

	1	Massive (RMR > 75)	Moderately Fractured (50 > RMR < 75)	Highly Fractured (RMR < 50)	T
When considering			RZI	1417474	388
different rock mass	(ess				d Stre
failure mechanisms, we	tu Str < 0.15		KĻK		duce < 0.45
generally distinguish	/ In-S σ ₁ /σ _c				av/oc
between those that are	Low	Linear elastic response.	Faling or sliding of blocks and wedges.	Unraveling of blocks from the excavation surface.	w Mir om
primarily structurally-					2
controlled and those that	ess		K		tress 5±0.1
are stress-controlled. Of	itu St c0.4)	D°	R		ced S
course some failure modes	e In-S ₁/σ _c <		KL		e Indu
are composites of these	ediat 15 > σ				ediate
two conditions, and others	(0.	Brittle failure adjacent to excavation boundary.	Localized brittle failure of intact rock and movement of blocks.	Localized brittle failure of infact rock and unravelling along discontinuities	nterm .4±0.1
may involve the effect of				acting concernmenters.	
time and weathering on	~~	Failure Zone -	8		Stress
excovation stability	Stres:	0			Lis±0
excavation stability.	Situ 6c>0				g-Indu 3c > I
	(d) In				Minin max/
	Ξ	Brittle failure around the excavation .	Brittle failure of intact rock around the excavation and movement of blocks	Squeezing and swelling rocks. Elastic/plastic continuum	l dgi

D	IS	<u>02</u>	n	<u>tır</u>	<u>iu</u>	<u>ity</u>		<u>5h</u>	e	ar	2	<u>)</u>	re	n	<u>gt</u>	h	-	E	<u>×a</u>	m	<u>)le</u>				
Т	he	fo	llo	wi	ng	te	sts	w	er	e c	bt	air	nec	l ir	a	se	ri	es	of	dire	ect	sh	ea	r 1	est
c	arr	ied	1 0	bert	0	1	00	m	m	sa	Jar	e	sbe	zci	me	ns	of	a	ani	te	con	ta	inir	na	
cl	ea	n,	ro	ug	h,	dr	уj	oir	its	•								3.						9	
			N	orma	l stro	ess	· · · · ·	()	Pe	ak sh	ear			Re	esidu	al she	ear	·	Displ	aceme	ent at	· · · · ·			
									str	ength	1			sti	rengtl	h			peak	shear	streng	gth			
																			Norm	ıal	Sh	ear			
					σ_n	(MPa)			τ _p (1	MPa)				τ, ((MPa	i)		v(n	ım)	<i>u</i> (n	nm)		. (
						0.25					0.2	25				0.1	5		0	.54	2	.00			
					. 1	0.50					0.5	50				0.3	0		0	.67	2	.50			
						1.00					1.0)0 : 5				0:6	0 5		0	.65	3	.20			
						2.00					21	15				1.1	5 0		0	30	2 2	00			
						4.00					2.6	50				-	-		Ő	.15	4	.20			
			-			1													1	1	-	1	}		
																		Di	rec	t sł	near	te	este	s gi	ve
					1	1												no	rmc	il ai	nd s	she	ar		
				+	÷	+											••••	Va	lues	s wł	nich	m	ay	be	
						-												ple	otte	ed c	lire	ctly	÷		

Once a series of joint sets have been identified as having wedge forming potential, several questions arise : in the case of a falling wedge, how much support will be required to hold it in place (what kind of loads on the added support can be expected, how dense will the bolting pattern have to be, etc.); in the case of a sliding wedge, do the shear stresses exceed the sh strength along the sliding surface, i.e. that provided by friction and sometimes cohesion (in the form of intact rock bridges or mineralized infilling), and if so, how much support will be required to stabilize the block, how dense will the bolting pattern have to be, etc In both cases, the volume/weight of the maximum wedge that may form is required. This can be determined through-	iysis ot maximum vveage volum	г мах	<u>'SIS 0</u>	<u>Analys</u>	rical	<u>2eome1</u>
 in the case of a falling wedge, how much support will be required to hold it in place (what kind of loads on the added support can be expected, how dense will the bolting pattern have to be, etc.); in the case of a sliding wedge, do the shear stresses exceed the sh strength along the sliding surface, i.e. that provided by friction and sometimes cohesion (in the form of intact rock bridges or mineralize infilling), and if so, how much support will be required to stabilize t block, how dense will the bolting pattern have to be, etc In both cases, the volume/weight of the maximum wedge that may form is required. This can be determined through 	sets have been identified as having wedge	e been i	ts hav	joint set	eries of	Once a se
	ral questions arise :	ions ari	I quest	, several	otential	forming p
 in the case of a sliding wedge, do the shear stresses exceed the shear strength along the sliding surface, i.e. that provided by friction and sometimes cohesion (in the form of intact rock bridges or mineralize infilling), and if so, how much support will be required to stabilize t block, how dense will the bolting pattern have to be, etc. In both cases, the volume/weight of the maximum wedge that may form is required. This can be determined through 	ng wedge, how much support will be required to	how muc	wedge	a falling	case of	⇒ in the
	kind of loads on the added support can be	bads on t	ind of l	(what kii	in place	hold it
	will the bolting pattern have to be, etc.);	olting pa	ill the l	dense wi	ted, how	expect
Diock, how dense will the bolting pattern have to be, etc In both cases, the volume/weight of the maximum wedge that may form is required. This can be determined through	ng wedge, do the shear stresses exceed the she iding surface, i.e. that provided by friction and in the form of intact rock bridges or mineralized now much support will be required to stabilize the	do the ace, i.e. m of into support a	wedge ng surf the for v much	a sliding the slidin esion (in t f so, how	case of ith along imes coh g), and i	⇒ in the streng someti infillin
-further geometrical constructions	the bolting pattern have to be, etc	ng patter	he bolti	se will th	how den	block,
	lume/weight of the	ght of t	me/wei	the volum	cases, 1	In both
	may form is	wis	ay forr	that ma	wedge	maximum
	determined through	ned thro	etermi	an be de	This c	required
	onstructions.	ons.	structi	ical cons	geometr	further (

The underly	ing axiom of	block the	ory is th	at the f	ailure of	an exca	vation
oegins at th	e boundary v	with the r	novement	of a blo	ck into	the excav	/ated
space. The	loss of the f	irst block	augment	s the sp	ace, pos	sibly crea	ating
an opportuni	ty for the f	ailure of	additional	blocks,	with co	ntinuing	
degradation	possibly lead	ding to ma	assive fai	lure.			
As such, the	e term key-b	olock iden	tifies any	,		/	1
olock that w	ould become	unstable	when			1_	-+
intersected	by an excave	ation. The	e loss of	a		10	/
key-block d	oes not nece	ssarily as	sure	_		3	F
subsequent l	olock failures	s, but the				Yey	
prevention o	f its loss do	es assure	stability			1	
Kay-black +	hearty theref	one cete	aut to		A	1	
establish pr	neory merer	describir	and		1000	and a second	_
ocatina key	blocks and f	for establ	ishina		1	-/	
their suppor	t requiremen	ts			/	/	
July 200	i i equi emen					/	

Lec	<u>:tu</u>	ire	2	<u> Le</u>	<u>t</u>	<u>er</u>	<u>er</u>	<u>1C</u>	es																	
Barton	, N	8	Cho	ube	y. '	V (1	977).	The	she	ar	stre	engt	th o	fr	ck	join	ts	in t	heo	ry a	ind	prad	tice	2. R	ock
ioodm	nics	DE A	1-04	r. ni 6	SН	(19	95)	BI	nck.	the	ary (and	ite	ann	lica	tion	Gó	nte	chn	inue	45(3).	283	423	2	
loek	F	Kais	er of	", ` PK	2 1	Row	len	W	F (199	5)	Sur	nor	t o	f U	Inde	roro	un	F		ntic	ns	in F	larc	Ro	ck
Batken	ia: R	otte	rdar	n.	~ .				<u> </u>		с <u>у</u> .		por				git									
ludsor Isevie	n, J. r Sc	A & ienc	Har e: C	risc xfo	n, rd.	JP	(199	97).	En	gine	erir	ıg R	ock	Me	chai	nics	- A	n Ir	itro	duc	tion	to	the	Prin	ciple	25
aiser	, PK	, Di	ede	rich	s,	MS,	M	arti	n, I	5, S	Shar	pe,	J	8 5	stei	ner,	W	(2	000). t	Inde	ergr	oun	d w	orks	ir
ard r ancas	ock ter,	tun pp. 8	nelli 341-	ng 926	anc	l mi	ning	. I	n P	roce	eedi	ings	G	eoEi	ng21	900,	М	elba	burr	ie	Tech	nor	nic	Pub	lishi	ng
isle , 4: 27	RJ (9-28	200	4).	Calc	ula	tion	of	the	day	ligh	it ei	nvel	ope	for	plo	ine	failı	ire	of I	ock	s Io	pes	. Ge	ote	chnie	700
Aartin f brit	, CL	, Ko	nise Pe au	r, P	K &	Ma	Cre	ath Can	, D	R (1	1 99	9) .	Hoe	k-B	row	n po /36	aran	nete 136	ers -15	for	pre	dic	ting	the	dep	otk
ahl, F	ъ (:	981). E	sti	nat	ing	the	me	an I	eng	th c	of d	isco	ntir	uit	, tr	aces	s. I	nte	nat	iona	al J	ourr	al c	f R	ocl
Necha	nics	&М	ining	750	ien	ces	& G	eom	ech	anic	s A	bsti	ract	s 18	3: 27	21-2	28.			+						
riest, ondon	SD	(19	85)	. +	lem	isph	eric	al I	roj	ecti	on	Me	hoc	ls ii	n R	ock	Me	cha	nics	G	eorg	je 1	Aller	å	Unu	/in
						ļ								ļ	ļ				ļ							

			ļ																								
Le	22	tu	re	2	Re	<u>:f</u>	er	er	IC	es																	
Stro	uti		8	Fbe	rhai	dt	F	200)6)	Th	P. 115	e. 0.	F I il	DAR	to	ove	rcor	ne r	ock	slo	ne k	070	rd	data	col	lect	tio
chal	len	ges o	at 7	fte	rno	on C	ree	k, V	Vas	hing	ton.	In	<i>41s</i>	Ŧ U	5. 3	Sym	pos	ium	on	Roci	K Me	echo	anic	s: 5	о у	ears	5 0
Roci	M	echo	nic	s, G	olde	n. A	mer	ica	Ro	ock-l	Aec	hani	cs /	Asso	cia	ion	CD.	: 06	-99	3							
₩yl	lie,	DC	& 1	Nah	, CI	W (200	4).	Roc	k S	ope	Eng	jine	erin	g (4	th e	ditio	on).	Spo	n Pr	ress	: Lo	ndo	n.			
Wyl Tnva	ie,	DC	& 1	Nori	rish Miti	N	[(1	996). I	Rock	st nor	reno	th 17 N	pro	pert	ies	and	the my F	eir Pros	Mea s· M	Sur last	eme	nt. ton	In D	Land	islic S	les 72
390.		gum				gun		Sp			pur			Num	onici				100			iiiig	1014	0.0	PI		
		ļ	ļ	ļ		ļ				ļ		ļ															ļ
		ļ													****											****	
		ļ	ļ																								ļ
						ļ						ļ												ļ			
																									-(.	
		+													****												
	~~~	+	<u>.</u>																								<u> </u>
<del>}</del>		1	<u> </u>	L	(	1	)	)	(	1	L	1						(									(