 V2 V3 V4

Io

Figure E3.6

CIRCUITS CONTAINING DEPENDENT VOLTAGE SOURCES As
the following examples will indicate, networks containing dependent (controlled) sources are
treated in the same manner as described earlier.
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±
–2 kIx

V1 V2Io Ix

2 k�

2 k�

1 k�4 mA

Figure 3.14
Circuit used in Example 3.8.

Example 3.9
Let us find the current in the network in Fig. 3.15.

SOLUTION This circuit contains both an independent voltage source and a voltage-controlled
voltage source. Note that and a supernode exists between the nodes
labeled and 

Applying KCL to the supernode, we obtain

where the constraint equation for the supernode is

The final equation is

Solving these equations, we find that

and, hence,

Io =

V1

12k
=

3

8
 mA

V1 =

9

2
 V

V3 = 6

V1 - V2 = 2Vx

V1 - V3

6k
+

V1

12k
+

V2

6k
+

V2 - V3

12k
= 0

V2  .V1

V2 = Vx  ,V3 = 6 V  ,

Io

±
–

± –

6 k�

12 k�

12 k� 6 V6 k�

Io

V1 V3

Vx

V2
2Vx

+

-

Figure 3.15
Circuit used in Example 3.9.

Example 3.10
Let us find in the network in Fig. 3.16a. Note that the circuit contains two voltage
sources, one of which is a controlled source, and two independent current sources. The
circuit is redrawn in Fig. 3.16b in order to label the nodes and identify the supernode sur-
rounding the controlled source. Because of the presence of the independent voltage source,
the voltage at node 4 is known to be 4 V. We will use this knowledge in writing the node
equations for the network.

Vo

Finally, let us consider two additional circuits that, for purposes of comparison, we will
examine using more than one method.
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±
–

±
–

1 k�

1 k�

4 V

1 k�

1 k� Vo

+

-

+

-

2Vx

Vx

+

-

Vx

2 mA

2 mA

(a)

±
–

±
–

1 k�

1 k�

4 V

1 k�

1 k�Vo

+

-

2Vx

V3V2

V1

V4

2
k
— A

2
k
— A

(b)

Figure 3.16 Circuit used in Example 3.10.

Since the network has five nodes, four linear independent equations are sufficient to deter-
mine all the node voltages. Within the supernode, the defining equation is

where

and thus

Furthermore, we know that one additional equation is

Thus, given these two equations, only two more equations are needed in order to solve for the
unknown node voltages. These additional equations result from applying KCL at the super-
node and at the node labeled The equations are

Combining the equations yields the two equations

Solving these equations, we obtain

 Vo = 3Vx - V3 = 1 V

 Vx = 2 V and V3 = 5 V

 -4Vx + 2V3 = 2

 8Vx - 2V3 = 6

V3 - 3Vx

1k
+

V3 - Vx

1k
=

2

k

- 
2

k
+

Vx

1k
+

Vx - V3

1k
+

3Vx - V3

1k
+

3Vx - 4

1k
= 0

V3 .

V4 = 4

V1 = 3Vx

V2 = Vx

V1 - V2 = 2Vx

Example 3.11
We wish to find in the network in Fig. 3.17a. Note that this circuit contains three voltage
sources, one of which is a controlled source and another is a controlled current source.
Because two of the voltage sources are connected to the reference node, one node voltage is
known directly and one is specified by the dependent source. Furthermore, the difference in
voltage between two nodes is defined by the 6-V independent source.

Io
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The network is redrawn in Fig. 3.17b in order to label the nodes and identify the supernode.
Since the network has six nodes, five linear independent equations are needed to determine the
unknown node voltages.

The two equations for the supernode are

The three remaining equations are

The equations for the control parameters are

Combining these equations yields the following set of equations

Solving these equations by any convenient means yields

Then, since is The reader is encouraged to verify that
KCL is satisfied at every node.

-48 mA.IoV3 = 2Vx , V3 = -100 V.

 V5 = -48 V

 V4 = -32 V

 V1 = -38 V

 -3V4 + 2V5 = 0

 V1 - V4 = -6

 -2V1 + 5V4 - V5 = -36

 Ix =

V4

1k

 Vx = V1 - 12

V5 - V4

1k
+

V5

1k
= 2Ix

 V3 = 2Vx

 V2 = 12

 
V1 - 12

1k
+

V1 - V3

1k
+ 2Ix +

V4 - V3

1k
+

V4

1k
+

V4 - V5

1k
= 0

 V1 - V4 = -6

-
+

±
–

±
–

1 k� 1 k�

1 k�

1 k�

1 k�1 k�12 V

1 k�

6 V

Ix2Vx

2Ix

Io

Vx

+

-

-
+

±
–

±
–

1 k� 1 k�

1 k� 1 k�

1 k�1 k�12 V

1 k�

6 V

Ix

V1

V3V2 V5
V4

2Ix

2Vx Io

Vx

+

-

(a) (b)

Figure 3.17 Circuit used in Example 3.11.
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L E A R N I N G  E X T E N S I O N

E3.7 Use nodal analysis to find in the circuit in Fig. E3.7. P S VIo ANSWER: Io =

4

3
 mA.

-+

4 mA

V1 V2

2 k� 2 mA 2 k�

2000 Ix

Ix Io

Figure E3.7

3.2 Loop Analysis

P R O B L E M - S O L V I N G S T R A T E G Y

Nodal Analysis

Step 1. Select one node in the N-node circuit as the reference node. Assume that the
node voltage is zero and measure all node voltages with respect to this node.

Step 2. If only independent current sources are present in the network, write the KCL
equations at the N-1 nonreference nodes. If dependent current sources are
present, write the KCL equations as is done for networks with only independent
current sources; then write the controlling equations for the dependent sources.

Step 3. If voltage sources are present in the network, they may be connected (1) between
the reference node and a nonreference node or (2) between two nonreference
nodes. In the former case, if the voltage source is an independent source, then the
voltage at one of the nonreference nodes is known. If the source is dependent, it
is treated as an independent source when writing the KCL equation, but an
additional constraint equation is necessary, as described previously.

In the latter case, if the source is independent, the voltage between the two
nodes is constrained by the value of the voltage source, and an equation
describing this constraint represents one of the N-1 linearly independent
equations required to determine the N-node voltages. The surface of the
network described by the constraint equation (i.e., the source and two
connecting nodes) is called a supernode. One of the remaining N-1 linearly
independent equations is obtained by applying KCL at this supernode. If the
voltage source is dependent, it is treated as an independent source when writing
the KCL equations, but an additional constraint equation is necessary, as
described previously.

We found that in a nodal analysis the unknown parameters are the node voltages and KCL
was employed to determine them. Once these node voltages have been calculated, all the
branch currents in the network can easily be determined using Ohm’s law. In contrast to this
approach, a loop analysis uses KVL to determine a set of loop currents in the circuit. Once
these loop currents are known, Ohm’s law can be used to calculate any voltages in the net-
work. Via network topology we can show that, in general, there are exactly 
linearly independent KVL equations for any network, where B is the number of branches
in the circuit and N is the number of nodes. For example, if we once again examine the
circuit in Fig. 2.5, we find that there are eight branches and five nodes. Thus, the number

B - N + 1
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±
–

–±

1

42

5

3

iB(t)iA(t)

iC(t) iD(t)

i1(t)

i2(t) i3(t)

i5(t)i4(t)

i6(t) i7(t)

v2(t)

v1(t)

i8(t)

R2

R5R4

R3

R1

Figure 3.18
Figure 2.5 redrawn with loop currents.

of linearly independent KVL equations necessary to determine all currents in the network
is The network in Fig. 2.5 is redrawn as shown in Fig. 3.18
with 4 loop currents labeled as shown. The branch currents are then determined as

All the circuits we will examine in this text will be planar, which simply means that we
can draw the circuit on a sheet of paper in such a way that no conductor crosses another con-
ductor. If a circuit is planar, the loops are more easily identified. For example, recall in
Chapter 2 that we found that a single equation was sufficient to determine the current in a cir-
cuit containing a single loop. If the circuit contains N independent loops, we will show (and
the general topological formula can be used for verification), that N independent
simultaneous equations will be required to describe the network.

Our approach to loop analysis will mirror the approach used in nodal analysis (i.e., we will
begin with simple cases and systematically proceed to those that are more difficult). Then at
the end of this section we will outline a general strategy for employing loop analysis.

CIRCUITS CONTAINING ONLY INDEPENDENT VOLTAGE
SOURCES To begin our analysis, consider the circuit shown in Fig. 3.19. We note that
this network has seven branches and six nodes, and thus the number of linearly independent KVL
equations necessary to determine all currents in the circuit is 
Since two linearly independent KVL equations are required, we identify two independent loops,
A-B-E-F-A and B-C-D-E-B. We now define a new set of current variables called loop currents,
which can be used to find the physical currents in the circuit. Let us assume that current flows
in the first loop and that current flows in the second loop. Then the branch current flowing from
B to E through is The directions of the currents have been assumed. As was the case
in the nodal analysis, if the actual currents are not in the direction indicated, the values calculat-
ed will be negative.

Applying KVL to the first loop yields

KVL applied to loop 2 yields

where v1 = i1R1 , v2 = i1R2 , v3 = Ai1 - i2B  R3 , v4 = i2R4 , and v5 = i2R5 .

+vS2 + v4 + v5 - v3 = 0

+v1 + v3 + v2 - vS1 = 0

i1 - i2.R3

i2

i1

B - N + 1 = 7 - 6 + 1 = 2.

B - N + 1

 i8(t) = -iD(t)

 i7(t) = iC(t) - iD(t)

 i6(t) = -iC(t)

 i5(t) = iB(t) - iD(t)

 i4(t) = iA(t) - iC(t)

 i3(t) = iB(t)

 i2(t) = iA(t) - iB(t)

 i1(t) = iA(t)

B - N + 1 = 8 - 5 + 1 = 4.

H I N T
The equations employ the
passive sign convention.
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Substituting these values into the two KVL equations produces the two simultaneous equa-
tions required to determine the two loop currents; that is,

or in matrix form

At this point, it is important to define what is called a mesh. A mesh is a special kind of loop
that does not contain any loops within it. Therefore, as we traverse the path of a mesh, we do not
encircle any circuit elements. For example, the network in Fig. 3.19 contains two meshes defined
by the paths A-B-E-F-A and B-C-D-E-B. The path A-B-C-D-E-F-A is a loop, but it is not a mesh.
Since the majority of our analysis in this section will involve writing KVL equations for meshes,
we will refer to the currents as mesh currents and the analysis as a mesh analysis.

BR1 + R2 + R3

-R3

-R3

R3 + R4 + R5
R B i1

i2
R = B vS1

-vS2
R

 -i1AR3B + i2AR3 + R4 + R5B = -vS2

 i1AR1 + R2 + R3B - i2AR3B = vS1

±
–

–±
A B C

F E D

vS1

v1

v2

vS2

v5

v4R4v3R3

R1

R2 R5

i1 i2
+

-

+

+

-

-

- + - +

Figure 3.19
A two-loop circuit.

Example 3.12
Consider the network in Fig. 3.20a. We wish to find the current 

SOLUTION We will begin the analysis by writing mesh equations. Note that there are no +
and – signs on the resistors. However, they are not needed, since we will apply Ohm’s law to
each resistive element as we write the KVL equations. The equation for the first mesh is

The KVL equation for the second mesh is

where 
Solving the two simultaneous equations yields and Therefore,

All the voltages and currents in the network are shown in Fig. 3.20b. Recall from
nodal analysis that once the node voltages were determined, we could check our analysis using
KCL at the nodes. In this case, we know the branch currents and can use KVL around any
closed path to check our results. For example, applying KVL to the outer loop yields

Since we want to calculate the current we could use loop analysis, as shown in
Fig. 3.20c. Note that the loop current passes through the center leg of the network and,
therefore, The two loop equations in this case are

and

Solving these equations yields and Since the current in the 12-V
source is these results agree with the mesh analysis.I1 + I2 = 5�4 mA,

I2 = 1�2 mA.I1 = 3�4 mA

-12 + 6kAI1 + I2B + 3kI2 + 3 = 0

-12 + 6kAI1 + I2B + 6kI1 = 0

I1 = Io  .
I1

Io  ,

 0 = 0

 -12 +

15

2
+

3

2
+ 3 = 0

Io = 3�4 mA.
I2 = 1�2 mA.I1 = 5�4 mA

Io = I1 - I2  .
6kAI2 - I1B + 3kI2 + 3 = 0

-12 + 6kI1 + 6kAI1 - I2B = 0

Io  .
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±
–

±
–

Vo

Io

3 k�6 k�

6 k�

12 V 3 VI1 I2

(a)

±
–

±
–

Vo

3 k�6 k�

6 k�12 V 3 V

(b)

5 
4
— mA 1 

2
— mA

3 
4
— mA

9 
2
— mA

15 
2
— V

+

+

-
3 
2
— V

+ -

-

±
–

±
–

Vo

Io

I1 I2

3 k�6 k�

6 k�12 V 3 V

(c)

Finally, for purposes of comparison, let us find using nodal analysis. The presence of the
two voltage sources would indicate that this is a viable approach. Applying KCL at the top
center node, we obtain

and hence,

and then

Note that in this case we had to solve only one equation instead of two.

Io =

Vo

6k
=

3

4
 mA

Vo =

9

2
 V

Vo - 12

6k
+

Vo

6k
+

Vo - 3

3k
= 0

Io

Once again we are compelled to note the symmetrical form of the mesh equations that
describe the circuit in Fig. 3.19. Note that the coefficient matrix for this circuit is symmetrical.

Since this symmetry is generally exhibited by networks containing resistors and independent
voltage sources, we can learn to write the mesh equations by inspection. In the first equation, the
coefficient of is the sum of the resistances through which mesh current 1 flows, and the coef-
ficient of is the negative of the sum of the resistances common to mesh current 1 and mesh cur-
rent 2. The right-hand side of the equation is the algebraic sum of the voltage sources in mesh 1.
The sign of the voltage source is positive if it aids the assumed direction of the current flow and
negative if it opposes the assumed flow. The first equation is KVL for mesh 1. In the second equa-
tion, the coefficient of is the sum of all the resistances in mesh 2, the coefficient of is the
negative of the sum of the resistances common to mesh 1 and mesh 2, and the right-hand side of
the equation is the algebraic sum of the voltage sources in mesh 2. In general, if we assume all
of the mesh currents to be in the same direction (clockwise or counterclockwise), then if KVL is
applied to mesh j with mesh current the coefficient of is the sum of the resistances in mesh
j and the coefficients of the other mesh currents are the negatives of the resist-
ances common to these meshes and mesh j. The right-hand side of the equation is equal to
the algebraic sum of the voltage sources in mesh j. These voltage sources have a positive sign
if they aid the current flow and a negative sign if they oppose it.ij

Ae.g., ij - 1 , ij + 1B
ijij ,

i1i2

i2

i1

Figure 3.20 Circuits used in Example 3.12.
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CIRCUITS CONTAINING INDEPENDENT CURRENT SOURCES
Just as the presence of a voltage source in a network simplified the nodal analysis, the pres-
ence of a current source simplifies a loop analysis. The following examples illustrate the point.

+-

4 k�

6 k�

3 k�

12 k�9 k�

6 V

I1

I2 I3

Figure 3.21
Circuit used in
Example 3.13.

Example 3.13
Let us write the mesh equations by inspection for the network in Fig. 3.21. Then we will use
MATLAB to solve for the mesh currents.

SOLUTION The three linearly independent simultaneous equations are

or in matrix form

Note the symmetrical form of the equations. The general form of the matrix equation is

RI=V

and the solution of this matrix equation is

I=R–1V

The input/output data for a MATLAB solution are as follows:

>> R = [10e3 0 -6e3; 0 12e3 -3e3; 

-6e3 -3e3 21e3]

R = 

10000      0   -6000

     0 12000   -3000

 -6000  -3000    21000

>> V = [-6 ; 6 ; 0]

V = 

     -6

      6

     0

>> I = inv(R)*V

I =

1.0e-003 *

-0.6757

 0.4685

 -0.1261

C 10k

0

-6k

0

12k

-3k

-6k

-3k

21k

S C I1

I2

I3

S = C -6

6

0

S
 -(6k)I1 - (3k)I2 + (3k + 6k + 12k)I3 = 0

 -(0)I1 + (9k + 3k)I2 - (3k)I3 = 6

 (4k + 6k)I1 - (0)I2 - (6k)I3 = -6
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E3.8 Use mesh equations to find in the circuit in Fig. E3.8.Vo ANSWER: Vo =

33

5
 V.

±
–

+-
4 k�

2 k�

2 k�

6 k� Vo

3 V

6 V

+

-

Figure E3.8

Example 3.14
Let us find both and in the circuit in Fig. 3.22.

SOLUTION Although it appears that there are two unknown mesh currents, the current 
goes directly through the current source and, therefore, is constrained to be 2 mA. Hence,
only the current is unknown. KVL for the rightmost mesh is

And, of course,

These equations can be written as

The input/output data for a MATLAB solution are as follows:

>> R = [-2000 8000; 1 0]

R = 

-2000 8000

    1 0

>> V = [2 ; 0.002]

V =

2.0000

0.0020

>> I = inv(R)*V

I =

0.0020

0.0008

 I1 = 2�k 

- 2kI1 + 8kI2 = 2

 I1 = 2 * 10-3

2k( I2 -  I1) - 2 + 6k I2 = 0

I2

I1

I1

V1Vo
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>> format long

>> I

I =

0.00200000000000

0.00075000000000

Note carefully that the first solution for contains a single digit in the last decimal place.
We are naturally led to question whether a number has been rounded off to this value. If we
type “format long,” MATLAB will provide the answer using 15 digits. Thus, instead of 0.008,
the more accurate answer is 0.0075. And hence,

To obtain we apply KVL around any closed path. If we use the outer loop, the KVL equation is

And therefore,

Note that since the current is known, the resistor did not enter the equation in finding 
However, it appears in every loop containing the current source and, thus, is used in finding V1 .

Vo .4-k�I1

V1 =

21

2
 V

-V1 + 4kI1 - 2 + 6kI2 = 0

V1

Vo = 6kI2 =

9

2
 V

I2

+-

2 mA

2 V

2 k�

4 k�

6 k�

V1

I1 I2 Vo

+

-

Figure 3.22
Circuit used in
Example 3.14.

Example 3.15
We wish to find in the network in Fig. 3.23.

SOLUTION Since the currents and pass directly through a current source, two of the
three required equations are

The third equation is KVL for the mesh containing the voltage source; that is,

These equations yield

and hence,

Vo = 6kI3 - 3 =

-3

2
 V

I3 =

1

4
 mA

4kAI3 - I2B + 2kAI3 - I1B + 6kI3 - 3 = 0

 I2 = -2 * 10-3

 I1 = 4 * 10-3

I2I1

Vo
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What we have demonstrated in the previous example is the general approach for dealing
with independent current sources when writing KVL equations; that is, use one loop through
each current source. The number of “window panes” in the network tells us how many equa-
tions we need. Additional KVL equations are written to cover the remaining circuit elements
in the network. The following example illustrates this approach.
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-
+

4 mA

2 mA 3 V

2 k�

4 k�

6 k�

4 k�
Vo

+

-

I3

I1

I2

Figure 3.23
Circuit used in Example 3.15.

H I N T
In this case the 4-mA
current source is located on
the boundary between two
meshes. Thus, we will
demonstrate two techniques
for dealing with this type of
situation. One is a special
loop technique, and the
other is known as the
supermesh approach.

Example 3.16
Let us find in the network in Fig. 3.24a.

SOLUTION First, we select two loop currents and such that passes directly through
the 2-mA source, and passes directly through the 4-mA source, as shown in Fig. 3.24b.
Therefore, two of our three linearly independent equations are 

The remaining loop current must pass through the circuit elements not covered by the two
previous equations and cannot, of course, pass through the current sources. The path for this
remaining loop current can be obtained by open-circuiting the current sources, as shown in
Fig. 3.24c. When all currents are labeled on the original circuit, the KVL equation for this last
loop, as shown in Fig. 3.24d, is

Solving the equations yields

and therefore,

Next consider the supermesh technique. In this case the three mesh currents are specified
as shown in Fig. 3.24e, and since the voltage across the 4-mA current source is unknown, it
is assumed to be The mesh currents constrained by the current sources are

The KVL equations for meshes 2 and 3, respectively, are

 -6 + 1kI3 + Vx + 1kAI3 - I1B = 0

 2kI2 + 2kAI2 - I1B - Vx = 0

 I2 - I3 = 4 * 10-3

 I1 = 2 * 10-3

Vx  .

Io = I1 - I2 - I3 =

-4

3
 mA

I3 =

-2

3
 mA

-6 + 1kI3 + 2kAI2 + I3B + 2kAI3 + I2 - I1B + 1kAI3 - I1B = 0

I3

 I2 = 4 * 10-3

 I1 = 2 * 10-3

I2

I1I2I1

Io
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+-

6 V

1 k�

2 k�2 k�

1 k�

4 mA

2 mA Io

(a)

+-

6 V

1 k�

2 k�
2 k�

1 k�

4 mA

2 mA Io

(e)

+-

6 V

1 k�

2 k�2 k�

1 k�

4 mA

2 mA Io

(b)

I1 I2

+-

6 V

1 k�

2 k�2 k�

1 k�

(c)

+-

6 V

1 k�

2 k�

2 k�

1 k�

4 mA

2 mA Io

(d)

I1 I2

I3I3

+-

6 V

1 k�

2 k�

2 k�

1 k�

2 mA Io

(f)

I1 I2
I1 I2

I3I3 Vx+-

Figure 3.24 Circuits used in Example 3.16.

Adding the last two equations yields

Note that the unknown voltage has been eliminated. The two constraint equations, together
with this latter equation, yield the desired result.

The purpose of the supermesh approach is to avoid introducing the unknown voltage 
The supermesh is created by mentally removing the 4-mA current source, as shown in
Fig. 3.24f. Then writing the KVL equation around the dotted path, which defines the super-
mesh, using the original mesh currents as shown in Fig. 3.20e, yields

Note that this supermesh equation is the same as that obtained earlier by introducing the
voltage Vx  .

-6 + 1kI3 + 2kI2 + 2kAI2 - I1B + 1kAI3 - I1B = 0

Vx  .

Vx

-6 + 1kI3 + 2kI2 + 2kAI2 - I1B + 1kAI3 - I1B = 0
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Example 3.17
Let us find in the circuit in Fig. 3.25, which contains a voltage-controlled voltage source.

SOLUTION The equation for the loop currents shown in the figure are

where

These equations can be combined to produce

The input /output data for a MATLAB solution are

>> R = [-2000 2000; -6000 8000]

R =

-2000    2000

-6000    8000

 - 6kI1 + 8kI2 = 3

 - 2kI1 + 2kI2 = 0

Vx = 4kI1

 - 2Vx + 2k(I1 + I2) - 3 + 6kI2 = 0

 - 2Vx + 2k(I1 + I2) + 4kI1 = 0

Vo
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E3.9 Find in the network in Fig. E3.9.Vo ANSWER: Vo =

33

5
 V.

E3.10 Find in the network in Fig. E3.10.Vo ANSWER: Vo =

32

5
 V.

±
–2 k� 4 k�

6 k�

4 mA

5 V

Vo+ -Figure E3.9

±
–

1 k�

4 k� Vo

2 k�

2 mA

4 mA

4 V

+

-

Figure E3.10

CIRCUITS CONTAINING DEPENDENT SOURCES We deal with circuits
containing dependent sources just as we have in the past. First, we treat the dependent source
as though it were an independent source when writing the KVL equations. Then we write the
controlling equation for the dependent source. The following examples illustrate the point.
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±
–

+-

3 VVx

2 k�

4 k� 6 k� Vo2 Vx
I1

I2

+

-

Figure 3.25
Circuit used in
Example 3.17.

>> V = [0; 3]

V =

0

3

>> I = inv(R)*V

I =

0.00150000000000

0.00150000000000

and therefore,

For comparison, we will also solve the problem using nodal analysis. The presence of the
voltage sources indicates that this method could be simpler. Treating the 3-V source and its
connecting nodes as a supernode and writing the KCL equation for this supernode yields

where

These equations also yield .Vo = 9 V

Vo = Vx + 3

Vx - 2Vx

2k
 +

Vx

4k
 +

Vx + 3

6k
= 0

 Vo = 6kI2 = 9 V

Example 3.18
Let us find in the circuit in Fig. 3.26, which contains a voltage-controlled current source.

SOLUTION The currents and are drawn through the current sources. Therefore, two of
the equations needed are

The KVL equation for the third mesh is

where

Combining these equations yields

 - 2kI2 + 8kI3 = 3

 I2 = 2�k

 - I1 + 2I2 = 0

 Vx = 4k (I1 - I2)

- 3 + 2k(I3 - I1) + 6kI3 = 0

 I2 = 2 * 10 - 3

 I1 =

Vx

2000

I2I1

Vo
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±
–

Vx

I1

I3
4 k�

6 k�

2 mA

2 k�

3 V

Vx
2000
 —

Vo

+

-

I2

+-

Figure 3.26
Circuit used in Example 3.18.

The MATLAB solution for these equations is

>> R = [-1 2 0; 0 1 0; -2000 0 8000]

R =

 -1 2 0

  0 1 0

-2000 0 8000

>> V = [0; 0.002; 3]

V =

            0

 0.00200000000000

 3.00000000000000

>> I = inv(R)*V

I =

 0.00400000000000

 0.00200000000000

 0.00137500000000

And hence, Vo = 8.25 V

Example 3.19
The network in Fig. 3.27 contains both a current-controlled voltage source and a voltage-
controlled current source. Let us use MATLAB to determine the loop currents.

SOLUTION The equations for the loop currents shown in the figure are

where

 Ix = I4 - I2

 Vx = 2kAI3 - I1B
 1kAI4 - I3B + 1kAI4 - I2B + 12 = 0

 -1kIx + 2kAI3 - I1B + 1kAI3 - I4B = 0

 I2 =

Vx

2k

 I1 =

4

k
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Combining these equations yields

In matrix form the equations are

=

The input and output data for the MATLAB solution are as follows:

>> R = [1 0 0 0 ; 1 1 -1 0; 0 1000 3000 -2000; 

0 1000 1000 -2000]

R = 

1        0        0         0

1        1       -1         0

0     1000     3000     -2000

0     1000     1000     -2000

>> V = [0.004; 0; 8; 12]

V = 

0.0040

0

8.0000

   12.0000

>> I = inv(R)*V

I =

0.0040

-0.0060

-0.0020

-0.0100

E 4

k

0

8

12

UD I1

I2

I3

I4

TD 1

1

0

0

0

1

1k

1k

0

-1

3k

1k

0

0

-2k

-2k

T
 1kI2 + 1kI3 - 2kI4 = 12

 1kI2 + 3kI3 - 2kI4 = 8

 I1 + I2 - I3 = 0

 I1 =

4

k
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Vx
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Figure 3.27
Circuit used in
Example 3.19.
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1 k�

1 k� 1 k�

4 V2 
k
— A
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k
— A I1

I2

I4
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Figure 3.28
Circuit used in Example 3.20.

Example 3.20
At this point we will again examine the circuit in Example 3.10 and analyze it using loop
equations. Recall that because the network has two voltage sources, the nodal analysis was
somewhat simplified. In a similar manner, the presence of the current sources should simplify
a loop analysis.

Clearly, the network has four loops, and thus four linearly independent equations are required
to determine the loop currents. The network is redrawn in Fig. 3.28 where the loop currents are
specified. Note that we have drawn one current through each of the independent current sources.
This choice of currents simplifies the analysis since two of the four equations are

The two remaining KVL equations for loop currents and are

where

Substituting the equations for and into the two KVL equations yields

Solving these equations for and , we obtain

and thus
Vo = 1V

I2 = 1 mA

I4 = 2 mA

 I4 I2

 4kI4 = 8

 2kI2 + 2kI4 = 6

 I3 I1

 Vx = 1k(I1 - I3 - I4)

 (I4 + I3 - I1)1k - 2Vx + 1kI4 + 4 = 0

 -2Vx + 1kI2 + (I2 - I3)1k = 0

 I4 I2

 I3 = -2�k
 I1 = 2�k

Example 3.21
Let us once again consider Example 3.11. In this case we will examine the network using loop
analysis. Although there are four sources, two of which are dependent, only one of them is a
current source. Thus, from the outset we expect that a loop analysis will be more difficult than
a nodal analysis. Clearly, the circuit contains six loops. Thus, six linearly independent equa-
tions are needed to solve for all the unknown currents.

The network is redrawn in Fig. 3.29 where the loops are specified. The six KVL equations
that describe the network are

 I3 = 2Ix

 1kAI2 - I1B - 6 + 1kAI2 - I5B = 0

 1kI1 + 1kAI1 - I2B + 1kAI1 - I4B = 0
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 1kAIo - I5B + 1kAIo - I3B + 1kIo = 0

 -2Vx + 1kAI5 - I2B + 1kAI5 - IoB = 0

 -12 + 1kAI4 - I1B + 2Vx = 0
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2Vx
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I1 I2 I3

I6I5I4

Figure 3.29
Circuit used in
Example 3.21.

And the control variables for the two dependent sources are

Substituting the control parameters into the six KVL equations yields

which can be written in matrix form as

Although these six linearly independent simultaneous equations can be solved by any con-
venient method, we will employ a MATLAB solution. As the results listed below indicate, the
current is 

>> R = [3 -1 0 -1 0 0 ; -1 2 0 0 -1 0 ; 0 0 1 0 -2 2 ; 

-3 0 0 1 0 0 ; 2 -1 0 0 2 -1 ; 0 0 0 0 -3 5]

R =

3    -1     0    -1     0     0

-1     2     0     0    -1     0

0     0     1     0    -2     2

-3     0     0     1     0     0

2    -1     0     0     2    -1

0     0     0     0    -3     5

>> V = [0; 0.006; 0; 0.012; 0; 0]

-48 mA.Io

F
3

-1

0

-3

2

0

-1

2

0

0

-1

0

0

0

1

0

0

0

-1

0

0

1

0

0

0

-1

-2

0

2

-3

0

0

2

0

-1

5

V F
I1

I2

I3

I4

I5

Io

V = F
0

6�k

0

12�k

0

0

V

3I1

-I1

0

-3I1

2I1

0

-I2

+2I2

0

0

-I2

0

0

0

I3

0

0

0

-I4

0

0

+I4

0

0

0

-I5

-2I5

0

+2I5

-3I5

0

0

+2Io

0

-Io

+5Io

=

=

=

=

=

=

0

6�k

0

12�k

0

0

 Ix = I5 - Io

 Vx = -1kI1
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V =

0

0.0060

0

0.0120

0

0

>> I = inv(R)*V

I =

0.0500

-0.0120

-0.0640

0.1620

-0.0800

-0.0480

>>

As a final point, it is very important to examine the circuit carefully before selecting an
analysis approach. One method could be much simpler than another, and a little time invested
up front may save a lot of time in the long run.

P R O B L E M - S O L V I N G S T R A T E G Y

Loop Analysis

Step 1. One loop current is assigned to each independent loop in a circuit that contains
N independent loops.

Step 2. If only independent voltage sources are present in the network, write the N
linearly independent KVL equations, one for each loop. If dependent voltage
sources are present, write the KVL equation as is done for circuits with only
independent voltage sources; then write the controlling equations for the
dependent sources.

Step 3. If current sources are present in the network, either of two techniques can be
used. In the first case, one loop current is selected to pass through one of the
current sources. This is done for each current source in the network. 
The remaining loop currents (N-the number of current sources) are
determined by open-circuiting the current sources in the network and using 
this modified network to select them. Once all these currents are defined in 
the original network, the N loop equations can be written. The second
approach is similar to the first with the exception that if two mesh currents pass
through a particular current source, a supermesh is formed around this source.
The two required equations for the meshes containing this source are the
constraint equations for the two mesh currents that pass through the source and
the supermesh equation. As indicated earlier, if dependent current sources are
present, the controlling equations for these sources are also necessary.
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3.3 Application Example

E3.12 Use loop analysis to solve the network in Example 3.5 and compare the time and effort involved in the two solution techniques.

E3.13 Use nodal analysis to solve the circuit in Example 3.15 and compare the time and effort involved in the two solution strategies.

µ

µ

(a)

(b)

±
–

Vspeed
+

-

Vspeed

Power amp
model

+

-

VM
+

-

Power
amp

dc
motor

�=1

�=0
VM/Vspeed=4

VM

+

-

+

-
4Vspeed

5 V Rpot

R1

R2

�=1

�=0
5 V Rpot

R1

R2

Figure 3.30 (a) A simple dc motor driver and (b) the circuit model used to analyze it.

L E A R N I N G  E X T E N S I O N S

E3.11 Use mesh analysis to find in the circuit in Fig. E3.11. P S VVo ANSWER: Vo = 12 V.

±
–

+-
2 k�

12 V

4 k� 2 k� Vo

+

-

2000Ix

Ix

Figure E3.11

Application Example 3.22
A conceptual circuit for manually setting the speed of a dc electric motor is shown in
Figure 3.30a. The resistors and are inside a component called a potentiometer, or pot,
which is nothing more than an adjustable resistor, for example, a volume control. Turning the
knob changes the ratio but the total resistance, is
unchanged. In this way the pot forms a voltage divider that sets the voltage The power
amplifier output, is four times Power amplifiers can output the high currents need-
ed to drive the motor. Finally, the dc motor speed is proportional to that is, the speed in
rpm is some constant k times Without knowing the details of the power amplifier, can we
analyze this system? In particular, can we develop a relationship between rpm and a?

V.
VM ,

Vspeed .VM ,
Vspeed .

Rpot = R1 + R2 ,a = R2�(R1 + R2),

R2R1
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3.4 Design Example

Design Example 3.23
An 8-volt source is to be used in conjunction with two standard resistors to design a voltage divider
that will output 5 V when connected to a load. While keeping the consumed power as low
as possible, we wish to minimize the error between the actual output and the required 5 volts.

SOLUTION The divider can be modeled as shown in Fig. 3.31. Applying KCL at the output
node yields the equation

Using the specified parameters for the input voltage, desired output voltage, and the current
source, we obtain

By trial and error, we find that excellent values for the two standard resistors are 
and Large resistor values are used to minimize power consumption. With this
selection of resistors the output voltage is 5.11 V, which is a percent error of only 2.15%.

R2 = 27 k�.
R1 = 10 k�

R1 =

3R2

5 + (100�)R2

 
VS - Vo

R1
=

Vo

R2
+ Io

100-�A

SOLUTION Since the power amplifier output voltage is proportional to its input, we can model
the amplifier as a simple dependent source. The resulting circuit diagram is shown in Fig. 3.30b.
Now we can easily develop a relationship between motor speed and the pot position, The
equations that govern the operation of the motor, power amplifier, and the voltage divider are

Combining these relationships to eliminate yields a relationship between motor speed
and that is, If, for example, the motor constant is then

This relationship specifies that the motor speed is proportional to the pot knob position. Since
the maximum value of is 1, the motor speed ranges from 0 to 1000 rpm.

Note that in our model, the power amplifier, modeled by the dependent source, can deliv-
er any current the motor requires. Of course, this is not possible, but it does demonstrate some
of the tradeoffs we experience in modeling. By choosing a simple model, we were able to
develop the required relationship quickly. However, other characteristics of an actual power
amplifier have been omitted in this model.

a

rpm = 1000a

50 rpm�V,KMrpm = 20a.a,
Vspeed

 R2 = aRpot  R1 = (1 - a)Rpot

 Vspeed = 5 
R2

R1 + R2
= 5 c R2

Rpot
d = 5a

 VM = 4Vspeed

 speed (rpm) = KM VM

a.

±
–

R1

R2 Vo

Io

100 �A

VS

8 V
+

-

Figure 3.31
A simple voltage-divider circuit
with a 100-µA load.
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Loop analysis for an N-loop circuit

● One loop current is assigned to each independent loop in a
circuit that contains N independent loops.

● If only independent voltage sources are present in the
network, write the N linearly independent KVL equations,
one for each loop. If dependent voltage sources are present,
write the KVL equations as is done for circuits with only
independent voltage sources; then write the controlling
equations for the dependent sources.

● If current sources are present in the network, either of two
techniques can be used. In the first case, one loop current is
selected to pass through one of the current sources. This is
done for each current source in the network. The remaining
loop currents (N-the number of current sources) are
determined by open-circuiting the current sources in the
network and using this modified network to select them.
Once all these currents are defined in the original network,
the N-loop equations can be written. The second approach
is similar to the first with the exception that if two mesh
currents pass through a particular current source, a
supermesh is formed around this source. The two required
equations for the meshes containing this source are the
constraint equations for the two mesh currents that pass
through the source and the supermesh equation. If
dependent current sources are present, the controlling
equations for these sources are also necessary.

Nodal analysis for an N-node circuit

● Select one node in the N-node circuit as the reference node.
Assume that the node voltage is zero and measure all node
voltages with respect to this node.

● If only independent current sources are present in the
network, write the KCL equations at the nonrefer-
ence nodes. If dependent current sources are present, write
the KCL equations as is done for networks with only
independent current sources; then write the controlling
equations for the dependent sources.

● If voltage sources are present in the network, they may be
connected (1) between the reference node and a
nonreference node or (2) between two nonreference nodes.
In the former case, if the voltage source is an independent
source, then the voltage at one of the nonreference nodes is
known. If the source is dependent, it is treated as an
independent source when writing the KCL equations, but an
additional constraint equation is necessary.

In the latter case, if the source is independent, the
voltage between the two nodes is constrained by the value
of the voltage source and an equation describing this
constraint represents one of the linearly independent
equations required to determine the N-node voltages. The
surface of the network described by the constraint equation
(i.e., the source and two connecting nodes) is called a
supernode. One of the remaining linearly
independent equations is obtained by applying KCL at this
supernode. If the voltage source is dependent, it is treated
as an independent source when writing the KCL equations,
but an additional constraint equation is necessary.

N - 1

N - 1

N - 1
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3.1 Find in the circuit in Fig. P3.1 using nodal analysis.

Figure P3.1

12 k� 3 k�6 k�

10 k�

6 mA

Io

C SIo 3.2 Use nodal analysis to find in the circuit in Fig. P3.2.

Figure P3.2

3 k� V1 2 k�2 k�

2 k�

6 mA

4 mA

+

-

V1

S U M M A R Y

P R O B L E M S
both available on the web at: http://www.justask4u.com/irwin

S E C T I O N  3 . 1

C SP S V
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3.3 Use nodal analysis to find both and in the circuit in
Fig. P3.3.

Figure P3.3

3.4 Find and in the circuit in Fig. P3.4 using nodal
analysis. Then solve the problem using MATLAB and
compare your answers.

Figure P3.4

3.5 Find in the circuit in Fig. P3.5 using nodal analysis.

Figure P3.5

3.6 Find in the network in Fig. P3.6 using nodal analysis.

Figure P3.6

-
+

±
–6 V 24 V6 k�

4 k�6 k�

Io

Io

±
–9 V 2 k�2 k�6 k�

2 k�3 k� Io

C SIo

3 k� 6 k�6 k�

4 k�

6 mA

4 mA V1

+

-

V2

+

-

V2V1

P S V

VoV1

6 k� 1 k� Vo3 k�

6 k�

2 mA

2 k�

V2V1

12 mA

+

-

3.7 Find in the network in Fig. P3.7 using nodal analysis.

Figure P3.7

3.8 Find in the circuit in Fig. P3.8 using nodal analysis.

Figure P3.8

3.9 Use nodal analysis to find in the circuit in Fig. P3.9.

Figure P3.9

3.10 Find in the circuit in Fig. P3.10 using nodal analysis.

Figure P3.10

±
–6 V 4 k� 4 k�

Io

4 k�4 k�

2 mA

Io

±
–6 V 4 k� 8 k�

Vo

4 k�

8 k�2 k�

2 mA

+ -

Vo

-
+

+

-

Vo

12 V 8 mA

6 k�

2 k�

4 k�

P S V

Vo

±
–

±
–12 V 6 V6 k�

12 k�6 k�

Vo+ -

C S

Vo

IRWI03_082-132-hr  9/30/04  8:54 AM  Page 121



122 C H A P T E R  3 N O D A L  A N D  L O O P  A N A LY S I S  T E C H N I Q U E S

3.11 Use nodal analysis to find in the network in
Fig. P3.11. Then solve the problem using MATLAB and
compare your answers.

Figure P3.11

3.12 Use nodal analysis to find in the circuit in Fig. P3.12.

Figure P3.12

3.13 Use nodal analysis to find in the circuit in Fig. P3.13.

Figure P3.13

-
+

+
-

+

-

Vo

12 V 24 V

6 k� 4 k�

8 k�

4 k�

Vo

±
–

-
+

5 V Vo

6 V6 mA

2 k� 6 k�

3 k�

+

-

Vo

±
–6 V 12 k� 12 k� Vo

4 k�4 k�

2 mA

+

-

Vo 3.14 Find in the network in Fig. P3.14.

Figure P3.14

3.15 Find in the network in Fig. P3.15.

Figure P3.15

3.16 Find in the network in Fig. P3.16.

Figure P3.16

3.17 Use nodal analysis to find and in the circuit in 
Fig. P3.17.

Figure P3.17

3.18 For the network in Fig P3.17, explain why the resistor 
plays no role in determining and .

3.19 Use nodal analysis to find in the network in Fig P3.19.

Figure P3.19

Vo

VyVx

R

VyVx

-
+

±
–2 mA

4 k� 3 k�

12 V 6 V6 k� 2 k�

Io

Io

–±

2 mA

3 V

3 k� 6 k�

I1

C SI1

C SIo

–±

3 mA

3 mA6 V

6 k� 4 k� 3 k� 6 k�

Io

±
–88 �264 �

R=132 �

10 �
44 �

12 �

110 V

Vy

Vx

- +

-

+

5 A1 A

±
–

±
–

14 V 1 k�

2 k� 3 k� Vo

1 k� 7 k�

10 k�

2 k�

9 k�

9 k�

1 mA

18 k�

+

- Vx

+

-2Vx
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3.20 Use nodal analysis to find and in the network in
Fig. P3.20. Simplify the analysis by making an
insightful choice for the reference node.

Figure P3.20

3.21 Find in the circuit in Fig. P3.21.

Figure P3.21

3.22 Use nodal analysis to find and in the circuit in
Fig. P3.22.

Figure P3.22

3.23 Use nodal analysis to find in the network in
Fig. P3.23.

Figure P3.23

Vo

±
–

3 k� 3 k� 2 k�

4 k�1 k� 6 V 2 mA

IS

Io

ISIo

±
–

±
–

4 k� 4 k�

2 k�

2 k�

6 V

24 V Io

Io

±
–

6 � 1 �

6 � 1 A
2 �

5 �

3 �

9 V

VA+ - VB+ -

VBVA 3.24 Use nodal analysis to find in the circuit in Fig. P3.24.

Figure P3.24

3.25 Find in the network in Fig. P3.25 using nodal analysis.

Figure P3.25

3.26 Use nodal analysis to find in the network in
Fig. P3.26.

Figure P3.26

3.27 Use nodal analysis to find in the network in
Fig. P3.27. Then solve this problem using MATLAB and
compare your answers.

Figure P3.27
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3.28 Find in the circuit in Fig. P3.28 using nodal analysis.

Figure P3.28

3.29 Use nodal analysis to find in the circuit in Fig. P3.29.

Figure P3.29

3.30 Use nodal analysis to find in the circuit in Fig. P3.30.

Figure P3.30

3.31 Use nodal analysis to find in the circuit in Fig. P3.31.

Figure P3.31

-
+

6 mA

12 k�
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Vo
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Vo

±
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Vo

6 V

1 k�

1 k� 12 V 2 k�

1 k�

+

-

P S V

Vo 3.32 Find in the network in Fig. P3.32 using nodal analysis.

Figure P3.32

3.33 Use nodal analysis to find in the network in
Fig. P3.33.

Figure P3.33

3.34 Find in the circuit in Fig. P3.34 using nodal analysis.

Figure P3.34

3.35 Use nodal analysis to find in the network in
Fig. P3.35.

Figure P3.35
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±
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±
–6 V 2 k� Vo

2 k�4 k� 4 k�

4 mA2 mA

+

-
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3.36 Use MATLAB to find the node voltages in the network
in Fig. P3.36.

Figure P3.36

3.37 Determine in the network in Fig. P3.37 using nodal
analysis.

Figure P3.37

3.38 Find in the circuit in Fig. P3.38.

Figure P3.38
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3.39 Find in the network in Fig. P3.39.

Figure P3.39

3.40 Use nodal analysis to find in the circuit in Fig. P3.40.

Figure P3.40

3.41 Determine in the network in Fig. P3.41.

Figure P3.41

3.42 Find in the circuit in Fig. P3.42.

Figure P3.42
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3.43 Find in the circuit in Fig. P3.43 using nodal analysis.

Figure P3.43

3.44 Use nodal analysis to find in Fig. P3.44.

Figure P3.44

3.45 Find in the circuit in Fig. P3.45 using nodal analysis.

Figure P3.45

3.46 Find in the circuit in Fig. P3.46 using nodal analysis.
Then solve the problem using MATLAB and compare
your answers.

Figure P3.46
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1 k�
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Io

Io 3.47 Find in the network in Fig. P3.47.

Figure P3.47

3.48 Find in the circuit in Fig. P3.48 using nodal analysis.

Figure P3.48

3.49 Find in the network in Fig. P3.49 using nodal analysis.

Figure P3.49

3.50 Find in the circuit in Fig. P3.50.

Figure P3.50

3.51 Use nodal analysis to find in the circuit in Fig. P3.51.
In addition, find all branch currents and check your
answers using KCL at every node.

Figure P3.51
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+
-

4 �

5 � 2 A2Ix

Ix

10 V 4 �

3.52 Find the power supplied by the 2-A current source in the
network in Fig. P3.52 using nodal analysis.

Figure P3.52

3.53 Use nodal equations for the circuit in Fig. P3.53 to
determine .

Figure P3.53

3.54 Determine in the network in Fig. P3.54 using nodal
analysis.

Figure P3.54

3.55 Calculate in the circuit in Fig. P3.55 using nodal
analysis.

Figure P3.55
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3.56 Using nodal analysis, find in the network in Fig. P3.56.

Figure P3.56

3.57 Use nodal analysis to find in the circuit in Fig. P3.57.

Figure P3.57

3.58 Use nodal analysis to determine in the circuit in
Fig. P3.58.

Figure P3.58

3.59 Find in the network in Fig. P3.59 using nodal analysis.

Figure P3.59
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3.60 Given the network in Fig. P3.60, we wish to deter-
mine the power dissipated in the resistor 

(a) Is mesh or nodal analysis the most efficient
approach? Why?

(b) For a nodal analysis, comment on the advantages of
selecting node 1 as the reference node. Repeat for
nodes 2, 3, and 4.

(c) Based on your results in (b), write the node equations.

Figure P3.60

-
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4 2

R1

R4
R5 R6

VS1

VS2

R3

R2

R3 .
3.61 In the circuit in Fig. P3.61, use Gaussian elimination to

determine 

(a) Would mesh or nodal analysis be the most efficient
approach? Why?

(b) If mesh analysis is used, are any supermeshes
required? Write the mesh equations. If nodal analy-
sis is used, are any supernodes required? If so, how
many? What is the best location for the reference
node and why? Write the node equations.

Figure P3.61
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S E C T I O N  3 . 2

3.62 Use mesh equations to find in the circuit in Fig. P3.62.

Figure P3.62

3.63 Find in the network in Fig. P3.63 using mesh
equations.

Figure P3.63
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Vo 3.64 Use mesh analysis to find in the circuit in Fig. P3.64.

Figure P3.64

3.65 Use mesh analysis to find in the circuit in Fig. P3.65.

Figure P3.65
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3.66 Use mesh analysis to find in the network in
Fig. P3.66.

Figure P3.66

3.67 Use loop analysis to find in the circuit in Fig. P3.67.

Figure P3.67

3.68 Use loop analysis to find in the network in Fig. P3.68.

Figure P3.68

3.69 Find in the network in Fig. P3.69 using mesh analysis.

Figure P3.69
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Vo 3.70 Use both nodal analysis and mesh analysis to find in
the circuit in Fig. P3.70.

Figure P3.70

3.71 Find in the network in Fig. P3.71 using loop analysis.
Then solve the problem using MATLAB and compare
your answers.

Figure P3.71

3.72 Find in the network in Fig. P3.72 using both mesh
and nodal analysis.

Figure P3.72
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3.73 Use loop analysis to find in the network in Fig. P3.73.

Figure P3.73

3.74 Find in the circuit in Fig. P3.74.

Figure P3.74

3.75 Solve Problem 3.33 using loop analysis.

3.76 Solve Problem 3.34 using loop analysis.

3.77 Solve Problem 3.35 using loop analysis.

3.78 Solve Problem 3.37 using loop analysis.

3.79 Solve Problem 3.40 using loop analysis.

3.80 Solve Problem 3.43 using loop analysis.

3.81 Use MATLAB to find the mesh currents in the network
in Fig. P3.81.

Figure P3.81
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Io 3.82 Write mesh equations for the circuit in Fig. P3.82 using
the assigned currents.

Figure P3.82

3.83 Use mesh analysis to find in the circuit in Fig. P3.83.

Figure P3.83

3.84 Find in the circuit in Fig. P3.84 using mesh analysis.

Figure P3.84

3.85 Use loop analysis to find in the network in Fig. P3.85.

Figure P3.85
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3.86 Use loop analysis to find in the circuit in Fig. P3.86.

Figure P3.86

3.87 Use both nodal analysis and mesh analysis to find in
the circuit in Fig. P3.87.

Figure P3.87

3.88 Using mesh analysis, find in the circuit in Fig. P3.88.

Figure P3.88

3.89 Find in the network in Fig. P3.89.

Figure P3.89
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Vo 3.90 Solve Problem 3.54 using loop analysis.

3.91 Solve Problem 3.55 using loop analysis.

3.92 Solve Problem 3.56 using loop analysis.

3.93 Solve Problem 3.57 using loop analysis.

3.94 Solve Problem 3.58 using loop analysis.

3.95 Solve Problem 3.59 using loop analysis.

3.96 Use mesh analysis to determine the power delivered by
the independent 3-V source in the network in Fig. P3.96.

Figure P3.96

3.97 Use mesh analysis to find the power delivered by the
current-controlled voltage source in the circuit in 
Fig. P3.97.

Figure P3.97
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3FE-1 Find in the circuit in Fig. 3PFE-1.

Figure 3PFE-1

3FE-2 Determine the power dissipated in the 6-ohm resistor
in the network in Fig. 3PFE-2.

Figure 3PFE-2
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C SVo 3FE-3 Find the current in the 4-ohm resistor in the circuit
in Fig. 3PFE-3.

Figure 3PFE-3

3FE-4 Determine the voltage in the circuit in Fig. 3PFE-4.

Figure 3PFE-4
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