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558

*10.1 INTRODUCTION
In the preceding chapters, problems involving the equilibrium of 
rigid bodies were solved by expressing that the external forces acting 
on the bodies were balanced. The equations of equilibrium oFx 5 0, 
oFy 5 0, oMA 5 0 were written and solved for the desired unknowns. 
A different method, which will prove more effective for solving cer-
tain types of equilibrium problems, will now be considered. This 
method is based on the principle of virtual work and was first 
 formally used by the Swiss mathematician Jean Bernoulli in the 
 eighteenth century.
 As you will see in Sec. 10.3, the principle of virtual work states 
that if a particle or rigid body, or, more generally, a system of con-
nected rigid bodies, which is in equilibrium under various external 
forces, is given an arbitrary displacement from that position of equi-
librium, the total work done by the external forces during the dis-
placement is zero. This principle is particularly effective when applied 
to the solution of problems involving the equilibrium of machines or 
mechanisms consisting of several connected members.
 In the second part of the chapter, the method of virtual work 
will be applied in an alternative form based on the concept of poten-
tial energy. It will be shown in Sec. 10.8 that if a particle, rigid body, 
or system of rigid bodies is in equilibrium, then the derivative of its 
potential energy with respect to a variable defining its position must 
be zero.
 In this chapter, you will also learn to evaluate the mechanical 
efficiency of a machine (Sec. 10.5) and to determine whether a given 
position of equilibrium is stable, unstable, or neutral (Sec. 10.9).

*10.2 WORK OF A FORCE
Let us first define the terms displacement and work as they are used 
in mechanics. Consider a particle which moves from a point A to a 
neighboring point A¿ (Fig. 10.1). If r denotes the position vector 
corresponding to point A, the small vector joining A and A¿ may be 
denoted by the differential dr; the vector dr is called the displace-
ment of the particle. Now let us assume that a force F is acting on 
the particle. The work of the force F corresponding to the displace-
ment dr is defined as the quantity

 dU 5 F ? dr (10.1)

obtained by forming the scalar product of the force F and the dis-
placement dr. Denoting respectively by F and ds the magnitudes of 
the force and of the displacement, and by a the angle formed by F 
and dr, and recalling the definition of the scalar product of two vec-
tors (Sec. 3.9), we write

 dU 5 F ds cos a (10.19)

Being a scalar quantity, work has a magnitude and a sign, but no 
direction. We also note that work should be expressed in units obtained 
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559by multiplying units of length by units of force. Thus, if U.S. custom-
ary units are used, work should be expressed in ft ? lb or in ? lb. If 
SI units are used, work should be expressed in N ? m. The unit of 
work N ? m is called a joule (J).†
 It follows from (10.1¿) that the work dU is positive if the angle 
a is acute and negative if a is obtuse. Three particular cases are of 
special interest. If the force F has the same direction as dr, the work 
dU reduces to F ds. If F has a direction opposite to that of dr, the 
work is dU 5 2F ds. Finally, if F is perpendicular to dr, the work 
dU is zero.
 The work dU of a force F during a displacement dr can also 
be considered as the product of F and the component ds cos a of 
the displacement dr along F (Fig. 10.2a). This view is particularly 

†The joule is the SI unit of energy, whether in mechanical form (work, potential 
energy, kinetic energy) or in chemical, electrical, or thermal form. We should note that 
even though N ? m 5 J, the moment of a force must be expressed in N ? m, and not in 
joules, since the moment of a force is not a form of energy.

ds cos a

a

a

dr

dr

A

dy G

W

F

(a) (b)

A'

G'

Fig. 10.2

useful in the computation of the work done by the weight W of a 
body (Fig. 10.2b). The work of W is equal to the product of W and 
the vertical displacement dy of the center of gravity G of the body. 
If the displacement is downward, the work is positive; if it is upward, 
the work is negative.
 A number of forces frequently encountered in statics do no 
work: forces applied to fixed points (ds 5 0) or acting in a direction 
perpendicular to the displacement (cos a 5 0). Among these forces 
are the reaction at a frictionless pin when the body supported 
rotates about the pin; the reaction at a frictionless surface when 
the body in contact moves along the surface; the reaction at a roller 
moving along its track; the weight of a body when its center of 
gravity moves horizontally; and the friction force acting on a wheel 
rolling without slipping (since at any instant the point of contact 
does not move). Examples of forces which do work are the weight 
of a body (except in the case considered above), the friction force 
acting on a body sliding on a rough surface, and most forces applied 
on a moving body.

10.2 Work of a Force

Photo 10.1 The forces exerted by the 
hydraulic cylinders to position the bucket lift 
shown can be effectively determined using the 
method of virtual work since a simple relation 
exists among the displacements of the points of 
application of the forces acting on the members 
of the lift.
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560 Method of Virtual Work  In certain cases, the sum of the work done by several forces is 
zero. Consider, for example, two rigid bodies AC and BC connected 
at C by a frictionless pin (Fig. 10.3a). Among the forces acting on 
AC is the force F exerted at C by BC. In general, the work of this 
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A

C

B B

–F

F

(a) (b)

T'

T
A

Fig. 10.4

B

B'

A'

–F

F

dr
A

dr'

force will not be zero, but it will be equal in magnitude and opposite 
in sign to the work of the force 2F exerted by AC on BC, since 
these forces are equal and opposite and are applied to the same 
particle. Thus, when the total work done by all the forces acting on 
AB and BC is considered, the work of the two internal forces at C 
cancels out. A similar result is obtained if we consider a system 
 consisting of two blocks connected by an inextensible cord AB 
(Fig. 10.3b). The work of the tension force T at A is equal in magni-
tude to the work of the tension force T¿ at B, since these forces have 
the same magnitude and the points A and B move through the same 
distance; but in one case the work is positive, and in the other it is 
negative. Thus, the work of the internal forces again cancels out.
 It can be shown that the total work of the internal forces hold-
ing together the particles of a rigid body is zero. Consider two par-
ticles A and B of a rigid body and the two equal and opposite forces 
F and 2F they exert on each other (Fig. 10.4). While, in general, 

small displacements dr and dr¿ of the two particles are different, the 
components of these displacements along AB must be equal; other-
wise, the particles would not remain at the same distance from each 
other, and the body would not be rigid. Therefore, the work of F is 
equal in magnitude and opposite in sign to the work of 2F, and their 
sum is zero.
 In computing the work of the external forces acting on a rigid 
body, it is often convenient to determine the work of a couple with-
out considering separately the work of each of the two forces forming 
the couple. Consider the two forces F and 2F forming a couple of 
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561moment M and acting on a rigid body (Fig. 10.5). Any small displace-
ment of the rigid body bringing A and B, respectively, into A¿ and B– 
can be divided into two parts, one in which points A and B undergo 
equal displacements dr1, the other in which A¿ remains fixed while 
B¿ moves into B– through a displacement dr2 of magnitude ds2 5 r du. 
In the first part of the motion, the work of F is equal in magnitude 
and opposite in sign to the work of 2F, and their sum is zero. In 
the second part of the motion, only force F works, and its work is 
dU 5 F ds2 5 Fr du. But the product Fr is equal to the magnitude 
M of the moment of the couple. Thus, the work of a couple of 
moment M acting on a rigid body is

 dU 5 M du (10.2)

where du is the small angle expressed in radians through which the 
body rotates. We again note that work should be expressed in units 
obtained by multiplying units of force by units of length.

*10.3 PRINCIPLE OF VIRTUAL WORK
Consider a particle acted upon by several forces F1, F2, . . . , Fn 
(Fig. 10.6). We can imagine that the particle undergoes a small dis-
placement from A to A¿. This displacement is possible, but it will not 
necessarily take place. The forces may be balanced and the particle 
at rest, or the particle may move under the action of the given forces 
in a direction different from that of AA¿. Since the displacement 
considered does not actually occur, it is called a virtual displacement 
and is denoted by dr. The symbol dr represents a differential of the 
first order; it is used to distinguish the virtual displacement from the 
displacement dr which would take place under actual motion. As you 
will see, virtual displacements can be used to determine whether the 
conditions of equilibrium of a particle are satisfied.
 The work of each of the forces F1, F2, . . . , Fn during the virtual 
displacement dr is called virtual work. The virtual work of all the 
forces acting on the particle of Fig. 10.6 is

 dU 5 F1 ? dr 1 F2 ? dr 1 . . . 1 Fn ? dr
 5 (F1 1 F2 1 . . . 1 Fn) ? dr

or
 dU 5 R ? dr (10.3)

where R is the resultant of the given forces. Thus, the total virtual 
work of the forces F1, F2, . . . , Fn is equal to the virtual work of 
their resultant R.
 The principle of virtual work for a particle states that if a parti-
cle is in equilibrium, the total virtual work of the forces acting on the 
particle is zero for any virtual displacement of the particle. This con-
dition is necessary: if the particle is in equilibrium, the resultant R of 
the forces is zero, and it follows from (10.3) that the total virtual work 
dU is zero. The condition is also sufficient: if the total virtual work 
dU is zero for any virtual displacement, the scalar product R ? dr is 
zero for any dr, and the resultant R must be zero.
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562 Method of Virtual Work  In the case of a rigid body, the principle of virtual work states 
that if a rigid body is in equilibrium, the total virtual work of the 
external forces acting on the rigid body is zero for any virtual displace-
ment of the body. The condition is necessary: if the body is in equi-
librium, all the particles forming the body are in equilibrium and the 
total virtual work of the forces acting on all the particles must be zero; 
but we have seen in the preceding section that the total work of the 
internal forces is zero; the total work of the external forces must there-
fore also be zero. The condition can also be proved to be sufficient.
 The principle of virtual work can be extended to the case of a 
system of connected rigid bodies. If the system remains connected 
during the virtual displacement, only the work of the forces external 
to the system need be considered, since the total work of the internal 
forces at the various connections is zero.

*10.4  APPLICATIONS OF THE PRINCIPLE 
OF VIRTUAL WORK

The principle of virtual work is particularly effective when applied 
to the solution of problems involving machines or mechanisms con-
sisting of several connected rigid bodies. Consider, for instance, the 
toggle vise ACB of Fig. 10.7a, used to compress a wooden block. We 
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wish to determine the force exerted by the vise on the block when 
a given force P is applied at C, assuming that there is no friction. 
Denoting by Q the reaction of the block on the vise, we draw the 
free-body diagram of the vise and consider the virtual displacement 
obtained by giving a positive increment du to the angle u (Fig. 10.7b). 
Choosing a system of coordinate axes with origin at A, we note that 
xB increases while yC decreases. This is indicated in the figure, where 
a positive increment dxB and a negative increment 2dyC are shown. 
The reactions Ax, Ay, and N will do no work during the virtual dis-
placement considered, and we need only compute the work of P and 
Q. Since Q and dxB have opposite senses, the virtual work of Q is 
dUQ 5 2Q dxB. Since P and the increment shown (2dyC) have the 
same sense, the virtual work of P is dUP 5 1P(2dyC) 5 2P dyC. 
The minus signs obtained could have been predicted by simply not-
ing that the forces Q and P are directed opposite to the positive 
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563x and y axes, respectively. Expressing the coordinates xB and yC in 
terms of the angle u and differentiating, we obtain

 xB 5 2l sin u yC 5 l cos u
 dxB 5 2l cos u du  dyC 5 2l sin u du (10.4)

The total virtual work of the forces Q and P is thus

 dU 5 dUQ 1 dUP 5 2Q dxB 2 P dyC

 5 22Ql cos u du 1 Pl sin u du

Making dU 5 0, we obtain

 2Ql cos u du 5 Pl sin u du (10.5)
 Q 5 1

2 P tan u (10.6)

 The superiority of the method of virtual work over the conven-
tional equilibrium equations in the problem considered here is clear: 
by using the method of virtual work, we were able to eliminate all 
unknown reactions, while the equation oMA 5 0 would have elimi-
nated only two of the unknown reactions. This property of the 
method of virtual work can be used in solving many problems involv-
ing machines and mechanisms. If the virtual displacement considered 
is consistent with the constraints imposed by the supports and con-
nections, all reactions and internal forces are eliminated and only the 
work of the loads, applied forces, and friction forces need be 
considered.
 The method of virtual work can also be used to solve problems 
involving completely constrained structures, although the virtual dis-
placements considered will never actually take place. Consider, for 
example, the frame ACB shown in Fig. 10.8a. If point A is kept fixed, 
while B is given a horizontal virtual displacement (Fig. 10.8b), we 
need consider only the work of P and Bx. We can thus determine 
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10.4 Applications of the Principle of
Virtual Work

Photo 10.2 The clamping force of the toggle 
clamp shown can be expressed as a function 
of the force applied to the handle by first 
establishing the geometric relations among the 
members of the clamp and then applying the 
method of virtual work.
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564 Method of Virtual Work the reaction component Bx in the same way as the force Q of the 
preceding example (Fig. 10.7b); we have

Bx 5 21
2 P tan u

Keeping B fixed and giving to A a horizontal virtual displacement, 
we can similarly determine the reaction component Ax. The compo-
nents Ay and By can be determined by rotating the frame ACB as a 
rigid body about B and A, respectively.
 The method of virtual work can also be used to determine the 
configuration of a system in equilibrium under given forces. For 
example, the value of the angle u for which the linkage of Fig. 10.7 
is in equilibrium under two given forces P and Q can be obtained by 
solving Eq. (10.6) for tan u.
 It should be noted, however, that the attractiveness of the 
method of virtual work depends to a large extent upon the existence 
of simple geometric relations between the various virtual displace-
ments involved in the solution of a given problem. When no such 
simple relations exist, it is usually advisable to revert to the conven-
tional method of Chap. 6.

*10.5 REAL MACHINES. MECHANICAL EFFICIENCY
In analyzing the toggle vise in the preceding section, we assumed that 
no friction forces were involved. Thus, the virtual work consisted only 
of the work of the applied force P and of the reaction Q. But the work 
of the reaction Q is equal in magnitude and opposite in sign to the 
work of the force exerted by the vise on the block. Equation (10.5), 
therefore, expresses that the output work 2Ql cos u du is equal to the 
input work Pl sin u du. A machine in which input and output work 
are equal is said to be an “ideal” machine. In a “real” machine, friction 
forces will always do some work, and the output work will be smaller 
than the input work.
 Consider, for example, the toggle vise of Fig. 10.7a, and assume 
now that a friction force F develops between the sliding block B and 
the horizontal plane (Fig. 10.9). Using the conventional methods of 
statics and summing moments about A, we find N 5 P/2. Denoting 
by m the coefficient of friction between block B and the horizontal 
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565plane, we have F 5 mN 5 mP/2. Recalling formulas (10.4), we find 
that the total virtual work of the forces Q, P, and F during the virtual 
displacement shown in Fig. 10.9 is

 dU 5 2Q dxB 2 P dyC 2 F dxB
 5 22Ql cos u du 1 Pl sin u du 2 mPl cos u du

Making dU 5 0, we obtain

 2Ql cos u du 5 Pl sin u du 2 mPl cos u du (10.7)

which expresses that the output work is equal to the input work 
minus the work of the friction force. Solving for Q, we have

 Q 5 1
2 P(tan u 2 m) (10.8)

We note that Q 5 0 when tan u 5 m, that is, when u is equal to the 
angle of friction f, and that Q , 0 when u , f. The toggle vise may 
thus be used only for values of u larger than the angle of friction.
 The mechanical efficiency of a machine is defined as the ratio

 
h 5

output work

input work  
(10.9)

Clearly, the mechanical efficiency of an ideal machine is h 5 1, since 
input and output work are then equal, while the mechanical effi-
ciency of a real machine will always be less than 1.
 In the case of the toggle vise we have just analyzed, we write

h 5
output work

input work
5

2Ql cos u du

Pl sin u du

Substituting from (10.8) for Q, we obtain

 
h 5

P( tan u 2 m) l cos u du
Pl sin u du

5 1 2 m cot u
 

(10.10)

We check that in the absence of friction forces, we would have m 5 0 
and h 5 1. In the general case, when m is different from zero, the 
efficiency h becomes zero for m cot u 5 1, that is, for tan u 5 m, or 
u 5 tan21 m 5 f. We note again that the toggle vise can be used 
only for values of u larger than the angle of friction f.

10.5 Real Machines. Mechanical Effi ciency
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SAMPLE PROBLEM 10.1

Using the method of virtual work, determine the magnitude of the couple 
M required to maintain the equilibrium of the mechanism shown.

SAMPLE PROBLEM 10.2

Determine the expressions for u and for the tension in the spring which 
correspond to the equilibrium position of the mechanism. The unstretched 
length of the spring is h, and the constant of the spring is k. Neglect the 
weight of the mechanism.
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SOLUTION

Choosing a coordinate system with origin at E, we write

xD 5 3l cos u    dxD 5 23l sin u du

Principle of Virtual Work. Since the reactions A, Ex, and Ey will do no 
work during the virtual displacement, the total virtual work done by M and 
P must be zero. Noting that P acts in the positive x direction and M acts 
in the positive u direction, we write

dU 5 0: 1M du 1 P dxD 5 0
 1M du 1 P(23l sin u du) 5 0

M 5 3Pl sin u ◀

SOLUTION

With the coordinate system shown

 yB 5 l sin u yC 5 2l sin u
 dyB 5 l cos u du  dyC 5 2l cos u du

The elongation of the spring is s 5 yC 2 h 5 2l sin u 2 h

The magnitude of the force exerted at C by the spring is

 F 5 ks 5 k(2l sin u 2 h) (1)

Principle of Virtual Work. Since the reactions Ax, Ay, and C do no work, 
the total virtual work done by P and F must be zero.

dU 5 0:   P dyB 2 F dyC 5 0
 P(l cos u du) 2 k(2l sin u 2 h)(2l cos u du) 5 0

 sin u 5
P 1 2kh

4kl
 ◀

Substituting this expression into (1), we obtain F 5 1
2P ◀
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567

SAMPLE PROBLEM 10.3

A hydraulic-lift table is used to raise a 1000-kg crate. It consists 
of a platform and of two identical linkages on which hydraulic 
cylinders exert equal forces. (Only one linkage and one cylinder 
are shown.) Members EDB and CG are each of length 2a, and 
member AD is pinned to the midpoint of EDB. If the crate is 
placed on the table, so that half of its weight is supported by the 
system shown, determine the force exerted by each cylinder in 
raising the crate for u 5 60°, a 5 0.70 m, and L 5 3.20 m. This 
mechanism has been previously considered in Sample Prob. 6.7.
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SOLUTION

The machine considered consists of the platform and of the 
linkage, with an input force FDH exerted by the cylinder and an 
output force equal and opposite to 1

2W.

Principle of Virtual Work. We first observe that the reactions 
at E and G do no work. Denoting by y the elevation of the 
platform above the base, and by s the length DH of the cylinder-
and-piston assembly, we write

dU 5 0: 21
2W dy 1 FDH ds 5 0 (1)

The vertical displacement dy of the platform is expressed in 
terms of the angular displacement du of EDB as follows:

 y 5 (EB) sin u 5 2a sin u
 dy 5 2a cos u du

To express ds similarly in terms of du, we first note that by the 
law of cosines,

s2 5 a2 1 L2 2 2aL cos u
Differentiating,

2s ds 5 22aL(2sin u) du

  
ds 5

aL sin u
s

 du

Substituting for dy and ds into (1), we write

(21
2 
W)2a cos u du 1 FDH 

aL sin u
s

 du 5 0

FDH 5 W  

s
L

  cot u

With the given numerical data, we have

 W 5 mg 5 (1000 kg)(9.81 m/s2) 5 9810 N 5 9.81 kN
 s2 5 a2 1 L2 2 2aL cos u
 5 (0.70)2 1 (3.20)2 2 2(0.70)(3.20) cos 60° 5 8.49
 s 5 2.91 m

FDH 5 W
s
L

 cot u 5 (9.81 kN)
2.91 m
3.20 m

 cot 60°

FDH 5 5.15 kN ◀
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568

SOLVING PROBLEMS
ON YOUR OWN

In this lesson you learned to use the method of virtual work, which is a different 
way of solving problems involving the equilibrium of rigid bodies.

The work done by a force during a displacement of its point of application or by 
a couple during a rotation is found by using Eqs. (10.1) and (10.2), respectively:

 dU 5 F ds cos a (10.1)
 dU 5 M du (10.2)

Principle of virtual work. In its more general and more useful form, this principle 
can be stated as follows: If a system of connected rigid bodies is in equilibrium, 
the total virtual work of the external forces applied to the system is zero for any 
virtual displacement of the system.

As you apply the principle of virtual work, keep in mind the following:

1. Virtual displacement. A machine or mechanism in equilibrium has no ten-
dency to move. However, we can cause, or imagine, a small displacement. Since 
it does not actually occur, such a displacement is called a virtual displacement.

2. Virtual work. The work done by a force or couple during a virtual displace-
ment is called virtual work.

3. You need consider only the forces which do work during the virtual 
displacement.

4. Forces which do no work during a virtual displacement that is consistent with 
the constraints imposed on the system are:
 a. Reactions at supports
 b. Internal forces at connections
 c. Forces exerted by inextensible cords and cables
None of these forces need be considered when you use the method of virtual work.

5. Be sure to express the various virtual displacements involved in your com-
putations in terms of a single virtual displacement. This is done in each of the 
three preceding sample problems, where the virtual displacements are all expressed 
in terms of du.

6. Remember that the method of virtual work is effective only in those cases 
where the geometry of the system makes it relatively easy to relate the displace-
ments involved.
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PROBLEMS

569

 10.1 Determine the vertical force P that must be applied at C to main-
tain the equilibrium of the linkage.

 10.2 Determine the horizontal force P that must be applied at A to 
maintain the equilibrium of the linkage.

10 in.

5 in.

4 in. 6 in.

9 in.

6 in.

A

B
C

D E

F

G

30 lb

80 lb

180 lb·in.

40 lb

Fig. P10.2 and P10.4

60 N

100 N

50 N 40 N

0.3 m 0.3 m 0.3 m

A

D

B
C

G
E F

Fig. P10.1 and P10.3

P

Fig. P10.5

100 lb

A B C

D

E

F

P

8 in. 8 in. 8 in.

9 in.

150 lb

Fig. P10.6

 10.3 and 10.4 Determine the couple M that must be applied to 
member ABC to maintain the equilibrium of the linkage.

 10.5 Knowing that the maximum friction force exerted by the bottle on 
the cork is 60 lb, determine (a) the force P that must be applied 
to the corkscrew to open the bottle, (b) the maximum force exerted 
by the base of the corkscrew on the top of the bottle.

 10.6 The two-bar linkage shown is supported by a pin and bracket at 
B and a collar at D that slides freely on a vertical rod. Determine 
the force P required to maintain the equilibrium of the linkage.
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570 Method of Virtual Work  10.7 A spring of constant 15 kN/m connects points C and F of the link-
age shown. Neglecting the weight of the spring and linkage, deter-
mine the force in the spring and the vertical motion of point G 
when a vertical downward 120-N force is applied (a) at point C, 
(b) at points C and H.

 10.8 A spring of constant 15 kN/m connects points C and F of the link-
age shown. Neglecting the weight of the spring and linkage, deter-
mine the force in the spring and the vertical motion of point G 
when a vertical downward 120-N force is applied (a) at point E, 
(b) at points E and F.

 10.9 Knowing that the line of action of the force Q passes through point 
C, derive an expression for the magnitude of Q required to main-
tain equilibrium.
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Fig. P10.7 and P10.8
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Fig. P10.11
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P

q

a
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Fig. P10.13

 10.10 Solve Prob. 10.9 assuming that the force P applied at point A acts 
horizontally to the left.

 10.11 The mechanism shown is acted upon by the force P; derive an 
expression for the magnitude of the force Q required to maintain 
equilibrium.

 10.12 and 10.13 The slender rod AB is attached to a collar A and 
rests on a small wheel at C. Neglecting the radius of the wheel 
and the effect of friction, derive an expression for the magnitude 
of the force Q required to maintain the equilibrium of the rod.
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571Problems 10.14 Derive an expression for the magnitude of the force Q required 
to maintain the equilibrium of the mechanism shown.

 10.15 A uniform rod AB of length l and weight W is suspended from 
two cords AC and BC of equal length. Derive an expression for 
the magnitude of the couple M required to maintain equilibrium 
of the rod in the position shown. 90°

A

B
C

P

P

q qQ D

90°
l

l

l

Fig. P10.14

W
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B

q
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Fig. P10.15
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Fig. P10.16
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a

a

a
F

M

P

P

a

Fig. P10.17

 10.16 and 10.17 Derive an expression for the magnitude of the couple 
M required to maintain the equilibrium of the linkage shown.

 10.18 The pin at C is attached to member BCD and can slide along a slot 
cut in the fixed plate shown. Neglecting the effect of friction, derive 
an expression for the magnitude of the couple M required to main-
tain equilibrium when the force P that acts at D is directed (a) as 
shown, (b) vertically downward, (c) horizontally to the right.

P
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q
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q
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Fig. P10.18
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572 Method of Virtual Work  10.19 A 4-kN force P is applied as shown to the piston of the engine 
system. Knowing that AB 5 50 mm and BC 5 200 mm, determine 
the couple M required to maintain the equilibrium of the system 
when (a) u 5 30°, (b) u 5 150°.

 10.20 A couple M of magnitude 100 N ? m is applied as shown to the 
crank of the engine system. Knowing that AB 5 50 mm and 
BC 5 200 mm, determine the force P required to maintain the 
equilibrium of the system when (a) u 5 60°, (b) u 5 120°.

 10.21 For the linkage shown, determine the couple M required for equi-
librium when l 5 1.8 ft, Q 5 40 lb, and u 5 65°.

 10.22 For the linkage shown, determine the force Q required for equi-
librium when l 5 18 in., M 5 600 lb ? in., and u 5 70°.

 10.23 Determine the value of u corresponding to the equilibrium position 
of the mechanism of Prob. 10.11 when P 5 45 lb and Q 5 160 lb.

 10.24 Determine the value of u corresponding to the equilibrium position 
of the mechanism of Prob. 10.9 when P 5 80 N and Q 5 100 N.

 10.25 Rod AB is attached to a block at A that can slide freely in the 
vertical slot shown. Neglecting the effect of friction and the 
weights of the rods, determine the value of u corresponding to 
equilibrium.
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573Problems 10.26 Solve Prob. 10.25 assuming that the 800-N force is replaced by a 
24-N ? m clockwise couple applied at D.

 10.27 Determine the value of u corresponding to the equilibrium  position 
of the rod of Prob. 10.12 when l 5 30 in., a 5 5 in., P 5 25 lb, 
and Q 5 40 lb.

 10.28 Determine the values of u corresponding to the equilibrium posi-
tion of the rod of Prob. 10.13 when l 5 600 mm, a 5 100 mm, 
P 5 50 N, and Q 5 90 N.

 10.29 Two rods AC and CE are connected by a pin at C and by a spring 
AE. The constant of the spring is k, and the spring is unstretched 
when u 5 30°. For the loading shown, derive an equation in P, u, 
l, and k that must be satisfied when the system is in equilibrium.

 10.30 Two rods AC and CE are connected by a pin at C and by a spring 
AE. The constant of the spring is 1.5 lb/in., and the spring is 
unstretched when u 5 30°. Knowing that l 5 10 in. and neglecting 
the weight of the rods, determine the value of u corresponding to 
equilibrium when P 5 40 lb.

 10.31 Solve Prob. 10.30 assuming that force P is moved to C and acts 
vertically downward.

 10.32 Rod ABC is attached to blocks A and B that can move freely in 
the guides shown. The constant of the spring attached at A is 
k 5 3 kN/m, and the spring is unstretched when the rod is  vertical. 
For the loading shown, determine the value of u corresponding to 
equilibrium.
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574 Method of Virtual Work  10.33 A load W of magnitude 600 N is applied to the linkage at B. The 
constant of the spring is k 5 2.5 kN/m, and the spring is unstretched 
when AB and BC are horizontal. Neglecting the weight of the 
linkage and knowing that l 5 300 mm, determine the value of 
u corresponding to equilibrium.

 10.34 A vertical load W is applied to the linkage at B. The constant of 
the spring is k, and the spring is unstretched when AB and BC 
are horizontal. Neglecting the weight of the linkage, derive an 
equation in u, W, l, and k that must be satisfied when the linkage 
is in equilibrium.

 10.35 and 10.36 Knowing that the constant of spring CD is k and 
that the spring is unstretched when rod ABC is horizontal, deter-
mine the value of u corresponding to equilibrium for the data 
indicated.
 10.35 P 5 300 N, l 5 400 mm, k 5 5 kN/m.
 10.36 P 5 75 lb, l 5 15 in., k 5 20 lb/in.

 10.37 A load W of magnitude 72 lb is applied to the mechanism at C. 
Neglecting the weight of the mechanism, determine the value of 
u corresponding to equilibrium. The constant of the spring is 
k 5 20 lb/in., and the spring is unstretched when u 5 0.

 10.38 A force P of magnitude 240 N is applied to end E of cable CDE, 
which passes under pulley D and is attached to the mechanism at 
C. Neglecting the weight of the mechanism and the radius of the 
pulley, determine the value of u corresponding to equilibrium. The 
constant of the spring is k 5 4 kN/m, and the spring is unstretched 
when u 5 90°.
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575Problems 10.39 The lever AB is attached to the horizontal shaft BC that passes 
through a bearing and is welded to a fixed support at C. The tor-
sional spring constant of the shaft BC is K; that is, a couple of mag-
nitude K is required to rotate end B through 1 rad. Knowing that 
the shaft is untwisted when AB is horizontal, determine the value 
of u corresponding to the position of equilibrium when P 5 100 N, 
l 5 250 mm, and K 5 12.5 N ? m/rad.

 10.40 Solve Prob. 10.39 assuming that P 5 350 N, l 5 250 mm, and 
K 5 12.5 N ? m/rad. Obtain answers in each of the following 
quadrants: 0 , u , 90°, 270° , u , 360°, 360° , u , 450°.

 10.41 The position of boom ABC is controlled by the hydraulic cylinder 
BD. For the loading shown, determine the force exerted by the 
hydraulic cylinder on pin B when u 5 65°.
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A B
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Fig. P10.39
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90°

10 kN

1.5 m
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Fig. P10.43 and P10.44

 10.42 The position of boom ABC is controlled by the hydraulic cylin-
der  BD. For the loading shown, (a) express the force exerted by 
the hydraulic cylinder on pin B as a function of the length BD, 
(b) determine the smallest possible value of the angle u if the 
maximum force that the cylinder can exert on pin B is 2.5 kips.

 10.43 The position of member ABC is controlled by the hydraulic cylin-
der CD. For the loading shown, determine the force exerted by 
the hydraulic cylinder on pin C when u 5 55°.

 10.44 The position of member ABC is controlled by the hydraulic cylin-
der CD. Determine the angle u knowing that the hydraulic cylinder 
exerts a 15-kN force on pin C.
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576 Method of Virtual Work  10.45 The telescoping arm ABC is used to provide an elevated platform 
for construction workers. The workers and the platform together 
weigh 500 lb and their combined center of gravity is located directly 
above C. For the position when u 5 20°,  determine the force 
exerted on pin B by the single hydraulic  cylinder BD.

AB
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D

15 ft

7.2 ft

2.7 ft

1.5 ft

q

Fig. P10.45

Q
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l

l

l

P

D

C

B

q q

A

Fig. P10.48 and P10.49

 10.46 Solve Prob. 10.45 assuming that the workers are lowered to a point 
near the ground so that u 5 220°.

 10.47 A block of weight W is pulled up a plane forming an angle a with 
the horizontal by a force P directed along the plane. If m is the 
coefficient of friction between the block and the plane, derive an 
expression for the mechanical efficiency of the system. Show that 
the mechanical efficiency cannot exceed 1

2 if the block is to remain 
in place when the force P is removed.

 10.48 Denoting by ms the coefficient of static friction between the block 
attached to rod ACE and the horizontal surface, derive expressions 
in terms of P, ms, and u for the largest and smallest magnitude of 
the force Q for which equilibrium is maintained.

 10.49 Knowing that the coefficient of static friction between the block 
attached to rod ACE and the horizontal surface is 0.15, determine 
the magnitude of the largest and smallest force Q for which equi-
librium is maintained when u 5 30°, l 5 0.2 m, and P 5 40 N.
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577Problems 10.50 Denoting by ms the coefficient of static friction between collar C 
and the vertical rod, derive an expression for the magnitude of the 
largest couple M for which equilibrium is maintained in the posi-
tion shown. Explain what happens if ms $ tan u.

 10.51 Knowing that the coefficient of static friction between collar C 
and the vertical rod is 0.40, determine the magnitude of the 
largest and smallest couple M for which equilibrium is main-
tained in the position shown, when u 5 35°, l 5 600 mm, and 
P 5 300 N.

 10.52 Derive an expression for the mechanical efficiency of the jack dis-
cussed in Sec. 8.6. Show that if the jack is to be self-locking, the 
mechanical efficiency cannot exceed 1

2.

 10.53 Using the method of virtual work, determine the reaction at E. P

q
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M

Fig. P10.50 and P10.512 kN 3 kN 5 kN

0.9 m

A
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C D E F G H

0.5 m 0.9 m 1.2 m

1.5 m
1.2 m

1.8 m

Fig. P10.53 and P10.54

 10.54 Using the method of virtual work, determine separately the force 
and couple representing the reaction at H.

 10.55 Referring to Prob. 10.43 and using the value found for the force 
exerted by the hydraulic cylinder CD, determine the change in the 
length of CD required to raise the 10-kN load by 15 mm.

 10.56 Referring to Prob. 10.45 and using the value found for the force 
exerted by the hydraulic cylinder BD, determine the change in 
the length of BD required to raise the platform attached at C 
by 2.5 in.

 10.57 Determine the vertical movement of joint D if the length of member 
BF is increased by 1.5 in. (Hint: Apply a vertical load at joint D, and, 
using the methods of Chap. 6, compute the force exerted by mem-
ber BF on joints B and F. Then apply the method of virtual work 
for a virtual displacement resulting in the specified increase in 
length of member BF. This method should be used only for small 
changes in the lengths of members.)

A B C D

E
F G H

30 ft

40 ft 40 ft 40 ft 40 ft

Fig. P10.57 and P10.58

 10.58 Determine the horizontal movement of joint D if the length of 
member BF is increased by 1.5 in. (See the hint for Prob. 10.57.)

bee29400_ch10_556-599.indd Page 577  11/28/08  9:11:50 PM user-s172bee29400_ch10_556-599.indd Page 577  11/28/08  9:11:50 PM user-s172 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



*10.6  WORK OF A FORCE DURING A FINITE 
DISPLACEMENT

Consider a force F acting on a particle. The work of F corresponding 
to an infinitesimal displacement dr of the particle was defined in 
Sec. 10.2 as
 dU 5 F ? dr (10.1)

The work of F corresponding to a finite displacement of the particle 
from A1 to A2 (Fig. 10.10a) is denoted by U1y2 and is obtained by 
integrating (10.1) along the curve described by the particle:

 
U1y2 5 #

A2

A1

 
F ? dr

 
(10.11)

Using the alternative expression

 dU 5 F ds cos a (10.19)

given in Sec. 10.2 for the elementary work dU, we can also express 
the work U1y2 as

 
U1y2 5 #

s2

s1

 
(F cos a) ds

 
(10.119)

578 Method of Virtual Work

where the variable of integration s measures the distance along the path 
traveled by the particle. The work U1y2 is represented by the area 
under the curve obtained by plotting F cos a against s (Fig. 10.10b). 
In the case of a force F of constant magnitude acting in the direction 
of motion, formula (10.119) yields U1y2 5 F(s2 2 s1).
 Recalling from Sec. 10.2 that the work of a couple of moment 
M during an infinitesimal rotation du of a rigid body is

 dU 5 M du (10.2)

we express as follows the work of the couple during a finite rotation 
of the body:

 
U1y2 5 #

u2

u1

 
M  du

 
(10.12)

In the case of a constant couple, formula (10.12) yields

U1y2 5 M(u2 2 u1)

s

(b)

O s1 s2

F cos a

(a)O

ds

A

A1

s1

s2

A2

a

Fs

Fig. 10.10
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579Work of a Weight. It was stated in Sec. 10.2 that the work of 
the weight W of a body during an infinitesimal displacement of the 
body is equal to the product of W and the vertical displacement of 
the center of gravity of the body. With the y axis pointing upward, 
the work of W during a finite displacement of the body (Fig. 10.11) 
is obtained by writing

dU 5 2W dy

Integrating from A1 to A2, we have

 
U1y2 5 2#

y2

y1

 
W dy 5 Wy1 2 Wy2 

(10.13)

or
 U1y2 5 2W(y2 2 y1) 5 2W ¢y (10.139)

where Dy is the vertical displacement from A1 to A2. The work of 
the weight W is thus equal to the product of W and the vertical dis-
placement of the center of gravity of the body. The work is positive 
when Dy , 0, that is, when the body moves down.

Work of the Force Exerted by a Spring. Consider a body A 
attached to a fixed point B by a spring; it is assumed that the spring 
is undeformed when the body is at A0 (Fig. 10.12a). Experimental 
evidence shows that the magnitude of the force F exerted by the 
spring on a body A is proportional to the deflection x of the spring 
measured from the position A0. We have

 F 5 kx (10.14)

where k is the spring constant, expressed in N/m if SI units are used 
and expressed in lb/ft or lb/in. if U.S. customary units are used. The 
work of the force F exerted by the spring during a finite displacement 
of the body from A1(x 5 x1) to A2(x 5 x2) is obtained by writing

dU 5 2F dx 5 2kx dx

 
U1y2 5 2#

x2

x1

 
kx dx 5 1

2kx2
1 2 1

2kx2
2 

(10.15)

Care should be taken to express k and x in consistent units. For  example, 
if U.S. customary units are used, k should be expressed in lb/ft and x 
expressed in feet, or k in lb/in. and x in inches; in the first case, the work 
is obtained in ft ? lb; in the second case, in in ? lb. We note that the work of 
the force F exerted by the spring on the body is positive when x2 , x1, 
that is, when the spring is returning to its undeformed position.
 Since Eq. (10.14) is the equation of a straight line of slope k 
passing through the origin, the work U1y2 of F during the displace-
ment from A1 to A2 can be obtained by evaluating the area of the 
trapezoid shown in Fig. 10.12b. This is done by computing the values 
F1 and F2 and multiplying the base Dx of the trapezoid by its mean 
height 1

2(F1 1 F2). Since the work of the force F exerted by the spring 
is positive for a negative value of Dx, we write

 U1y2 5 21
2(F1 1 F2) Dx (10.16)

Formula (10.16) is usually more convenient to use than (10.15) and 
affords fewer chances of confusing the units involved.
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580 Method of Virtual Work *10.7 POTENTIAL ENERGY
Considering again the body of Fig. 10.11, we note from Eq. (10.13) 
that the work of the weight W during a finite displacement is obtained 
by subtracting the value of the function Wy corresponding to the 
second position of the body from its value corresponding to the first 
position. The work of W is thus independent of the actual path fol-
lowed; it depends only upon the initial and final values of the func-
tion Wy. This function is called the potential energy of the body with 
respect to the force of gravity W and is denoted by Vg. We write

 U1y2 5 (Vg)1 2 (Vg)2  with Vg 5 Wy (10.17)

We note that if (Vg)2 . (Vg)1, that is, if the potential energy increases 
during the displacement (as in the case considered here), the work 
U1y2 is negative. If, on the other hand, the work of W is positive, the 
potential energy decreases. Therefore, the potential energy Vg of the 
body provides a measure of the work which can be done by its weight W. 
Since only the change in potential energy, and not the actual value of 
Vg, is involved in formula (10.17), an arbitrary constant can be added 
to the expression obtained for Vg. In other words, the level from which 
the elevation y is measured can be chosen arbitrarily. Note that  potential 
energy is expressed in the same units as work, i.e., in joules (J) if SI units 
are used† and in ft ? lb or in ? lb if U.S. customary units are used.
 Considering now the body of Fig. 10.12a, we note from Eq. 
(10.15) that the work of the elastic force F is obtained by subtracting 
the value of the function 1

2kx2 corresponding to the second position 
of the body from its value corresponding to the first position. This 
function is denoted by Ve and is called the potential energy of the 
body with respect to the elastic force F. We write

 U1y2 5 (Ve)1 2 (Ve)2  with Ve 5 1
2kx2 (10.18)

and observe that during the displacement considered, the work of 
the force F exerted by the spring on the body is negative and the 
potential energy Ve increases. We should note that the expression 
obtained for Ve is valid only if the deflection of the spring is mea-
sured from its undeformed position.
 The concept of potential energy can be used when forces other 
than gravity forces and elastic forces are involved. It remains valid 
as long as the elementary work dU of the force considered is an exact 
differential. It is then possible to find a function V, called potential 
energy, such that

 dU 5 2dV (10.19)

Integrating (10.19) over a finite displacement, we obtain the general 
formula
 U1y2 5 V1 2 V2 (10.20)

which expresses that the work of the force is independent of the path 
followed and is equal to minus the change in potential energy. A force 
which satisfies Eq. (10.20) is said to be a conservative force.‡

Fig. 10.11 (repeated )

A

A1

A2

y1

y2

dy

y

W

Spring undeformed

A0

A

B

B

x1

x2

x

F

A2

B

A1

Fig. 10.12a (repeated )

†See footnote, page 559.

‡A detailed discussion of conservative forces is given in Sec. 13.7 of Dynamics.
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581*10.8 POTENTIAL ENERGY AND EQUILIBRIUM
The application of the principle of virtual work is considerably simpli-
fied when the potential energy of a system is known. In the case of a 
virtual displacement, formula (10.19) becomes dU 5 2dV. Moreover, 
if the position of the system is defined by a single independent variable 
u, we can write dV 5 (dV/du) du. Since du must be different from zero, 
the condition dU 5 0 for the equilibrium of the system becomes

 
dV
du

5 0
 

(10.21)

In terms of potential energy, therefore, the principle of virtual work 
states that if a system is in equilibrium, the derivative of its total 
potential energy is zero. If the position of the system depends upon 
several independent variables (the system is then said to possess 
several degrees of freedom), the partial derivatives of V with respect 
to each of the independent variables must be zero.
 Consider, for example, a structure made of two members AC 
and CB and carrying a load W at C. The structure is supported by a 
pin at A and a roller at B, and a spring BD connects B to a fixed point 
D (Fig. 10.13a). The constant of the spring is k, and it is assumed 
that the natural length of the spring is equal to AD and thus that the 
spring is undeformed when B coincides with A. Neglecting the  friction 
forces and the weight of the members, we find that the only forces 
which work during a displacement of the structure are the weight W 
and the force F exerted by the spring at point B (Fig. 10.13b). The 
total potential energy of the system will thus be obtained by adding 
the potential energy Vg corresponding to the gravity force W and the 
potential energy Ve corresponding to the elastic force F.
 Choosing a coordinate system with origin at A and noting that 
the deflection of the spring, measured from its undeformed position, 
is AB 5 xB, we write

Ve 5 1
2kx2

B  Vg 5 WyC

Expressing the coordinates xB and yC in terms of the angle u, we have

 xB 5 2l sin u    yC 5 l cos u
 Ve 5 1

2k(2l sin u)2  Vg 5 W(l cos u)
 V 5 Ve 1 Vg 5 2kl2 sin2 u 1 Wl cos u (10.22)

The positions of equilibrium of the system are obtained by equating 
to zero the derivative of the potential energy V. We write

dV
du

5 4kl2 sin u cos u 2 Wl sin u 5 0

or, factoring l sin u,

dV
du

5 l sin u(4kl cos u 2 W) 5 0

There are therefore two positions of equilibrium, corresponding to 
the values u 5 0 and u 5 cos21 (W/4kl), respectively.†

10.8 Potential Energy and Equilibrium

†The second position does not exist if W . 4kl.

Fig. 10.13

q

q
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A B

C

W

AD B

xBAy B

A x

l l

yC
W

(a)

(b)

F = kxB
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582 Method of Virtual Work *10.9 STABILITY OF EQUILIBRIUM
Consider the three uniform rods of length 2a and weight W shown 
in Fig. 10.14. While each rod is in equilibrium, there is an important 
difference between the three cases considered. Suppose that each 
rod is slightly disturbed from its position of equilibrium and then 
released: rod a will move back toward its original position, rod b will 
keep moving away from its original position, and rod c will remain 
in its new position. In case a, the equilibrium of the rod is said to 
be stable; in case b, it is said to be unstable; and, in case c, it is said 
to be neutral.

q

(a) Stable equilibrium

A

B

W

2a

y

q

q

(b) Unstable equilibrium

A
W

2a

a

y

(c) Neutral equilibrium

AB

B

C

y = a

Fig. 10.14

 Recalling from Sec. 10.7 that the potential energy Vg with 
respect to gravity is equal to Wy, where y is the elevation of the 
point of application of W measured from an arbitrary level, we 
observe that the potential energy of rod a is minimum in the posi-
tion of equilibrium considered, that the potential energy of rod b 
is maximum, and that the potential energy of rod c is constant. 
Equilibrium is thus stable, unstable, or neutral according to 
whether the potential energy is minimum, maximum, or constant 
(Fig. 10.15).
 That the result obtained is quite general can be seen as fol-
lows: We first observe that a force always tends to do positive work 
and thus to decrease the potential energy of the system on which 
it is applied. Therefore, when a system is disturbed from its posi-
tion of equilibrium, the forces acting on the system will tend to 
bring it back to its original position if V is minimum (Fig. 10.15a) 
and to move it farther away if V is maximum (Fig. 10.15b). If V is 
constant (Fig. 10.15c), the forces will not tend to move the system 
either way.
 Recalling from calculus that a function is minimum or maxi-
mum according to whether its second derivative is positive or nega-
tive, we can summarize the conditions for the equilibrium of a system 
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583with one degree of freedom (i.e., a system the position of which is 
defined by a single independent variable u) as follows:

 
dV
du

5 0   d2V

du2 . 0: stable equilibrium

 
 
dV
du

5 0   d2V

du2 , 0: unstable equilibrium
 

(10.23)

10.9  Stability of Equilibrium

If both the first and the second derivatives of V are zero, it is neces-
sary to examine derivatives of a higher order to determine whether 
the equilibrium is stable, unstable, or neutral. The equilibrium will 
be neutral if all derivatives are zero, since the potential energy V is 
then a constant. The equilibrium will be stable if the first derivative 
found to be different from zero is of even order and positive. In all 
other cases the equilibrium will be unstable.
 If the system considered possesses several degrees of freedom, 
the potential energy V depends upon several variables, and it is thus 
necessary to apply the theory of functions of several variables to 
determine whether V is minimum. It can be verified that a system 
with 2 degrees of freedom will be stable, and the corresponding 
potential energy V(u1, u2) will be minimum, if the following relations 
are satisfied simultaneously:

0V
0u1

5
0V
0u2

5 0

 
a 02V

0u1 0u2
b2

2
02V

0u2
1

 
02V

0u2
2

, 0
 

(10.24)

02V

0u2
1

. 0   or   02V

0u2
2

. 0

(a) Stable equilibrium
q

(b) Unstable equilibrium

V

(c) Neutral equilibrium
q

V

q

V

Fig. 10.15
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584

SAMPLE PROBLEM 10.4

A 10-kg block is attached to the rim of a 300-mm-radius disk as shown. 
Knowing that spring BC is unstretched when u 5 0, determine the position 
or positions of equilibrium, and state in each case whether the equilibrium 
is stable, unstable, or neutral.

s

q

A

O

y

y

x

b

a

Undeformed
position

W = mg

F = ks

SOLUTION

Potential Energy. Denoting by s the deflection of the spring from its unde-
formed position and placing the origin of coordinates at O, we obtain

Ve 5 1
2 
ks2   Vg 5 Wy 5 mgy

Measuring u in radians, we have

s 5 au  y 5 b cos u

Substituting for s and y in the expressions for Ve and Vg, we write

Ve 5 1
2ka2u2   Vg 5 mgb cos u

V 5 Ve 1 Vg 5 1
2ka2u2 1 mgb cos u

Positions of Equilibrium. Setting dV/du 5 0, we write

dV
du

5 ka2u 2 mgb sin u 5 0

 sin u 5
ka2

mgb
 u

Substituting a 5 0.08 m, b 5 0.3 m, k 5 4 kN/m, and m 5 10 kg, we obtain

  sin u 5
(4 kN/m)(0.08 m)2

(10 kg)(9.81 m/s2)(0.3 m)
 u

 sin u 5 0.8699 u

where u is expressed in radians. Solving by trial and error for u, we find

 u 5 0 and u 5 0.902 rad
u 5 0  and  u 5 51.7° ◀

Stability of Equilibrium. The second derivative of the potential energy V 
with respect to u is

 
d2V

du2 5 ka2 2 mgb cos u

 5 (4 kN/m)(0.08 m)2 2 (10 kg)(9.81 m/s2)(0.3 m) cos u
 5 25.6 2 29.43 cos u

For u 5 0:  
d2V

du2 5 25.6 2 29.43 cos 0° 5 23.83 , 0

The equilibrium is unstable for u 5 0 ◀

For u 5 51.7°:  d2V

du2 5 25.6 2 29.43 cos 51.7° 5 17.36 . 0

The equilibrium is stable for u 5 51.7° ◀

q

10 kg
A

B O

C

a = 80 mm

b = 300 mm

k = 4 kN/m
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585

SOLVING PROBLEMS
ON YOUR OWN

In this lesson we defined the work of a force during a finite displacement and 
the potential energy of a rigid body or a system of rigid bodies. You learned to 

use the concept of potential energy to determine the equilibrium position of a 
rigid body or a system of rigid bodies.

1. The potential energy V of a system is the sum of the potential energies 
associated with the various forces acting on the system that do work as the system 
moves. In the problems of this lesson you will determine the following:
 a. Potential energy of a weight. This is the potential energy due to gravity, 
Vg 5 Wy, where y is the elevation of the weight W measured from some arbitrary 
reference level. Note that the potential energy Vg may be used with any vertical 
force P of constant magnitude directed downward; we write Vg 5 Py.
 b. Potential energy of a spring. This is the potential energy due to the elastic 
force exerted by a spring, Ve 5 1

2kx2, where k is the constant of the spring and x
is the deformation of the spring measured from its unstretched position.

Reactions at fixed supports, internal forces at connections, forces exerted by inex-
tensible cords and cables, and other forces which do no work do not contribute 
to the potential energy of the system.

2. Express all distances and angles in terms of a single variable, such as an 
angle u, when computing the potential energy V of a system. This is necessary, 
since the determination of the equilibrium position of the system requires the 
computation of the derivative dV/du.

3. When a system is in equilibrium, the first derivative of its potential energy 
is zero. Therefore:
 a. To determine a position of equilibrium of a system, once its potential 
energy V has been expressed in terms of the single variable u, compute its deriva-
tive and solve the equation dV/du 5 0 for u.
 b. To determine the force or couple required to maintain a system in a 
given position of equilibrium, substitute the known value of u in the equation 
dV/du 5 0 and solve this equation for the desired force or couple.

4. Stability of equilibrium. The following rules generally apply:
 a. Stable equilibrium occurs when the potential energy of the system is mini-
mum, that is, when dV/du 5 0 and d2V/du2 . 0 (Figs. 10.14a and 10.15a).
 b. Unstable equilibrium occurs when the potential energy of the system is maxi-
mum, that is, when dV/du 5 0 and d2V/du2 , 0 (Figs. 10.14b and 10.15b).
 c. Neutral equilibrium occurs when the potential energy of the system is con-
stant; dV/du, dV2/du2, and all the successive derivatives of V are then equal to zero 
(Figs. 10.14c and 10.15c).

See page 583 for a discussion of the case when dV/du, dV2/du2 but not all of the 
successive derivatives of V are equal to zero.
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PROBLEMS

586

10.59 Using the method of Sec. 10.8, solve Prob. 10.29.

10.60 Using the method of Sec. 10.8, solve Prob. 10.30.

10.61 Using the method of Sec. 10.8, solve Prob. 10.33.

10.62 Using the method of Sec. 10.8, solve Prob. 10.34.

10.63 Using the method of Sec. 10.8, solve Prob. 10.35.

10.64 Using the method of Sec. 10.8, solve Prob. 10.36.

10.65 Using the method of Sec. 10.8, solve Prob. 10.31.

10.66 Using the method of Sec. 10.8, solve Prob. 10.38.

10.67 Show that the equilibrium is neutral in Prob. 10.1.

10.68 Show that the equilibrium is neutral in Prob. 10.6.

10.69 Two uniform rods, each of mass m and length l, are attached to 
drums that are connected by a belt as shown. Assuming that no 
slipping occurs between the belt and the drums, determine the 
positions of equilibrium of the system and state in each case 
whether the equilibrium is stable, unstable, or neutral.

D

A

B

C

a

2a

2q

q

Fig. P10.69

A C

D

B

2a
a

q

2q

Fig. P10.70

10.70 Two uniform rods AB and CD, of the same length l, are attached 
to gears as shown. Knowing that rod AB weighs 3 lb and that rod 
CD weighs 2 lb, determine the positions of equilibrium of the 
system and state in each case whether the equilibrium is stable, 
unstable, or neutral.
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587Problems 10.71 Two uniform rods, each of mass m, are attached to gears of equal 
radii as shown. Determine the positions of equilibrium of the sys-
tem and state in each case whether the equilibrium is stable, 
unstable, or neutral.

q

q

A

B

D

C

l

l

Fig. P10.71 and P10.72

 10.72 Two uniform rods, AB and CD, are attached to gears of equal radii 
as shown. Knowing that WAB 5 8 lb and WCD 5 4 lb, determine 
the positions of equilibrium of the system and state in each case 
whether the equilibrium is stable, unstable, or neutral.

 10.73 Using the method of Sec. 10.8, solve Prob. 10.39. Determine 
whether the equilibrium is stable, unstable, or neutral. (Hint: The 
potential energy corresponding to the couple exerted by a torsion 
spring is 1

2Ku2, where K is the torsional spring constant and u is 
the angle of twist.)

 10.74 In Prob. 10.40, determine whether each of the positions of equi-
librium is stable, unstable, or neutral. (See hint for Prob. 10.73.)

 10.75 A load W of magnitude 100 lb is applied to the mechanism at C. 
Knowing that the spring is unstretched when u 5 15°, determine 
that value of u corresponding to equilibrium and check that the 
equilibrium is stable.

 10.76 A load W of magnitude 100 lb is applied to the mechanism at C. 
Knowing that the spring is unstretched when u 5 30°, determine 
that value of u corresponding to equilibrium and check that the 
equilibrium is stable.

W

q

A
B

C

l = 20 in.

r = 5 in.

k = 50 lb/in.

Fig. P10.75 and P10.76
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588 Method of Virtual Work  10.77 A slender rod AB, of weight W, is attached to two blocks A and B 
that can move freely in the guides shown. The constant of the 
spring is k, and the spring is unstretched when AB is horizontal. 
Neglecting the weight of the blocks, derive an equation in u, W, l, 
and k that must be satisfied when the rod is in equilibrium.

 10.78 A slender rod AB, of weight W, is attached to two blocks A and B 
that can move freely in the guides shown. Knowing that the spring 
is unstretched when AB is horizontal, determine three values of u 
corresponding to equilibrium when W 5 300 lb, l 5 16 in., and 
k 5 75 lb/in. State in each case whether the equilibrium is stable, 
unstable, or neutral.

 10.79 A slender rod AB, of weight W, is attached to two blocks A and B 
that can move freely in the guides shown. Knowing that the spring 
is unstretched when y 5 0, determine the value of y corresponding 
to equilibrium when W 5 80 N, l 5 500 mm, and k 5 600 N/m.

y

l

C

B
W

l

A

Fig. P10.79

C

B

A

l

l

W

y

Fig. P10.80

 10.80 Knowing that both springs are unstretched when y 5 0, deter-
mine the value of y corresponding to equilibrium when W 5 80 N, 
l 5 500 mm, and k 5 600 N/m.

A

qq

B
aa

brrb

P

Fig. P10.81 and P10.82

C

A

B

q

l
W

Fig. P10.77 and P10.78

 10.81 A spring AB of constant k is attached to two identical gears as shown. 
Knowing that the spring is undeformed when u 5 0, determine two 
values of the angle u corresponding to equilibrium when P 5 30 lb, 
a 5 4 in., b 5 3 in., r 5 6 in., and k 5 5 lb/in. State in each case 
whether the equilibrium is stable, unstable, or neutral.

 10.82 A spring AB of constant k is attached to two identical gears as 
shown. Knowing that the spring is undeformed when u 5 0, and 
given that a 5 60 mm, b 5 45 mm, r 5 90 mm, and k 5 6 kN/m, 
determine (a) the range of values of P for which a position of 
equilibrium exists, (b) two values of u corresponding to equilibrium 
if the value of P is equal to half the upper limit of the range found 
in part a.
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589Problems 10.83 A slender rod AB is attached to two collars A and B that can move 
freely along the guide rods shown. Knowing that b 5 30° and 
P 5 Q 5 400 N, determine the value of the angle u corresponding 
to equilibrium.

 10.84 A slender rod AB is attached to two collars A and B that can 
move freely along the guide rods shown. Knowing that b 5 30°, 
P 5 100 N, and Q 5 25 N, determine the value of the angle u 
corresponding to equilibrium.

  10.85 and 10.86 Collar A can slide freely on the semicircular rod 
shown. Knowing that the constant of the spring is k and that the 
unstretched length of the spring is equal to the radius r, determine 
the value of u corresponding to equilibrium when W 5 50 lb, 
r 5 9 in., and k 5 15 lb/in.

  10.87 and 10.88 Cart B, which weighs 75 kN, rolls along a sloping 
track that forms an angle b with the horizontal. The spring con-
stant is 5 kN/m, and the spring is unstretched when x 5 0. Deter-
mine the distance x corresponding to equilibrium for the angle b 
indicated.

 10.87 Angle b 5 30°
 10.88 Angle b 5 60°

P

A

B

L
q

b

Q

Fig. P10.83 and P10.84

A

B
C

qr

W

Fig. P10.85

B

A

C

q

r

W

Fig. P10.86

4 m

x

A

B

b

Fig. P10.87 and P10.88
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590 Method of Virtual Work  10.89 A vertical bar AD is attached to two springs of constant k and 
is in equilibrium in the position shown. Determine the range of 
values of the magnitude P of two equal and opposite vertical 
forces P and 2P for which the equilibrium position is stable if 
(a) AB 5 CD, (b) AB 5 2CD.

 10.90 Rod AB is attached to a hinge at A and to two springs, each of 
constant k. If h 5 25 in., d 5 12 in., and W 5 80 lb, determine 
the range of values of k for which the equilibrium of the rod is 
stable in the position shown. Each spring can act in either tension 
or compression.

A

D

C

B

la

P

–P

Fig. P10.89

A

B

W

d

h

Fig. P10.90 and P10.91

 10.91 Rod AB is attached to a hinge at A and to two springs, each of 
constant k. If h 5 45 in., k 5 6 lb/in., and W 5 60 lb, determine 
the smallest distance d for which the equilibrium of the rod is 
stable in the position shown. Each spring can act in either tension 
or compression.

  10.92 and 10.93 Two bars are attached to a single spring of constant 
k that is unstretched when the bars are vertical. Determine the 
range of values of P for which the equilibrium of the system is 
stable in the position shown.

P

A

B

D

P

A

B

C

D

L
3

L
3

L
3

Fig. P10.92 and P10.93

bee29400_ch10_556-599.indd Page 590  11/28/08  3:16:26 PM user-s172bee29400_ch10_556-599.indd Page 590  11/28/08  3:16:26 PM user-s172 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



591Problems 10.94 Two bars AB and BC are attached to a single spring of constant k 
that is unstretched when the bars are vertical. Determine the 
range of values of P for which the equilibrium of the system is 
stable in the position shown.

 10.95 The horizontal bar BEH is connected to three vertical bars. 
The collar at E can slide freely on bar DF. Determine the 
range of values of Q for which the equilibrium of the system is 
stable in the position shown when a 5 24 in., b 5 20 in., and 
P 5 150 lb.

P

A

D

E

B

C

a

l

l

a

Fig. P10.94

 10.96 The horizontal bar BEH is connected to three vertical bars. 
The collar at E can slide freely on bar DF. Determine the range 
of values of P for which the equilibrium of the system is stable 
in the position shown when a 5 150 mm, b 5 200 mm, and 
Q 5 45 N.

 *10.97 Bars AB and BC, each of length l and of negligible weight, are 
attached to two springs, each of constant k. The springs are unde-
formed, and the system is in equilibrium when u1 5 u2 5 0. Deter-
mine the range of values of P for which the equilibrium position is 
stable.

 *10.98 Solve Prob. 10.97 knowing that l 5 800 mm and k 5 2.5 kN/m.

 *10.99 Two rods of negligible weight are attached to drums of radius r 
that are connected by a belt and spring of constant k. Knowing 
that the spring is undeformed when the rods are vertical, deter-
mine the range of values of P for which the equilibrium position 
u1 5 u2 5 0 is stable.

  *10.100 Solve Prob. 10.99 knowing that k 5 20 lb/in., r 5 3 in., l 5 6 in., 
and (a) W 5 15 lb, (b) W 5 60 lb.

P

QQ

D
A

B

C F I

H

G

E

a

b

Fig. P10.95 and P10.96

P

A

B

C

q1

q2

Fig. P10.97

W

2q

1q

A

B

D

C
r r

l

l

P

Fig. P10.99
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592

REVIEW AND SUMMARY

The first part of this chapter was devoted to the principle of virtual 
work and to its direct application to the solution of equilibrium prob-
lems. We first defined the work of a force F corresponding to the 
small displacement dr [Sec. 10.2] as the quantity

 dU 5 F ? dr (10.1)

obtained by forming the scalar product of the force F and the dis-
placement dr (Fig. 10.16). Denoting respectively by F and ds the 
magnitudes of the force and of the displacement, and by a the angle 
formed by F and dr, we wrote

 dU 5 F ds cos a (10.19)

The work dU is positive if a , 90°, zero if a 5 90°, and negative if 
a . 90°. We also found that the work of a couple of moment M
acting on a rigid body is

dU 5 M du (10.2)

where du is the small angle expressed in radians through which the 
body rotates.

Considering a particle located at A and acted upon by several forces 
F1, F2, . . . , Fn [Sec. 10.3], we imagined that the particle moved to 
a new position A9 (Fig. 10.17). Since this displacement did not actu-
ally take place, it was referred to as a virtual displacement and 
denoted by dr, while the corresponding work of the forces was called 
virtual work and denoted by dU. We had

dU 5 F1 ? dr 1 F2 ? dr 1 . . . 1 Fn ? dr

The principle of virtual work states that if a particle is in equilib-
rium, the total virtual work dU of the forces acting on the particle is 
zero for any virtual displacement of the particle.
 The principle of virtual work can be extended to the case of 
rigid bodies and systems of rigid bodies. Since it involves only forces 
which do work, its application provides a useful alternative to the 
use of the equilibrium equations in the solution of many engineering 
problems. It is particularly effective in the case of machines and 
mechanisms consisting of connected rigid bodies, since the work of 
the reactions at the supports is zero and the work of the internal forces 
at the pin connections cancels out [Sec. 10.4; Sample Probs. 10.1, 10.2, 
and 10.3].

Work of a forceWork of a force

Virtual displacementVirtual displacement

Principle of virtual workPrinciple of virtual work

a

dr

A

A'

F

Fig. 10.16

F2

F1

Fn

A

A'

dr

Fig. 10.17
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593In the case of real machines, however [Sec. 10.5], the work of the 
friction forces should be taken into account, with the result that the 
output work will be less than the input work. Defining the mechanical 
efficiency of a machine as the ratio

 
h 5

output work

input work  
(10.9)

we also noted that for an ideal machine (no friction) h 5 1, while 
for a real machine h , 1.

In the second part of the chapter we considered the work of forces 
corresponding to finite displacements of their points of application. 
The work U1y2 of the force F corresponding to a displacement of 
the particle A from A1 to A2 (Fig. 10.18) was obtained by integrating 
the right-hand member of Eq. (10.1) or (10.19) along the curve 
described by the particle [Sec. 10.6]:

 U1y2 5 #
A2

A1

 
F ? dr  (10.11)

or

 
U1y2 5 #

s2

s1

 
(F  cos a) ds

 
(10.119)

Similarly, the work of a couple of moment M corresponding to a 
finite rotation from u1 to u2 of a rigid body was expressed as

 
U1y2 5 #

u2

u1

 
M du

 
(10.12)

The work of the weight W of a body as its center of gravity moves 
from the elevation y1 to y2 (Fig. 10.19) can be obtained by making 
F 5 W and a 5 180° in Eq. (10.119):

 
U1y2 5 2 #

y2

y1

W  dy 5 Wy1 2 Wy2 
(10.13)

The work of W is therefore positive when the elevation y decreases.

Mechanical efficiencyMechanical efficiency

Work of a force over a finite 
displacement
Work of a force over a finite 
displacement

Work of a weightWork of a weight

O

ds

A

A1

s1

s2

A2

a

Fs

Fig. 10.18

A

A1

A2

y1

y2

dy

y

W

Fig. 10.19

Review and Summary

bee29400_ch10_556-599.indd Page 593  11/28/08  3:16:28 PM user-s172bee29400_ch10_556-599.indd Page 593  11/28/08  3:16:28 PM user-s172 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



594 Method of Virtual Work The work of the force F exerted by a spring on a body A as the 
spring is stretched from x1 to x2 (Fig. 10.20) can be obtained by 
making F 5 kx, where k is the constant of the spring, and a 5 180° 
in Eq. (10.119):

 
U1y2 5 2 #

x2

x1

 
kx dx 5 1

2 
kx2

1 2 1
2 
kx2

2 
(10.15)

The work of F is therefore positive when the spring is returning to 
its undeformed position.

 When the work of a force F is independent of the path actually 
followed between A1 and A2, the force is said to be a conservative 
force, and its work can be expressed as

 U1y2 5 V1 2 V2 (10.20)

where V is the potential energy associated with F, and V1 and V2 
represent the values of V at A1 and A2, respectively [Sec. 10.7]. The 
potential energies associated, respectively, with the force of gravity 
W and the elastic force F exerted by a spring were found to be

 Vg 5 Wy   and   Ve 5 1
2 
kx2 (10.17, 10.18)

When the position of a mechanical system depends upon a single 
independent variable u, the potential energy of the system is a func-
tion V(u) of that variable, and it follows from Eq. (10.20) that dU 5 
2dV 5 2(dV/du) du. The condition dU 5 0 required by the princi-
ple of virtual work for the equilibrium of the system can thus be 
replaced by the condition

 
dV
du

5 0
 

(10.21)

When all the forces involved are conservative, it may be preferable 
to use Eq. (10.21) rather than apply the principle of virtual work 
directly [Sec. 10.8; Sample Prob. 10.4].

This approach presents another advantage, since it is possible to 
determine from the sign of the second derivative of V whether the 
equilibrium of the system is stable, unstable, or neutral [Sec. 10.9]. 
If d2V/du2 . 0, V is minimum and the equilibrium is stable; if 
d2V/du2 , 0, V is maximum and the equilibrium is unstable; if 
d2V/du2 5 0, it is necessary to examine derivatives of a higher order.

Work of the force exerted by a springWork of the force exerted by a spring

Potential energyPotential energy

Alternative expression for the 
principle of virtual work

Alternative expression for the 
principle of virtual work

Stability of equilibriumStability of equilibrium

Spring undeformed

A0

A

B

B

x1

x2

x

F

A2

B

A1

Fig. 10.20
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595

REVIEW PROBLEMS

10.101 Determine the vertical force P that must be applied at G to main-
tain the equilibrium of the linkage.

 10.102 Determine the couple M that must be applied to member DEFG
to maintain the equilibrium of the linkage.

10.103 Derive an expression for the magnitude of the couple M required 
to maintain the equilibrium of the linkage shown.

 10.104 Collars A and B are connected by the wire AB and can slide freely 
on the rods shown. Knowing that the length of the wire is 440 mm 
and that the weight W of collar A is 90 N, determine the magni-
tude of the force P required to maintain equilibrium of the system 
when (a) c 5 80 mm, (b) c 5 280 mm.

 10.105 Collar B can slide along rod AC and is attached by a pin to a 
block that can slide in the vertical slot shown. Derive an expres-
sion for the magnitude of the couple M required to maintain 
equilibrium.

300 lb

100 lb

6 in.

A
B

C

D
E F

G

10 in.12 in.8 in.

Fig. P10.101 and P10.102

P

P

A

B

C

l

l

q

M

Fig. P10.103

W

P

A
b

B

c
240 mm

x

y

z

Fig. P10.104

A

B

C

R

q

P

M

Fig. P10.105 

bee29400_ch10_556-599.indd Page 595  11/28/08  3:16:29 PM user-s172bee29400_ch10_556-599.indd Page 595  11/28/08  3:16:29 PM user-s172 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



596 Method of Virtual Work  10.106 A slender rod of length l is attached to a collar at B and rests on 
a portion of a circular cylinder of radius r. Neglecting the effect 
of friction, determine the value of u corresponding to the equilib-
rium position of the mechanism when l 5 200 mm, r 5 60 mm, 
P 5 40 N, and Q 5 80 N.

 10.107 A horizontal force P of magnitude 40 lb is applied to the mechanism 
at C. The constant of the spring is k 5 9 lb/in., and the spring is 
unstretched when u 5 0. Neglecting the weight of the mechanism, 
determine the value of u corresponding to equilibrium.

A

C

B

q

Q

l

P

r

Fig. P10.106

P

5 in.

12 in.

q

B

A

C

Fig. P10.107

 10.108 Two identical rods ABC and DBE are connected by a pin at B 
and by a spring CE. Knowing that the spring is 4 in. long when 
unstretched and that the constant of the spring is 8 lb/in., deter-
mine the distance x corresponding to equilibrium when a 24-lb 
load is applied at E as shown.

 10.109 Solve Prob. 10.108 assuming that the 24-lb load is applied at C 
instead of E.

 10.110 Two uniform rods, each of mass m and length l, are attached to 
gears as shown. For the range 0 # u # 180°, determine the posi-
tions of equilibrium of the system and state in each case whether 
the equilibrium is stable, unstable, or neutral.

9 in.

6 in.

A

x

D

B
E

C

24 lb

Fig. P10.108

q

1.5q

A

B

3a

D

2a

C

Fig. P10.110
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597Review Problems 10.111 A homogeneous hemisphere of radius r is placed on an incline as 
shown. Assuming that friction is sufficient to prevent slipping 
between the hemisphere and the incline, determine the angle u 
corresponding to equilibrium when b 5 10°.

 10.112 A homogeneous hemisphere of radius r is placed on an incline as 
shown. Assuming that friction is sufficient to prevent slipping 
between the hemisphere and the incline, determine (a) the largest 
angle b for which a position of equilibrium exists, (b) the angle u 
corresponding to equilibrium when the angle b is equal to half 
the value found in part a.

q

b

G

C

Fig. P10.111 and P10.112
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598

COMPUTER PROBLEMS

 10.C1 A couple M is applied to crank AB in order to maintain the equi-
librium of the engine system shown when a force P is applied to the piston. 
Knowing that b 5 2.4 in. and l 5 7.5 in., write a computer program that can 
be used to calculate the ratio M/P for values of u from 0 to 180° using 10° 
increments. Using appropriate smaller increments, determine the value of u
for which the ratio M/P is maximum, and the corresponding value of M/P.

qP
A

B

C

l

b
M

Fig. P10.C1

 10.C2 Knowing that a 5 500 mm, b 5 150 mm, L 5 500 mm, and P 5 
100 N, write a computer program that can be used to calculate the force in 
member BD for values of u from 30° to 150° using 10° increments. Using 
appropriate smaller increments, determine the range of values of u for which 
the absolute value of the force in member BD is less than 400 N.

A

B

C

b

D

a

L

q

P

Fig. P10.C2

a

C

B

D

A
a

a

90°

q

W

Fig. P10.C4

 10.C3 Solve Prob. 10.C2 assuming that the force P applied at A is directed 
horizontally to the right.

 10.C4 The constant of spring AB is k, and the spring is unstretched when 
u 5 0. (a) Neglecting the weight of the member BCD, write a computer 
program that can be used to calculate the potential energy of the system and 
its derivative dV/du. (b) For W 5 150 lb, a 5 10 in., and k 5 75 lb/in., cal-
culate and plot the potential energy versus u for values of u from 0 to 165° 
using 15° increments. (c) Using appropriate smaller increments, determine 
the values of u for which the system is in equilibrium and state in each case 
whether the equilibrium is stable, unstable, or neutral.
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599Computer Problems 10.C5 Two rods, AC and DE, each of length L, are connected by a collar 
that is attached to rod AC at its midpoint B. (a) Write a computer program 
that can be used to calculate the potential energy V of the system and its 
derivative dV/du. (b) For W 5 75 N, P 5 200 N, and L 5 500 mm, calculate 
V and dV/du for values of u from 0 to 70° using 5° increments. (c) Using 
appropriate smaller increments, determine the values of u for which the 
system is in equilibrium and state in each case whether the equilibrium is 
stable, unstable, or neutral.

 10.C6 A slender rod ABC is attached to blocks A and B that can move 
freely in the guides shown. The constant of the spring is k, and the spring 
is unstretched when the rod is vertical. (a) Neglecting the weights of the 
rod and of the blocks, write a computer program that can be used to cal-
culate the potential energy V of the system and its derivative dV/du. (b) For 
P 5 150 N, l 5 200 mm, and k 5 3 kN/m, calculate and plot the potential 
energy versus u for values of u from 0 to 75° using 5° increments. (c) Using 
appropriate smaller increments, determine any positions of equilibrium in 
the range 0 # u # 75° and state in each case whether the equilibrium is 
stable, unstable, or neutral.

 10.C7 Solve Prob. 10.C6 assuming that the force P applied at C is directed 
horizontally to the right.

P

W

A

D

B

C

E

q

L

Fig. P10.C5

C

A

B

q

l

l

P

Fig. P10.C6 
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The motion of the space shuttle can 

be described in terms of its position, 

velocity, and acceleration. When landing, 

the pilot of the shuttle needs to consider 

the wind velocity and the relative motion 

of the shuttle with respect to the wind. 

The study of motion is known as 

kinematics and is the subject of 

this chapter.
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