

Load Fa	actors and Load Combinations			
LRFD L	oad Combinations			
4. 5.	1.2 <i>D</i> + 1.3 <i>W</i> + <i>L</i> + 0.5 <i>L</i> _r 0.9 <i>D</i> + 1.3 <i>W</i>			
ASD Lo	ad Combinations			
The simpli	fied ASD load combinations are as follows:			
1.	D			
2.	D+L			
3.	D + L,			
4.	$D + 0.75L + 0.75L_r$			
5.	D+0.8W			
6.	$D + 0.6W + 0.75L + 0.75L_r$			
7.	7. $0.6 D + 0.8 W$			

, 1 111					
Design of Steel S	tructures	Prof. Dr. Z.A. Siddiqi, Dr. Rashid Hameed and Engr. Rizwan Riaz			
Types of Structural Steel					
Steels are divided into four categories depending on the carbon percentages (C) as follows:					
1-	Low carbon steel	C < 0.15%			
2-	Mild carbon steel	C = 0.15 - 0.29%			
3-	Medium carbon stee	C = 0.30 - 0.59%			
4-	High carbon steel	C = 0.60 -1.70%			
E-value	E-value for steel = 185 GPa to 230 GPa (Average 200 GPa)				
Unit weight = $7850 \text{ kg/m}^3 = 77 \text{ kN/m}^3$					
For comparison, the unit weight of concrete is 23.6 kN/m ³					
Civil Engineering Department – University of Engineering & Technology Lahore					

