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CHAPTER ONE 

 
STABILITY, DETERMINACY OF STRUCTURES AND 

CONSISTENT DEFORMATIONS METHOD 
 
1.1. STABILITY OF STRUCTURES: 
Before deciding the determinacy or indeterminacy of a structure we should first of all have a structure 
which is stable. The question of determinacy or indeterminacy comes next. We shall now discuss 2-D or 
single plane structures. (Defined and accommodated in a single plane). 
 
1.1.1. STABLE STRUCTURE: 
A stable structure is the one, which remains stable for any conceivable (imaginable) system of loads. 
Therefore, we do not consider the types of loads, their number and their points of application for deciding 
the stability or determinacy of the structure. Normally internal and external stability of a structure should be 
checked separately and if its overall stable then total degree of indeterminacy should be checked. 
 
1.2. ARTICULATED STRUCTURES: 

This may be defined as “A truss, or an articulated structure, composed of links or bars, assumed to be 
connected by frictionless pins at the joints, and arranged so that the area enclosed within the boundaries of 
the structure is subdivided by the bars into geometrical figures which are usually triangles.” 
 

1.3. CONTINUOUS FRAME: 

“ A continuous frame is a structure which is dependent, in part, for its stability and load carrying capacity 
upon the ability of one or more of its joints to resist moment.”  In other words, one or more joints are more 
or less rigid. 
 
1.4. DETERMINACY: 

A statically indeterminate structure is the one in which all the reactive components plus the internal forces 
cannot be calculated only  from the equations of equilibrium available for a given force system.These 
equations, of course, are 
 

∑ H = 0,  ∑ V = 0  and  ∑ M = 0 
 
The degree of indeterminacy for a given structure is, in fact , the excess of total number of reactive 
components or excess of members over the equations of equilibrium available. 
 

It is convenient to consider stability and determinacy as follows. 

 a) With respect to reactions, i.e. external stability and determinacy. 

 b) With respect to members, i.e. internal stability  and determinacy. 

 c) A combination of external and internal conditions, i.e. total stability and determinacy. 
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1.4.1. EXTERNAL INDETERMINACY: 
A stable structure should have at least three reactive components, (which may not always be sufficient) for 
external stability of a 2-D structure, which are non-concurrent and non-parallel. 

 
 

Fig. 1.1.  Stable & determinate. 

000

 
 

Fig. 1.2.  Stable & determinate. 
 

External indeterminacy is, in fact, the excess of total number of reactive  components over the  equations of 
equilibrium available. 

3 + 2                       = 5 
Fig. 1.3. 

 
   No. of reactions possible  =  5 
   No. of Equations of equilibrium available =  3 
   Degree of External indeterminacy =  5 − 3 =  2 
 

3 + 3                        = 6 
 

Fig. 1.4 
   Stable & Indeterminate to 2nd degree. (Fig. 1.3) 

  Fig. 1.4. Stable & externally indeterminate to 3rd degree. 
 

2 2                      = 4 
Fig. 1.5. 
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  Stable & Indeterminate to Ist degree. (Fig. 1.5) 
 

3 + 1   +   2       +       2 = 8  
Fig. 1.6. 

 
  Stable & externally indeterminate to 5th degree. (Fig. 1.6) 
 
Remove any five suitable redundant reactions to make it statically determinate. 
 
1.4.2. INTERNAL INDETERMINACY: 

This question can be decided only if the minimum number of reactive components  necessary for 
external stability and determinacy are known  and are acting on the structure.  This type of 
indeterminacy is normally associated with articulated structures like trusses. We assume that the 
structure whose internal indeterminacy is being checked is under the action of minimum reactive 
components required for external stability at the supports. 

 

The basic form of the truss is a triangle. 

 
 

To make the truss, add two members and one joint and repeat. 
 

 
Fig 1.7 

Let us assume that  

   j  =  Total number of joints. 

   b =  Total number of bars. 

   r  =  Minimum number of reactive components  
           required for external stability/determinacy. 
 
      b  +  r      =   2j   
    total number of    total number of  
    unknowns.    equations available (at joints). 
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    1. If  b + r  =  2 j  Stable & internally determinate. Check the arrangement of 
     members also. 
 
    2. If b + r  >  2 j  Stable & internally indeterminate. 
     (degree of indeterminacy would be  
     decided by the difference of these 
     two quantities). 

    3. If b + r  <  2 j  Unstable. 
 
 A structure is said to have determinacy or indeterminacy only if it is stable. Now we consider some 
examples. 
 

2 3 5 7 9 11

4 8 y

x
1 6 10

 
 

Fig. 1.8. 
   b  =  11 

   r   =  3  (Minimum external reactions required for external stability/determinacy) 

   j   =  7 

   b  +  r  =  2 j 

                11 + 3  =  2 × 7 

                14   =    14 

  This truss of fig. 1.8 is stable and internally determinate. 
 

1 3 5 9 15

4 8 12

11 13

2 6 10 14

7

 
 

Fig. 1.9. 
   b  =  15 
   r   =  3 
   j   =  9 
   b  +  r   =  2 j 
                15 +  3  =  2 × 9 
                18  =  18 
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  The truss of fig. 1.9 is stable and internally determinate. 

4 6 12 15

2 8 13 17

181 3 5 7 9
10

11

14 16

 
Fig. 1.10. 

   b  =  18 
   r   =  3 
   j   =  10 
   b  +  r   =  2 j 
                18 +  3  =  2 × 10 
                21   >     20 
 
  This truss of fig. 1.10 is stable & internally indeterminate to 1st degree. 

2 6 10 13

4 8 11 15

161 3 5 7
9 12 14

17

 
Fig. 1.11. 

b  =  16 
   r   =  3 
   j   =  10 
   b  +  r   =  2 j 
   17 +  3  =  2 × 10 
   20     =    20 
 
 This truss is Unstable by inspection although the criterion equation is satisfied. The members in 

indicated square may get displaced and rotated due to gravity loads. 

Always inspect member positions. Insert one member in the encircled box or manage prevention of 
sliding by external supports to make it stable. 

 
NOTE:- The difference between the internal and the external indeterminacy is only in the definition of  ‘r’ 

1.4.3. TOTAL INDETERMINACY 
The question of total indeterminacy is of little interest and we have got different equations for 
different types of structures.  For example, the previous equation, i.e.,  b + r  = 2 j  can be used to 
check the total degree of indeterminacy of an articulated structure like truss by slightly modifying 
the definition of  “ r ”  which should now be considered as the “total number of reactive 
components available”. 
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  b  +  r  =  2 j 
 
 where b  =  Total number of bars. 

  r   =  Total number of reactive components available. 

  j   =  Total number of joints 

Example No. 1: Determine the external and internal conditions of stability and determinateness for the 

following structures:- 

 

3 2

1
4

9

7 8

65
 

 
Fig. 1.12 

 
  (i) External Stability And Determinacy:- 
   Number of  reactive components available =  2 

   Number of equations of equilibrium available =  3 

       ∴      Unstable. (Visible also) 

 (ii) Internal Stability And Determinacy  

   b  =  9 
   r   =  3 
   j   =  6 
   b  +  r   =  2 j 
   9  +  3  =  2 × 6 
   12  =  12 
                Degree of Indeterminacy =  D  =  12 − 12 = 0 

       ∴     Stable and Internally Determinate, if arrangement is improved to have Σ = 3. 

Example No. 2: 

Link

 
Fig. 1.13. 
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            * In this case the presence of a pin at each end of the link makes one additional type of movement 
possible if reaction components are removed. Two condition equations are therefore provided by 
the link in terms of algebraic sum of moments equal to zero at the joints of link. 

 
  External Stability and Determinacy. 
   Number of reactive components =  5 
   Number of equations of equilibrium available = 3 + 2* = 5 
   Degree of indeterminacy =  5 − 5 =  0 
       ∴      Stable and Externally Determinate. (Structure of fig. 1.13.) 
Example No. 3: 

0 0

1 2 3

4 5 6

7 8 9 10
11

1213

14
15

1617

18 19

2021

22

 
Fig. 1.14. 

 (i) External Stability and Determinacy:− 
   Number of reactions   = 3 
   Number of equations  = 3 
   D = 3 − 3 =  0 
           ∴ Externally Stable and Determinate 
 (ii) Internal Stability and Determinacy:- 
   b  =  22 
   r   =  3 
   j   =  11 
   b  +  r   =  2 j 
                D   =  ( b + r ) − 2 j 
         =  ( 22 + 3 ) − ( 2 × 11 ) 
         =  25 − 22 
                D   =  3  where D  =  Degree of indeterminacy. 
          ∴ Stable and indeterminate to 3rd degree. 
Example No. 4: 

Continuous frame
 

Fig. 1.15. 
 External Stability and Determinacy:- 
   Number of reactions  =  9 
   Number of equations =  3 
                D   =  9 − 3 =  6 
          ∴   Stable and Indeterminate to 6th degree. (fig. 1.15). 
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Example No. 5: 

1

2

6

3

4

5

 
Fig 1.16 

 (i)        External Stability And Determinacy :- 
   Number of reactions  =  6 
   Number of equations =  3 
   Degree of indeterminacy =  6 − 3  = 3 
          ∴   Stable and externally Indeterminate to 3rd degree. 
 (ii) Internal Stability and Determinacy :- 
   b  =  6 
   r   =  3, where  r  is the minimum reactive components required for external 
   j   =  6 stability and determinacy. 
 
  Degree of indeterminacy of rigid jointed structure. (Fig. 1.16) 
   D  =  (3b + r ) − 3 j 
   D  =  ( 3 × 6 + 3 ) − ( 3 × 6 ) 
   D  =  21  −  18 
   D  =  3 
                      ∴    Stable and indeterminate to 3rd degree. 
Example No. 6: 

 (i) External Stability and Determinacy :-  

3

20 21
4

18
5

19
17

16 15

14
12

13

11 10

6

7

2

1
8

9

 
Fig. 1.17. 
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Number of reactions  =  4 
   Number of equations =  3 
   D  =  4 − 3 =  1 
                     ∴     Stable and indeterminate to Ist degree. 
 

(ii) Internal Stability and Determinacy :- 
   b  =  21 
   r   =  3 
   j   =  11 
                D =  ( b + r ) − 2 j 
       =  ( 21 + 3 ) − 2 × 11 
                D =  24  −  22  =  2 
        ∴     Stable and indeterminate to 2nd degree. 
 
Note: In case of a pin jointed structure, there is one unknown per member and in case of rigid jointed 

structure there are three unknowns at a joint. 
Example No. 7: 

o o
 

Fig. 1.18. 
 
 (i) External Stability and Determinacy :- 
   Number of reactions  = 3 
   Number of equations =  3 
   D   =  3 − 3 = 0 
         ∴ Stable and Determinate. 
 
 (ii) Internal Stability and Determinacy :- 
   b  =  38 
   r   =  3 
   j   =  20 
                D =  ( b + r ) − 2 j 
       =  (38 + 3) − 2 × 20 
       =  41 − 40 
               D  =  1 
                      ∴   Stable and indeterminate to Ist degree. (Fig. 1.18) 
Example No. 8: 

o o
 

Fig. 1.19. 
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(i) External Stability and Determinacy :- 
   Number of reactions  =  3 
   Number of equations =  3 
   D  =  3 − 3  = 0 
          ∴ Stable and Determinate. 
 
 (ii) Internal Stability and Determinacy :- 
   b  =  54 

   r   =  3 

   j   =  25 

   b + r  =  2 j 

                54 + 3  >  2 × 25 

    57  >  50 
    D  =  57 − 50 =   7 
         ∴ Stable and indeterminate to 9th degree. (Fig. 1.19) 
Example No. 9: 

1 2

3

7

8

9

5

10

11

12 16

15

14 17

18

19

13

4

6

 
Fig. 1.20. 

 (i) External Stability and Determinacy :- 
   Number of reactions  =  12 
   Number of equations =  3 
                D  =  12 − 3  =  9 
          ∴ Stable and indeterminate to 9th degree. 

(ii) Internal Stability and Determinacy :- 
   b  =  19 
   r   =  3 
   j   =  16 
               D  =  ( 3 b + r )  = 3 j 

       =  ( 3 × 19 + 3 ) = 3 × 16 

       =  60  >  48 

   D  =  60  −  48  =  12 

        ∴    Stable and Internally Indeterminate to twelfth degree. (Fig. 1.20) 
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Example No. 10: 
 

5 3

2

8

9

10 1

4

6

7

11

 
Fig. 1.21. 

 
 (i) External Stability and Determinacy :- 
 
   Number of reactions  =  6 
   Number of equations =  3 
                D   =  6 − 3 = 3 
         ∴ Stable and Indeterminate to 3rd degree. 
 (ii) Internal Stability and Determinacy : - 
 
   b  =  11 
   r   =  3 
   j   =  9 
                D  =  ( 3 b + r )  − 3 j 
                     =  ( 3 × 11  +  3 )  −  3 × 9 
        = 36  −  27 
                              D  =  9 
                 ∴    Stable and indeterminate to 9th degree. (Fig. 1.21) 

Example No. 11: 

2

1

4

3

7 8

9 10

5

6

 
Fig. 1.22. 
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 (i) External Stability and Determinacy :- 
   Number of reactions  =  6 
   Number of equations =  3 
   D  =  6 − 3 =  3 
          ∴ Stable and indeterminate to 3rd degree. 

 (ii) Internal Stability and Determinacy :- 
   b  =  10 
   r   =  3 
   j   =  9 
                D =  ( 3 b + r ) − 3 j 
       =  ( 3 × 10 + 3 ) − 3 × 9 
                D =  33 − 27 
                D =  6 
  ∴     Stable and indeterminate to 6th degree. (Fig. 1.22) 

Example No. 12: 

12

11

10

98

7 2

3

4

6

513

14 1

o o o o  
Fig. 1.23. 

 (i) External Stability and Determinacy :- 
   Number of reactions  =  2 
   Number of equations =  3 
          ∴   Unstable Externally. (Visible also) 
 (ii) Internal Stability and Determinacy :- 

   b  =  14 
   r   =  3 
   j   =  8 
   D =  ( b + r ) − 2 j 
       =  ( 14 + 3 ) − 2 × 8 
   D =  1 
                      ∴ Stable and Internal Indeterminacy to Ist  degree. 
 



STABILITY, DETERMINACY OF STRUCTURES AND CONSISTENT DEFORMATIONS METHOD 13 
 

  

Example No. 13: 
 

1

3 5

2

8

6

74 10 12 15

19

20
18

17
16149

13

M=0

W

11

 
Fig. 1.24. 

 
 (i) External Stability and Determinacy :- 
   Number of reactions  =  4 
   Number of equations =  3 + 1  =  4 
                D =  4 − 4  = 0 
          ∴  Stable and Determinate. 
 (ii) Internal Stability and Determinacy :- 
   b  =  20 
   r   =  4 (Note this. A roller at either support will create instability) 
   j   =  12 
       ( b + r ) =  2 j 
    ( 20 + 4)  =  2 × 12 
              24  =   24 
                            D   =   24 − 24 =  0 
   (Here minimum  r  is  4 for internal stability and determinacy.) 
   ∴    Stable and determinate. 

Example No. 14: 

1 5 9 13 22 26 30

2

3

4
6

7
8

11

10 14
12

15

16
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17 19
21

20

23

24

27
25 29

28

31

33
32

34

38

35
37

36

4039
41

42 43

M=0
r = 1

M=0
r = 1

W W

 
Fig. 1.25. 
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 (i) External Stability and Determinacy :- 

   Number of reactions  =  6 
   Number of equations =  3 + 2  =  5 
   D =  6 − 5  =  1 
         ∴ Stable and Indeterminate to Ist degree. 

 (ii) Internal Stability and Determinacy :- 
   b  =  43 
   r   =  3 + 2 = 5  (take notice of it). Two pins where ΣM  =  0 
   j   =  24 
               b  +  r  =  2 j 
               43 + 5  =  2 × 24 
               48  =   48 
               D   =  48 − 48  =  0 
      ∴      Stable and Determinate. (Fig. 1.25) 

Example No. 15: 

 

M=0

M=0

M=0

M=0

M=0  
Fig. 1.26. 

 (i) External Stability and Determinacy :- 

   Number of reactions  =  8 
   Number of equations =  8 = (3 + 5) 
   D  =  8 − 8 = 0 
                      ∴ Stable and Determinate. 

 (ii) Internal Stability and Determinacy :- 
   b  =  42 
   r   =  3 + 5  =  8. There are 5 joints where ΣM  =  0 
   j   =  25 
       b  +  r    =  2 j 
       42 + 8   =  2 × 25 
            50     =     50 
              D    =  50 − 50  =  0 
                   ∴     Stable and Determinate. 
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Example No. 16: 

o o o o

2

1

8

7

11

12

14

16

15

3

4

9

10

6 5

13

 
 (i) External Stability and Determinacy :- 

   Number of reactions  =  4 
   Number of equations =  3 
                D  =  4 − 3  =  1 
         ∴    Stable and Indeterminate to Ist degree. 
 (ii) Internal Stability and Determinacy :- 

   b  =  16 
   r   =  3 
   j   =  9 
                D =  ( b + r ) − 2 j 
       =  ( 16 + 3 ) − 2 × 9 
       =  19  −  18 
                D =  1 
           ∴  Stable and Indeterminate to Ist degree. 
In the analysis of statically determinate structures, all external as well as internal forces are completely 
known by the application of laws of statics.Member sizes do not come into the picture as no compatibility 
requirements are to be satisfied. However, in the analysis of indeterminate structures we should have 
member sizes, sectional and material properties before doing the analysis as member sizes would be  
involved in the determination of deflections or rotations which are to be put in compatibility equations 
afterwards. Now we discuss methods for finding deflection and rotations. 
 
1.5. METHODS FOR FINDING DEFLECTION AND ROTATION;- 

Usually following methods are used in this classical analysis of structures.. 
 --- Unit  - load method.  (Strain energy method). 
 --- Moment - area method. 
 --- Conjugate beam method  (a special case of moment - area method). 
 
1.5.1. MOMENT AREA THEOREM (1) ;- 

The change of slope between tangents drawn at any two points on the elastic curve of an originally 
straight beam is equal to the area of the B.M.D between these two points when multiplied by  1/EI 
(reciprocal of flexural stiffness), 
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A B

Tangent at A

Tangent at B

AB

    = --- (Area of B.M.D.1
EI between A & B)

AB

    = --- (AREA)1
EIAB AB

Signs of Change of Slope:-

AB Tangent at A

Tangent at B
(a)

A B
Tangent at A

Tangent at B

(b)

A B

Elastic curve

Elastic curve

Elastic curve

Fig 2.1
Fig 2.1

θ 

θ 

θ 

θ 

ABθ 

 
 
 
(a) Positive change of slope, θAB is counterclockwise from the left tangent. (Fig. 2.1a) 

(b) Negative change of slope, θAB is clockwise from the left tangent. (Fig. 2.1b) 

1.5.2. MOMENT  AREA  THEOREM  (2) :- 

“The deviation of any point on elastic curve from the tangent drawn at some other point on the 

elastic curve is equal to 
1
EI multiplied by the moment of the area of the bending moment diagram 

between these two points”. The moment  may generally be taken through a point where deviation is 
being measured. 

 
A B

Elastic curve.

BA = Deviation of point B w.r.t
         tangent at A

t

BAt = (Area)
AB

XB
1
EI

Fig 2.2

AB

tangent at A

tangent at B  
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1.5.3. SIGN  CONVENTION FOR DEVIATIONS:- 

BA=Deviation of point B on elastic curve w.r.t.
       tangent at point A on elastic curve

t

A
B

(a) Positive deviationFig 2.2

 
 

BA

Fig 2.2 (b) Negative deviation

tangent at A

Elastic curve

BA=Deviation of point B on elastic curve w.r.t.
       tangent at point A on elastic curve

t

 
 (a)  Positive Deviation:- B located above the reference tangent. (Tangent at A; Fig. 2.2a) 

 (b)  Negative Deviation:- B located below the reference tangent. (Tangent at A; Fig. 2.2b) 
 
1.5.4. INEQUALITY OF  tBA  AND  tAB 

Depending upon loading, these two deviations tab and tba may not be equal if loading is 
unsymmetrical about mid span of the member. 

 

tAB
tBA

Reference tangent at B Reference tangent at A

Fig. 2.3

Elastic curve
A B

tAB tBA

 
 
1.6. BENDING MOMENT DIAGRAM BY PARTS: 

In order to compute deviations and change of slope by moment area method, bending moment 
diagram may be drawn in parts i.e. one diagram for a particular load starting from left to right. 
Same sign convention would be followed for bending moment and shear force as have been 
followed in subjects done earlier. Bending moment would be positive if elastic curve resembles 
sagging i.e. compression at top fibers and tension at the bottom fibers while shear force would be 
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positive at a section of a portion being considered as a free body when left resultant force acts 
upwards and right resultant force acts downwards. Negative bending moment and shear force 
would be just opposite to this. 

 
1.6.1. SIGN CONVENTIONS FOR SHEAR FORCE AND BENDING MOMENT 
 

Compression

Compression

Tension

Tension

Positive B.M. Positive Shear Force

Negative Shear Force

Negative B.M.

L

L

R

R

L

L

R

R

Fig 2.4  
 Consider the following loaded beam. Start from faces on LHS and move towards RHS. Construct 
BMS due to all forces encountered treating one force at a time only. 

P P

DC

1 2

BA

o o

+

-

-

-

Ra

B.M.D. due to Ra = Ra x L

B.M.D. due to P

B.M.D. due to P

1

2

2

1

2

P x --- L

P x --- 

3
4

L
2

B.M.D. due to U.D.L.
W x (L/2) x ___  =  ___(L/2)

2
WL
8

L/4 L/2L/4
Rb

 
We observe that the moment effect of any single specified loading is always some variation of the general 
equation. Like 

y  =  kXn  (1) 
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This Relationship has been plotted below. While drawing bending moment diagrams by parts and starting 
from left, for example, Ra is acting at A. Imagine that Ra is acting while support at A has been removed and 
beam is fixed adequately at B ( just like a cantilever support), the deflected shape whether sagging or 
hogging will determine the sign of B.M.D. Similar procedure is adopted for other loads. 

y

xx

y=kXn

n=2

dxX

where k = constant
           n = degree of 

curve of
B.M.D

i.e. y=PX       k=P, n=1
y =         k = w/2,wx

2
2

b

h

y

A

Fig. 2.6
Generalized variation of B.M. w.r.t. x

X

 

      In general     X  = ∫ Xd A
A  

 
  Area of the strip  =  ydX  =  kXn dX   by putting value of  y. 

        Total  area    =  A  =  
b

∫
o
 kXn dX 

           A  = 



kXn+1

n + 1

b
 
o
 

 

                        A  = 
Kb(n+1)

(n + 1) 

 
We want to find the total area under the curve in terms of ‘b’  and ‘h’ and for that the constant ‘k’ has to be 
evaluated from the given boundary conditions. 
 
     At   X  =  b   , y  =  h 
   Put this in  (1) ,  y  =  kX n  
   we get   h  =  kb n  

    or  k  =  
h
bn     Put this in equation for  A  above. 
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          A  =  
h bn+1

bn (n+1)  Simplifying 

 

   = 
h bn . b
bn (n+1) 

So            A = 
bh

(n+1)      (2) 

Now its centroid would be determined with reference to fig. 2.6.. 

           X
−

  =  ∫  X d A
A   

   =  ∫  X (ydX)
A  Put y= kXn 

    = ∫  X kXn dX
A  

    =  
b

∫
o
 
k Xn+1 dX

A  Now put k= 
h
bn and A= 

bh
(n+1)  we have 

   = 
b

∫
o
 
h/bn (X)n+1 dX

bh/(n+1)  

    =  
b

∫
o
 
h (Xn+1) dX(n+1)

hbn+1  simplifying step by step 

   =  
(n + 1)
b n+1  

b

∫
o
 Xn+1dX 

   =  
(n + 1)
b n+1   



Xn+2

(n+2)

b
 
o
 

    =  
(n + 1)
b n+1   

bn+2

(n+2) 

   =  
(n + 1)
b (n+1)   .  

bn+1 . b
(n+2)  

 
__
X  = 

b (n+1)
(n+2)     (3) 

X
−

 is the location of centroid from zero bending moment 
 From above figure 2.6, we have 

              X
−

  +  X/  =    b  

              ∴     X/    =  b   −    X
−

 

    =  b  −  
b (n + 1)
(n + 2)   Simplify 
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    = 
b (n + 2) − b (n + 1)

(n + 2)  

 

    =  
bn + 2b − bn − b

(n + 2)  

 

X/ = 
b

(n+2)    (4) 

 
This gives us the location of centroid from the ordinate of B.M.D 
 

A= 
bh

(n+1)    (2) 

 
Note:- While applying these two formulae to calculate the deflection and the rotation by moment area 

method and with diagrams by parts, it must be kept in mind that these two relationship assume zero 

slope of the B.M. Diagram at a suitable point. It may not be applied to calculate A  & X
−

 within 
various segments of the B.M.D where this condition is not satisfied. Apply the above equations for 
area and centroid to the following example. 

 
 

L

x  =  ---L4

Tangent of elastic curve at A.

Elastic curve

0

WL
2

WL
6

2

3
A =

( - )

2nd degree curve

 ab Cantilever under u.d.l

B.M.D

Fig 2.7

A
θ 

B
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Tangent at A on
Elastic curve.

L

ab

P

A B

PL

Eleastic 
curve

A

a= t AB

B.M.D

Fig. 2.8

X = 2/3L

X = L/3

 
(−ve) sign  in the deflection of diagram below does not mean that area is (−ve) but ordinate of BMD is 
(−ve). For loads the fig. 2.7. 
 

  ∆a = 
1
EI 



 A × 

3L
4  

 

       = 
1
EI 



-WL3

6  × 
3L
4  

 

       = 
−WL4

8EI  

 
1.7. FIRST THEOREM OF CONJUGATE BEAM METHOD :− 

In simple words the absolute slope at any point in the actual beam is equal to the shear force at the 

corresponding point on the conjugate beam which is loaded by  
M
EI diagram due to loads on actual 

beam. 
 
1.7.1. SECOND THEOREM OF CONJUGATE  BEAM METHOD :- 

The absolute deflection at any point in the actual beam is equal to the B.M at the corresponding 

point on the conjugate beam which is loaded by 
M
EI  diagram.  

 
The reader is reminded to draw conjugate beams for actual beams under loads very carefully by 
giving due consideration to support conditions of actual beam. In general for a fixed and free end 
of actual beam, the corresponding supports would be free and fixed in conjugate beam 
respectively. Deflection ∆ at any point on actual beam is associated with the bending moment at 
corresponding point on conjugate beam while rotation θ at any point on actual beam is associated 
with shear force at corresponding point on conjugate beam. At an actual hinge support ∆ is equal 
to zero and θ is there indicating non development of moment at the support (Shear force present, 
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bending moment zero). The corresponding support conditions in conjugate beam would be such 
where bending moment is zero and shear force may be there i.e., a hinge is indicated. See the 
following example. 

 
EXAMPLE :- Calculate the central deflection by the conjugate beam method: 

 

EI=Constt.

L/2

P

C

PL
16EI

2
PL

16EI
2 PL

16EI
2

PL
16EI

2

L/6
C/A B

/
/

A B

PL/4
P/2

+

PL/8EI

P/2

B.M.D/EI

+

A = --- x L x ---1
2

PL
4EI

= ----PL
8EI

2

2
  a =   b = -----PL

16EI

Actual beam
under load

Fig. 2.9

Conjugate beam
under M/EI diagram
as a load

θ θ 

 
 

  ∆C  =  Mc′   =  
PL2

16EI × 
L
2 − 

PL2

16EI ×  
L
6    (considering forces on LHS of  

    =  
PL3

32EI − 
PL3

96EI = 
3PL3 − PL3

96EI  = 
2EPL3

96EI  point C of shaded area) 

   ∆C =  
PL3

48EI 

 
1.8. STRAIN ENERGY :- 

“The energy stored in a body when it undergoes any type of deformation  (twisting, elongation, 
shortening & deflection etc.) under the action of any external force is called the strain energy.” If 
this strain energy is stored in elastic range it is termed as elastic strain energy. All rules relating to 
strain energy apply. The units of strain energy are the same as that of the work i.e., joule (N − mm, 
N − m). 
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1.8.1. TYPES OF STRAIN ENERGY :- 
1.8.1.1 STRAIN ENERGY DUE TO DIRECT FORCE :- 
 

P
L

P

AE = Axial Stiffness

Fig. 2.10  
 

Work done by a gradually increased force ‘P’ is equal to area of load − deflection diagram = P/2 ∆. 
(From graph) 
          … Stress  ∝  Strain              (Hooke’s Law) 

  So f    ∝   ∈ 

   f   =   Constt  .  ∈  

                f   =   E . ∈  

                
P
A  =   E × 

∆
L 

  so ∆  = 
PL
AE     Strain energy will be 

1
2  P∆  from above. So putting it we have. 

  ⇒ U  = 
P
2 



PL

AE  ,  where U is the internal strain energy stored. 

   U  =  
P2L
2AE     (for single member) 

   U  = Σ 
P2L
2AE  (for several members subjected to axial forces) 

 
1.8.1.2. STRAIN ENERGY DUE TO BENDING, SHEAR FORCE AND TORSION :- 

 (1) U  =  
L

∫
O
 
M2 dX
2 EI  . This is elastic strain energy stored due to bending. 

 (2)  Strain Energy Due to shear force:- U = 
L

∫
O
 
Q2 ds
2AG    where Q is shear force and G is shear modulus 
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 (3)  Strain Energy Due to Torsion:- U = 
L

∫
O
 
T2 ds
2GJ   (Consult a book on strength of Materials). Where 

T is Torque and J is polar moment of inertia.  
  
1.9. CASTIGLIANO’S THEOREM :- 

In 1879, Castigliano published two theorems connecting the strain energy with the deformations 
and the applied loads. 

 
1.9.1 CASTIGLIANO’S FIRST THEOREM :- 

The partial derivative of the total strain energy stored with respect to a particular deformation 
gives the corresponding force acting at that point. 

 
 Mathematically 

 
PM

 
 

    
∂U
∂∆  =  P  Where U is strain energy stored in bending  

 

 and 
∂U
∂θ   = M . Here  ∆  is connected with loads and θ  with moment. 

 

1.9.2. CASTIGLIANO’S SECOND THEOREM :- 
The partial derivative of the total strain energy stored with respect to a particular force gives the  

corresponding deformation at that point. 
 
  Mathematically, 

  
∂U
∂P  = ∆ 

 and 
∂U
∂M =  θ  Here  ∆  is connected with loads and θ  with moment. 

 
1.10. CONSISTENT DEFORMATION METHOD :- 

This method may be termed as redundant force method or simply a force method. In this method, 
the statically indeterminate structure is idealized as a basic determinate structure under the action 
of applied loads plus the same structure under the action of redundant forces considered one by 
one. The deformations produced at the points of redundancy are calculated in the above-mentioned 
basic determinate structures and then these calculated deformations are put into compatibility 
requirement for the structure. Normally these are satisfied at a joint. 
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 Now for a given beam, various possible Basic determinate structures (BDS) would be given. A 
clever choice of BDS for a given structure can reduce the amount of time and labour. 
 

1. First
    alternative

 
 
 
 

 
 
 
 

θ 
θ 

θ 
is present
is present  

 
 
 

 
 
 An indeterminate structure can be made determinate in several ways and the corresponding 
quantities may be calculated very easily. However, we will notice that a clever choice of making a basic 
determinate structure will reduce the time of our computations tremendously. In Figs. 2.11 and 2.12 various 
options regarding choice of BDS are given while Figs. 2.13 and 2.14 illustrate how to make conjugate beam 
for a given beam using the guidelines stated earlier. Consider another loaded beam in Fig. 2.15. 
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A B
Ma

Ra

P P

B

B

B

P P

A

/

Basic determinte structure
under applied loads only.

Rb has been chosen
as redundant.

Fig. 2.15

Fig. 2.15 a  
 
 where ∆B is the deflection at point B due to the applied loads. 
 

BA

B.D.S. under unit
redundant force at B.

1

bb

Fig. 2.15 b  
 
 So compatibility of deformation at B requires that  
  ∆B  +  Rb  ×  δbb  =  0 (Deflection Produced by loads Plus that by redundant should  
 where ∆B  =  Deflection at B due to applied loads in a BDS.            be equal to zero at point B) 
  δbb  =  deflection at B due to redundant at B in a BDS. 

  or Rb =  − 
∆B
δbb   (sign is self-adjusting) 

 

A

P P

Ba Ma has been
considered as
redundant force.

Fig. 2.16

θ 

 
 
   θa = Slope at point. A due to applied loads only in a BDS. 

 The other option of a simple beam as BDS is shown in fig. 2.16. 
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A Ba

B.D.S. under unit redundant moment at A.
where   aa = slope at A due to unit redundant moment at A.

M = 1

Fig 2.16a

∝

 

a

 
 
Compatibility equation     θ a  +  Ma . ∝ aa  =  0 (Slope created by loads + slope created by redundant  
      moment should be zero) 

   or  Ma =  − 
θ a
∝aa 

“In consistent deformation method  (force method ), there are always as many conditions of geometry as is 
the number of redundant forces.” 
 
1.11. Example No. 1:- Analyze the following beam by the force method. Draw S.F. & B.M. diagrams. 
 
SOLUTION :- 

P

Ma

A

Ra

EI = Constt.

B
L/2L/2

Rb
Fig2.17  

   Number of reactions  =  3 
   Number of equations =  2 
   Degree of Indeterminacy = 3 − 2 =  1 
   Indeterminate to Ist degree. 
 
SOLUTION: (1) Chose cantilever as a basic determinate structure. 
 
 

B

L/2 L/2

P
B

B

+ L

B

B

bbEI = Constant

1

Fig 2.17a Fig 2.17b  
 
 
      δbb=Deflection of point B due to unit load at B 
 B.D.S. under applied loads.  B.D.S. under unit redundant 
      force at B. 
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Therefore, now compatibility requirement is  

  ∆B + Rb × δbb  = 0 ( Deflection created by actual loads + deflection 
      created by redundant Rb should be equal to zero at support B) 

 or Rb  = − 
∆B
δbb   →   (1) 

Therefore, determine these deflections ∆B and δbb in equation (1)  either by moment area method 
or by unit load method. 

 
1.11.1. DETERMINE  ∆B  AND  δbb  BY MOMENT - AREA METHOD :- 

L/2 L/2

P

P

B

B
/

B
EI = Constant

PL
2

1
2

PL
8

PL
2

L
2 =x x

2

o    BMD due to
      applied loads.

PL/82

L/6 L/3 L/2

PL/2

Area of BMD = BDS under
applied loads

A

 
 

    ∆B =  
I

EI  



−

PL2

8  



L

2 + 
L
3  

     =  
I

EI  



−

PL2

8  × 
5L
6  

    ∆B =  − 
5PL3

48EI 

L

I

bb

BA

I

L

2/3 L

L
2

1
2 x L x L

2

=
o o

L=Lx1

Fig 2.18 a

BMD due
Unit redundant

BDS under unit
redundant at B

 
 

  δbb =  
I

EI  



−

L2

2  × 
2L
3  
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  δbb =  − 
L3

3EI , Putting ∆B and δbb in equation (1) 

 

  Rb  =  −  





−
5PL2

48EI  / −
L3

3EI  By putting ∆B and δbb in compatibility equation 

 

        =  −  
5PL3

48EI  ×  
3EI
L3  = − 

5P
16 

 
 The  (− ve) sign with Rb indicates that the direction of application of redundant force is actually 

upwards and the magnitude of redundant force Rb is equal to 
5P
16 . Apply evaluated redundant at point B. 

P

L/2L/2y

x
11P
16

5P
16

Ma = 3PL
16

 
Fig. 2.19 

 
  ∑fy  =  0 
 
  Ra + Rb  =  P 
 

  Ra  =  P − Rb  =  P − 
5P
16   =  

11P
16  . Now moment at  A  can be calculated. 

 

Direction of applied moment at A =  
5P
16 × L − P . 

L
2  =  

5PL
16  −  

PL
2  

 

    =  
5PL − 8PL

16  

 

    =  − 
3 PL
16  

The  (−ve) sign with 
3 PL
16  indicates that the net applied moment about ‘A’ is clockwise. Therefore, the 

reactive moment at the support should be counterclockwise (giving tension at top). Apply loads and 
evaluate redundant on the given structure. 
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L/2 L/2

Ma =3PL
16

EI = Constant 5P
1611P

16

Rb =

0       S.F.D

11P
16

5P
16
5P
165PL

32

3PL
16

+

(-ve) B.M
0

X =       L8
11

0 B.M.D

0
+

P

Fig. 2.20  
 
LOCATION OF POINT OF CONTRAFLEXURE :- 
 

  MX =  
5 PX

16   −  P 



X − 

L
2   =  0 

 

   =  
5 PX

16   −  PX  +  
PL
2   =  0 

 

   =  − 
11PX

16   +  
PL
2   =  0 

 

   =  
PL
2   =  

11PX
16  

X = 
8L
11  

Note:- In case of cantilever, moment − area method is always preferred because slope is absolute 
everywhere. 

 

L/2 L/2
P

B
EI = Constant

A

Elastic curve
Fig. 2.21  
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Solution: (2)  As a second alternative, Chose  Simply Supported Beam  as a  basic determinate structure. 

+

Fig. 2.21a
1

Fig. 2.21b
B.M.D due
to unit redundant
moment at A

Fig 2.21d

L/3EI

Fig. 2.21c

BDS under
loads

BDS under
unit redundant

L

(by 1st moment
area theorem)

diagram on
conjugate beam

2

2 2

22

6

 
 

 ∝ aa =  
L

3EI 

  θ a =  
PL2

16EI   (by 1st moment area theorem) 

  For fixed end, there is no rotation.  Therefore compatibility equation becomes  
  θ a  +  Ma ∝ aa  =  0  (slope at  A  created by loads  +  slope at  A  created 

 So Ma =  − 
θ a
∝aa   by redundant should be zero). 

  θ a  &  ∝ aa are the flexibility co−efficients.  Putting these in compatibility equation 

    we have, Ma =  − 
PL2

16EI × 
3EI
L  

  Ma =  − 
3PL
16  

 The (−ve) sign with Ma indicates that the net redundant moment is in opposite direction to that 
assumed. Once Ma is known, Ra and Rb can be calculated. 

L/2 L/2
P

B
EI = Constant

A

3PL
16

11P
16

Ra= 5P
16

Rb=

Fig. 2.22  
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To calculate Rb,  ∑Ma  =  0 

  Rb × L −  P × 
L
2  +  

3PL
16   =  0 

  Rb  ×  L  =  
PL
2   −  

3PL
16  

    =  
8 PL  −  3 PL

16  

  Rb  ×  L  =  
5PL
16  

Rb = 
5P
16  

∑fy  =  0 
  Ra  +  Rb  =  P    so  Ra  =  P  −  Rb  

        =  P  −  
5P
16 

Ra = 
11P
16  

Note:- In case of simply supported beam, conjugate beam method is preferred for calculating slopes and 
deflections. 

1.12. Example No. 2:-    Analyze the following beam by the force method. Draw S.F. and B.M. diagrams. 
 
SOLUTION :- 

 

Ra

L

No. of reactions  =  4
No. of equations =  2
Degree of Indeteminacy = 4 - 2 = 2
Indeterminate to 2nd degree.

Rb

WKN/m

A

Ma Mb

EI = Constant
B

Fig. 2.23  
 Choosing cantilever with support at A as BDS. Vertical reaction at B and moment at B will be 
redundants. To develop compatibility equations at B regarding translation and rotation at B, we imagine the 
BDS under applied loads and then under various redundants separately. 
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L

WKN/m

A
B

B

b
B

tangent at BFig. 2.23a B.D.S under loads  

L

A B

bb

B bb

+ 1

EI = constant

Fig. 2.23b B.D.S. under redundant unit
                vertical force at B  

L

A
B

bb

B bb

+
1

Fig. 2.23c B.D.S. under unit redundant
                 moment at B

EI=constant

 
  Compatibility Equations 

  ∆B  +  Vb  ×  δbb  +  Mb  ×  δ′bb  =  0    →   (1) For vertical displacement at B 

  θB  +  Vb ×  ∝′ bb  +  Mb  ×  ∝bb =  0   →   (2) For redundant moment at B 

Notice that rotation produced by Unit load at B (α'bb) and deflection produced by unit moment of  B  (δ'bb) 
are denoted by dash as superscript to identify them appropriately. 

  In matrix form 

  



δbb       δ′bb

∝′bb      ∝bb         



Vb

Mb     =    



- ∆B

- θB  

            ↑                         ↑                  ↑                           
Structure flexibility   Column vector     Column vector of  
            matrix.           of redundants.      flexibility coefficients. 

  



Vb

Mb     =    



δbb       δ′bb

∝′bb      ∝bb     



- ∆B

- θB  
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Now we evaluate ∆B, θb, δbb, α'bb, δ'bb and ∝bb with the help of moment area theorems 
separately, where ∆    =  Deflection at B in BDS due to applied loads 

θb  =  Rotation at B in BDS due to applied loads. 

 

L

WKN/m

A
B

WL

WL
2

2

WL
2

2
WL
6

3

X = L/4
3L
4

B.M.S. due to
applied loads.

0 0

B.M.D

B.D.S. under loads
Fig. 2.24a

 
 
 
  Calculate area of BMD and fix its centroid 

 

A  =  
bh

(n+1)  =  
L × (− WL2)

(2+1)   =   − 
WL3

6   b  =  width of BMD. 

       h  =  ordinate of BMD. 

 

  X′ =  
b

n + 2  =  
L

(2 + 2)  =  
L
4      By applying second theorem of moment area, we have 

 

  ∆B =  
1
EI  



−

WL3

6  × 
3
4 L   =  − 

WL4

8EI  

 

  θb  = 
1
EI  



−

WL3

6   =  − 
WL3

6EI  
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A
B
1

L

0 0

L
2

21
2 x L x L =

L/3 2L/3L

L

Fig. 2.24b      B.M.D. due to unit redundant force at B

B.D.S. under unit redundant force at B.  
 

  δbb =  
1
EI  



−

L2

2  × 
2
3 L   =  − 

L3

3EI  ;  δbb  = Deflection at B due to unit redundant at B 

 

  α′bb =  
1
EI  



−

L2

2   =  − 
L2

2EI   ;    α′bb  =  Rotation at B due to unit redundant at B 

 

A B
1 1

L

L/2

L x 1 = L

0

1

0

1
B.M.D

Fig. 2.24c B.D.S under unit redundant 
                moment at B

B/

α′bb 

δbb 

 
 

  δ′bb = 
1
EI  



− L × 

L
2   =  − 

L2

2EI 

 

  ∝bb = 
1
EI  [ ]− L   =  − 

L
EI 
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 Normally BMD’s are plotted on the compression side of beam. 
 
 Putting values in first equation, we have 

 − 
WL4

8EI   −  Vb  ×   
L3

3EI  −  
L2

2EI  Mb  =  0  (1) multiply by 24 and simplify to get 

        equation  (3) 
 
 Putting values in second equation, we have  (2) multiply by 6 and simplify to get  

 − 
WL3

6EI   −  
Vb x L2

2EI   −  
L x Mb

EI   =  0    equation   (4) 

 
 − 3 WL4   −   8 L3  ×  Vb  −  12 L2  ×  Mb  =  0 (3) 
 
        or   3 WL4    +   8 L3  Vb   +  12 L2      Mb   =  0    (3) 
 
 − WL3     −    3 L2    Vb   −   6 L   Mb   =  0  (4) 
 
        or WL3     +    3 L2    Vb    +   6 L  Mb  =  0  (4) 
 
 Multiply (4) by  2 L  &  subtract (4) from  (3) 
 
 3 WL4    +   8 L3    Vb   +   12 L2   Mb   =  0  (3) 
 
 2 WL4    +  6 L3     Vb   +  12 L2    Mb   =  0  (4) 
 
 WL4     +  2 L3     Vb   =  0 
 WL4    =   −  2 L3   Vb 

 Vb       =   − 
WL4

2L3  

Vb = − 
WL

2   

 
 The (−ve) sign with  Vb  shows that the unit redundant load at B is in  upward direction.( Opposite 
to that assumed and applied) 
 Putting the value of  Vb in  (3) 
 

  3 WL4     +  8 L3   



− 

WL
2   +  12 L2    Mb  =  0 

 or 3 WL4    −   4 WL4    +   12 L2   Mb  =  0 
  WL4    =   12 L2   Mb 

  Mb     =  
WL4

12L2 

 Mb  =  
WL2

12   

 The ( +ve) sign  with  Mb  indicates that the assumed direction  of  the unit redundant moment at B 
is correct. Now apply the computed redundants at B and evaluate and apply reactions at A. 
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L

WKN/m

A B

Va=WL/2 Vb=WL/2

WL WL
2 211

2 2

Fig. 2.25

Ma= Mb=

0 0

B.M.D

0.789 L

0.211L 0.578L 0.211L

WL
21

2WL
21

2

WL
42

2

 
 
 Points of  Contraflexure : - 

 
 B  as origin :-     write moment expression 
                               

  Mx =  
WL

2  X  − 
WL2

12   −  
WX2

2   =  0 

 

   Multiply by 
12
W  and re-arrange. 

 
       6 X2  −   6 LX   +   L2   =  0 
 

  X =  +  
6L ± 36 L2 − 4 × 6 × L2

2 × 6  

 

   =   
6L ± 36 L2 − 24 L2

12  

 

   =   
6L ± 12 L2

12  

 

   =   
6L ± 2 3 L2

12  

 

    =  
6 L   ±  3.464 L

12  
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    =  
9.464 L

12     ,    
2.536 L

12  

 
   X =  0.789 L    ,    0.211 L  Location of point of contraflexure 
        From both ends. 

 X  =  0.211 L  
 

 Same can be done by taking A  as origin and writing moment expression : − 

     Mx′ =  
WLX′

2   −  
WL2

12   −  
WX′2

2   =  0 

 
      6 WLX′   −   WL2  −   6 WX′2    =   0  Simplify 
 

      LX′   −  
L2

6   −  X′2  =  0 

 

       X′2  −  LX′  +  
L2

6   =   0 

 

       X′ =  
L ± L2 − 4 × 1 × 

L2

6
2 × 1  

 

  =  
L  ±  L2  −  

2 L2

3
2  

 

  =  
L  ±  

L2

3
2  

 

  =  
L  ±  

1
3 . L2

2  

 

       X′ =  
L ± 0.577 L

2  

 
         X′   =   0.789 L ,     0.211 L  Location of points of contraflexure. 

 X′ = 0.211 L  
We get the same answer as before. 

 This is a flexibility method and was written in matrix form earlier. The matrix inversion process is 
given now for reference and use. 
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1.13. MATRIX INVERSION : - 
These co-efficients may also be evaluated by matrix Inversion so basic procedures are given. 

  Inverse of matrix   =  
Adjoint of matrix

Determinant of matrix 

 
  Adjoint a matrix    =  Transpose ( Interchanging  rows & columns) of matrix of  
          co-factors. 
  Co-factors of an element = (− 1)i+j  ×  minor of element.where i  =  Row number in which 

 that element is located and  j  =  Column number in which that element is located. 

  Minor of element = Value obtained by deleting the  row & the column in which that 
                     particular element is located and evaluating remaining determinant. 
 Let us assume  a matrix : 

            A =  






1          3          7

4          5          9
8         10         11

 

 
 Determinant of matrix  A =  1 (5 × 11 − 10 × 9 )− 3 (44 − 72)  + 7 ( 4 × 10 − 8 × 5 ) 

    =  − 35  +  84  +  0 

    =  47 

MINORS OF MATRIX :- 
 Find out the minors for all the elements of the matrix. Then establish matrix of co-factors. 

 

Matrix of  Minors =  






-35      -28      0

-37      -45     -14
-8       -19       -7

 

 

 Matrix of co-factors =  






-35      28       0

37      -45      14
-8       19       -7

 

 

 Adjoint of matrix A =  






-35      37       -8

28      -45      19
0        14       -7

 

 

 Inverse of matrix  =  
1

49  






-35      37       -8

28      -45      19
0        14        -7

 

 

   A-1  =  






-0.71          0.755          -0.163

0.571        -0.918            0.387
0                 0.286          -0.143

 

  A x A−1  =  I =  






1      0      0

0      1      0
0      0      1

 Check for correct matrix inversion 

 Aij  x  Bjk  =  Cik 
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   A A−1  =  






1      3      7

4      5      9
8     10    11

      






−0.71        0.755      −0.163

0.571      −0.918        0.387
0               0.286      −0.143

 

 

  =  






−1×0.71+3×0.571+7×0          1×0.755−3×0.918+7×0.286          −1×0.163+3×0.387 −7×0.143

                 0                                                  1                                                        0
                 0                                                  0                                                        1

 

   AA−1 =  






1          0          0

0          1          0
0          0          1

 Proved. 

1.14. 2ND DEGREE INDETERMINACY :-  
Example No. 3: 
Solve the following continuous beam by consistent deformation method. 
 

A B C D

40 kN

3m 4m 5m

EI = constant
Fig. 2.26  

 In this case, we treat reaction at B and C as redundants and the basic determinate structure is a 
simply supported beam  AD. 
 

B C

40 kN

Fig. 2.26 a

A D

Bending under applied loads

B C
1

Fig. 2.26 b

A D

Bending under unit redundant force at B

bb cb

B C

1

Fig. 2.26 c

A D

Bending under unit redundant force at C

bc cc
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 Compatibility equations are as follows: 

  ∆B + δbb  ×  Rb + δbc  ×  Rc  =  0    →    (1) For compatibility at B 

  ∆C + δcb  ×  Rb + δcc  ×  Rc  =  0    →    (2) For compatibility at C 

 Evaluate the flexibility co-efficients given in equation (1) and (2). Using Conjugate beam method. 

A 5 m 7 m D

16.67 KN
23.33 KN

∑

∑

23.33
+

+

0     S.F.D.
16.67

116.67 KN

70/EI 83.35/EI
116.67

EI

B.M.D.

W
b

D’

6.335.67

   MD=0
RAx12 - 40x7=0
RA=23.33 KN
   FY=0
RA+RD=40
RD=16.67 KN

a

40 KN

M=
Wab

L

Fig. 2.27

A B C

369.455
EI

291.675
EI

700.02
EI

408.345
EI

330.565
EI

3 5

L

L + a L + b
3 3

In general for a simple beam loaded as below,
the centroid is a shown

M
EI

diagram

 
 
  ∑MD′ = 0, Calculate RA'  

  RA′  × 12  =  
291.675

EI    



7 + 

1
3 5   +  

408.345
EI    



2

3 x 7  

 

      =  
2527.85

EI   +  
1905.61

EI  

 

  RA′   =  
369.455

EI  

 
  ∑Fy   =  0 
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  RA′ + RD′ =  
369.455

EI   +  RD'  =  
700.02

EI  

   RD′  =  
700.02

EI   −  
369.455

EI  

 

   RD′  =  
330.565

EI  . Now ordinates of 
M
EI diagram are determined by comparing 

Similar triangles. 
 

    
116.67

5 EI   =  
Y
3       ⇒  Y =  

70
EI 

 
 Now by using conjugate beam method (theorem 2) 
 

  ∆B =  
1
EI    



369.455 × 3 − 



1

2 × 3 × 70  × 
3
3  

 

  ∆B =  
1003.365

EI   KN − m3 

 
 Determine  

   
116.67

7   =  
Y
5  

   Y =  83.34 

  ∆C =  
1
EI    



330.565 × 5 − 



1

2 × 5 × 83.34  × 
5
3  

 

  ∆C =  
1305.575

EI   KN − m3 

 
 Now apply unit redundant at B. 
 

B

B

C
1

Fig. 2.28

A

A

D

D

bb cb
3m 4m 5m

2/3 1/3

2.25/EI
1.25/EI

13.55 7

Conjugate beam under M/EI7.875/EI 5.625/EI

C
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Computing Co-efficients by Conjugate beam method.  (Theorem 2) 

 MB'   =   δbb =  
1
EI   [ 7.875 × 3  −  3.375 × 1 ] 

  δbb =  
20.25

EI   KN − m3 

Determine ordinate     
2.25

9   =  
Y
5  

  Y =  
1.25
EI  

 MC'   =  δcb =   
1
EI  



5.625 × 5 − 3.125  × 

5
3  

  δcb =  
22.92

EI   KN − m3 

Now apply unit redundant at C. 
I

1 x 7 x 5
12   

       =2.92

2.92
EI   
       

8.28
EI   
       

17.52
EI   

9.24

 

bc cc

bc cc

2.92

Fig. 2.29

DA

B C

Conjugate beam under M/EI

6.33 m 5.67 m

 
Moment at B’ in conjugate beam gives 

 MB'   = δbc =  
1
EI  



8.28 x 3 − 

1
2 x 1.25 x 3 x 1  

 MC'   = δbc =  
22.965

EI    KN − m3  (δbc = δcb ) PROVED. 

  δcc = 
1
EI  



9.24 x 5 − 

1
2 x 2.92 x 5 x 

5
3  

  δcc =  
34.03

EI       KN − m3. 
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Inserting evaluated Co-efficients in equation (1) and (2) 

   
1003.365

EI   +  
20.25

EI   Rb  +  
22.965

EI    Rc = 0 (1) 

 
   1003.365 + 20.25  Rb + 22.965  Rc  = 0        (3) Canceling 1/EI throughout 
 

   
1305.575

EI   +  
22.92

EI     Rb  +  
34.03

EI    Rc = 0 (4) Cancelling 
1
EI throughout 

   1305.575  +  22.92  Rb  + 34.03 Rc  = 0 (4) 
 
  Multiply (3) by  22.92  and  (4) by 20.25  & subtract (4) from (3) 
 
  22997.1258  +  464.13  Rb  +  526.357   Rc = 0  (3) 

  
26437.8938  +  464.13  Rb  +  689.1075 Rc = 0

−  3460.768  −  162.75   Rc = 0   (4) 

 
   Rc = − 21.264 KN   Putting this in equation (3) 
 
   1003.365  + 20.25    Rb  −  22.963  ×  21.264  =  0 
 

Rb  =  − 25.434  KN  
 
 The ( −ve) signs with the values of the redundants are suggestive of the fact that the directions of 
the actual redundants are in fact upwards. Now apply loads and evaluated redundants to original beam 
calculate remaining reaction. 
 

A B C D
3m 4m 5m

 
Fig. 2.30 
 

  ∑Fy  =  0 Considering all upwards at this stage as Ra and Rd are unknown. 
  RA + RD + 25.434  +  21.264  −  40  =  0 
  RA +  RD  =  −6.698        →    (1) 
 
  ∑MD  = 0 Considering all upward reactions 
  RA  × 12  +  25.454  ×  9  −  40 ×  7  + 21.264 × 5  = 0 

RA  =  − 4.602  KN   .  It actually acts downwards. 
  RD  = − RA  −  6.698 
       =  4.602  −  6.698 
   RD  =  −  2.096 KN  All determined reactions are shown in figure 2.30 
above sketch SFD and BMD. 
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Fig. 2.31

Elastic curve

S.F.D.

B.M.D.

2  
 
 
LOCATION OF POINTS OF CONTRAFLEXURE :-  These are in Span BC. 
 
 A  as origin. Write moment expression and equate to zero. 

 
  MX1   = − 4.602 X1 +  25.434  ( X1   − 3 ) 

                                      −  4.602 X1   +  25.434 X1   −  76.302  =  0 

                            X1  =  3.663 m  from  A. 

 D  as origin. Write moment expression and equate to zero. 

  MX2  = −  2.096 X2   +  21.264 ( X2   −  5 )  =  0 

                                           −  2.096 X2  +  21.264 X2   −  106.32  =  0 

                                       19.168 X2   − 106.32  =  0 

                               X2  =    5.547 m. 

   These locations are marked above in BMD. 
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1.15. 3RD DEGREE INDETERMINACY :- 
Example No. 4: 
Solve the frame shown below by consistent deformation method. 

Fig. 2.32
      B.M is +ve for
Tension on inner sides

inner sides

outer sides

outer sidesouter sides

 
1.15.1. SOLUTION: 

Sign convention for S.F. and B.M. remains the same and are shown above as well. In this case, any 
force or moment which creates tension on the inner side of a frame would be considered as a  (+ve) 
B.M. Removing right hand support to get BDS. The loads create three defermations as shown. 

Fig. 2.33 (a) Fig. 2.33 (b)  
Note: ∆DH = Deflection of point D in horizontal direction due to applied loads on BDS. 
 ∆DV = Deflection of point D in vertical direction due to applied loads on BDS. 
 θ D   = Rotation of point D due to applied loads on BDS. 

A
 

1

 

B

 

C

 

D

 

6m

4m
4m

ddv

dd ddh

1

1

Fig. 2.33c B.D.S. under unit vertical
                 redundant force at D

Fig. 2.33d B.D.S. under unit rotational
                 redundant moment at D

       m    -Diagram
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 Where (See mH diagram Fig. 2.33b) 
δddh = Deflection of point D due to unit load at D in horizontal direction acting on BDS. 
δ'ddv = Deflection of point D, in vertical direction due to unit load at D in horizontal direction. 
α'ddh= Rotation of point D, due to unit load in horizontal direction at D acting on BDS. 
 
 (See  mV  diagram Fig: 2.33c) 
 δddv  =  Deflection of point D due to unit load at D in vertical direction. 
 δ'ddh =  Deflection of point D (in horizontal direction) due to unit vertical load at D. 
 α'ddv =  Rotation of point D due to unit vertical load at D. 
 

(See mθ diagram Fig: 2.33d)) 
α'ddh =  Horizontal deflection of point D due to unit moment at D. 
α'ddv =  Vertical deflection of point D due to unit moment at D. 
αdd   =  Rotation of point D due to unit moment at D. 
 

Compatibility equations :- 
 ∆DH + HD × δddh + VD × δ′ddv + MD × ∝′ddh  =  0  (1) Compatibility in horizontal direction at D. 
 ∆DV + HD × δ′ddh + VD × δddV  + MD  ×  ∝′ddV  =  0  (2) Compatibility in vertical direction at D. 
 θD     +  HD  ×  ∝′ddh + VD  ×  ∝′ddv + MD  ×  ∝dd   =  0  (3)  Compatibility of rotation at D 
Now evaluate flexibility co-efficients used in above three equations. We know that 

  ∆ or θ  =  ∫ 1
EI   ( Mmdx ) 

 There are 12 co-efficients to be evaluated in above three equations. 

 So ∆ DH  =  ∫  M × mH
EI   dx    (1) 

  δddh  =  ∫ (mH)2  dx
EI     (2) 

  δ′ddh  =  ∫ mH  mv dx
EI     (3) 

  ∆ Dv  =  ∫ M ×  (mv )  dx
EI     (4) 

  δ′ddv  =  ∫ (mH × mv )  dx
EI    (5) 

  δ ddv  =  ∫ (mv)2 dx
EI     (6) 

  ∝′ddv  =  ∫ mv × mθ
EI   dx    (7) 
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  θD        =  
1
EI ∫ ( M ) ( m θ )  dx   (8) 

  ∝′ddh  =  
1
EI ∫ ( mH ) ( m θ )  dx   (9) 

  ∝′ddv  =  
1
EI  ∫ ( mv ) ( mθ )  dx   (10) 

  ∝dd     =   
1
EI  ∫  ( mθ )2  dx   (11) 

 Multiplying the corresponding moment expressions in above equations, we can evaluate above 
deformations. Draw M-diagram. 

A

  

80

 

KN-m

 

3m

 

E

 

20

 

KN

 

3m

 

B

 

2m

 

F

 

10KN

 

2m

 

C

 

4m

 

D

 

20KN

x

10KN
M - Diagram

M = 10 x 2 + 20 x 3 = + 80KN-m  
Fig. 2.34 B.D.S under applied loads 

M – Diagram by parts 

A

 

x

 

80KN-m

 
3m

 

20KN

 

x

 

3m

 

20KN-m

 

B

 

10KN

 

20KN-m

 

x

 

B

 

2m

 

10KN

F

10KN

2m

x

C
C

4m

x D

M=20

 

x

 

6-20

 

x

 

3

 

-

 

80

 

=

 

20KN-m

10KN

20KN

E
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A

 

2

 

1

 

B

 

C

 

D

 

1

 MH - Diagram 

A

 

2

 
1

 

E

 

6m

 

B  4

 

1

 

4

 

B  F

 

4m

 

4

 

C

 

1

 

+

 

C

 

1

 

4m

 

D

 

1

 

1

 

  Fig. 2.34a    Fig 2.34b 

 

4

A

1

E

B

41

1

B
F

C

1

1
C

D

1

mv-diagram  (by parts)

4

A
1

E

B 1

1
B

F

 C 1

C
1

1

 D

m  -diagram (by parts)
 

   Fig 2.34c    Fig 2.34d 
 
 Moments expressions in various members can now be written in a tabular form. 

  Portion          Origin Limits         M     mH    mv   MO 
     AE      A     0 − 3   20X − 80   X − 2     − 4    −1 
     BE      B     0 − 3       − 20 − X + 4     − 4    −1 
     BF      B     0 − 2    10X − 20       4  X − 4    −1 
     CF      C     0 − 2           0       4     − X    −1 
     CD      D     0 − 4           0       X      0    −1 

 Put these moment expressions, integrate and evaluate co-efficients 
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∆DH  =  
1
EI ∫   M ( mH )   dX 

∆DH  =  
1
EI 



3

∫
o
 (20X − 80) (X − 2) dX + 

3

∫
o
 (−X+4) (−20) dX  +  

2

∫
o
(10X − 20)  4 dX  + 0 + 0  

 =  
1
EI 



3

∫
o
 (20X2 − 80X − 40X + 160 ) + 

3

∫
o

 (20X − 80 )dX+
2

∫
o
 ( 40X − 80 ) dX  

 =  
1
EI 









20X3

3  − 
80X2 

2  − 
4X2

2  + 160X
3
 
o
 + 

20X2

2  − 80X 
3
|
o
 + 



40X2

2  − 80 X 
4
 
o

 

 =  
1
EI 









20 × 33

3  − 40 × 32 − 20 × (3)2 + 160 × 3  + (10 × 9 − 80 × 3) + (20 × 4 − 80 × 2)  

∆ DH  =  − 110
EI  

δ ddh =  
1
EI ∫ ( mH )2  dX 

 

 =  
1
EI 



3

∫
o
(X − 2)2 dX +

3

∫
o
 (−X + 0)2dX +

2

∫
o
 16 dX +

2

∫
o
16 dX +  

4

∫
o
  X2  dX  

δddh =  
1
EI 



3

∫
o
(X − 4X + 4) dX + 

3

∫
o
 (16 − 8X + X2) dX + 

2

∫
o
 16 dX + 

2

∫
o
 16 dX  +  

4

∫
o
 X2  dX  

 =  
1
EI 









X3

3  − 
4X2

2  + 4X 
3
|
o
 +16X − 

8X2

2  + 
X3

3  
3
|
o
 +  16X 

2
|
o
 +  16X 

2
|
o
  +   

X3

3

4
 
o

 

 = 
1
EI 









33

3  − 2 (3)2 + 4 × 3  + 



16 × 3 − 4 × 9 + 

33

3  + 



(16 × 2) + (16 × 2) +  

(4)3

3  − 0  

 

δddh = 
109.33

EI  

δ'ddV  =  
1
EI ∫ ( mH ) ( mv )  dX 

 

 =  
1
EI 



3

∫
o
 (X − 2) ( − 4 )  dX  +  

3

∫
o
 (−X + 4 ) (−4 ) dX + 

2

∫
o
 ( 4 ) (X−4 ) dX + 

2

∫
o
 4 (−X ) dX  + 0  

 

 =  
1
EI 



3

∫
o
 (− 4X+8 ) dX +

3

∫
o
 (4X − 16 ) dX + 

2

∫
o
 (4X−16 ) dX +  

2

∫
o
 − 4XdX  

 

 =  
1
EI 









− 

4X2

2  + 8X 
3
|
o
 +  

4X2

2  −16X 
3
|
o
  +  

4X2

2  − 16X 
2
|
o
 +   − 

4X2

2

2
 
o

 

 



52 THEORY OF INDETERMINATE STRUCTURES 
 

 =  
1
EI [ ] − 2 ×  (3)2 + 8 × 3  + (2 × 32  − 16 × 3 ) + ( 2 × 22 − 16 × 2 ) + ( − 2 × 22 )  

 

δ′ddV  =  − 
56
EI  

∝′ddh  =  
1
EI ∫ ( mH ) ( mθ )  dX 

 = 
1
EI 



3

∫
o
 (−1 ) (X − 2) dX  + 

3

∫
o
 (−1) (−x + 4) dX + 

2

∫
o
 − 4 dX + 

2

∫
o
 − 4 dX  +  

4

∫
o
 − XdX  

 

 =  
1
EI 









− 

X2

2  + 2X 
3
|
o
 +  

X2

2  −4X 
3
|
o
 +  − 4X 

2
|
o
 +  − 4X 

2
|
o
 +  − 

X2

2

4
 
o

 

 

 =  
1
EI 









−

9
2 + 2 × 3  + 



9

2 − 4 × 3  + (− 4 × 2) + (− 4 × 2) + 



−

42

2  − 0  

α′ddh =  −
30
EI  

θD =  
1
EI ∫ M ( mθ ) dX 

 =  
1
EI 



3

∫
o
 − (20X − 80 ) dX + 

3

∫
o
 20 dX + 

2

∫
o
 (−10X + 20 ) dX + 0 + 0  

 

 =  
1
EI 









− 

20X2

2  + 80X 
3
|
o
 +  20X 

3
|
o
 +  − 

10X2

2  + 20X 
2
|
o

 

 =  
1
EI [(−10 × 32 + 80 × 3) + (20 × 3) + (− 5 × 4 + 20 × 2)] 

θD  =  
230
EI  

∆ Dv  = 
1
EI ∫ M ( mv ) dX 

 =  
1
EI 



3

∫
o
 (20X − 80) (−4) dX + 

3

∫
o
 (−20) (−4) dX + 

2

∫
o
 (10X − 20) (X − 4) dX + 0 + 0  

 

 =  
1
EI 



3

∫
o
 (− 80X + 320) dX + 

3

∫
o
 80 dX + 

2

∫
o
 (10X2 − 20X − 40X + 80) dX  

 

 =  
1
EI 









− 80 

X2

2  + 320X 
3
|
o
 +  80X 

3
|
o
 +  10 

X3

3  − 
60X2

2 + 80X 
2
|
o
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 =  
1
EI 



(−40 × 9 + 320 × 3) + (80 × 3) + 



10

3  × 8 − 30 × 4 + 80 × 2  

 

∆Dv =  
906.67

EI  

δ′ddh =  
1
EI ∫ ( mH ) ( mv ) dX 

 =  
1
EI 



3

∫
o
 (X−2) (−4) dX + 

3

∫
o
 (−X + 4) (−4) dX + 

2

∫
o
 4 (X−4) dX + 

2

∫
o
 − 4XdX + 0  

 

 =  
1
EI 



3

∫
o
 (−4X + 8)dX + 

3

∫
o
 (4X − 16) dX + 

2

∫
o
 (4X − 16) dX + 

2

∫
o

 − 4XdX  

 

 =  
1
EI 









− 

4X2

2  + 8X 
3
|
o
 +  

4X2

2  − 16X 
3
|
o
 +  

4X2

2  − 16X 
2
|
o
 + 

4X
2

2
 
o

 

 =  
1
EI [(−2 × 9 + 8 × 3) + (2 × 9 − 16 × 3) + (2 × 4 − 16 × 2) + (−2 × 4)] 

 

δ′ddh  =  − 
56
EI  

δddv =  
1
EI ∫ ( mv2 ) dX 

 

 =  
1
EI 



3

∫
o
 16 dX + 

3

∫
o
 16 dX + 

2

∫
o
 (X − 4)2 dX + 

2

∫
o
 (−X)2dX + 0  

 

 =  
1
EI 



3

∫
o
16 dX+

3

∫
o
 16 dX+

2

∫
o
(X2 − 8X +16)dX+

2

∫
o
 + X2 dX  

 

 =  
1
EI 









16X 

3
|
o
 +  16X 

3
|
o
 +  

X3

3  − 
8X2

2  + 16X 
2
|
o
 + | + 

X3

3

2
 
o

 

 

 =  
1
EI 



(16 × 3 ) + ( 16 × 3 ) + 



8

3 − 4 × 4 + 16 × 2  + 



+ 

8
3  

 

δddv  =  
117.33

EI  
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∝′ddv  =  
1
EI ∫ mv × mθ  dX 

 

 =  
1
EI 



3

∫
o
 + 4 dX + 

3

∫
o
 + 4 dX + 

2

∫
o
 (−X + 4) dX + 

2

∫
o
 XdX  

 

 =  
1
EI 









4X 

3
|
o
 +  4X 

3
|
o
 +  − 

X2

2  + 4X 
2
|
o
 + | 

X2

2

2
 
o

 

 

 =  
1
EI 



(4 × 3) + (4 × 3) + (−2 + 4 × 2) +  



22

2  

 

∝′ddv = 
32
EI  

∝dd  =  
1
EI ∫ ( mθ )2   dX 

 

 =  
1
EI 



3

∫
o

 (−1)2 dX + 
3

∫
o

 (−1)2 dX + 
2

∫
o

 (−1)2 dX + 
2

∫
o

 (−1)2 dX + 
4

∫
o

 (−1)2  dX  

 

 =  
1
EI 



 X 

3
|
o
 +  X 

3
|
o
 +  X 

2
|
o
 +  X 

2
|
o
 +  X 

4
|
o

 

 

 =  
1
EI  [ 3  +  3  +  2  +  2  +  4  ] 

∝dd  =  
14
EI  

 
Putting all values of evaluated co-efficients, equations 1,2 and 3 become 

   − 
110
EI   + 

109.33
EI   ×  HD  −  

56
EI  ×  VD  −  

30
EI   MD  =  0  (1) 

 

  and 
906.67

EI   −  
56
EI  ×  HD  +  

117.33
EI   ×  VD  +  

32
EI  MD  =  0 (2) 

 

  and 
230
EI   − 

30
EI  ×  HD  +  

32
EI  ×  VD  +  

14
EI  MD  =  0  (3) Simplifying  

 
   −110  +  109.33  HD  −  56  VD  −  30  MD  =  0    →    (1) 
    906.67  −  56  HD + 117.33  VD  +  32  MD  =  0    →    (2) 
    230  −  30  HD  +  32  VD  +  14  MD   =  0     →    (3) 
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 From Eq (1) 

 MD =  
−110 + 109.33 HD − 56 VD

30   =  −3.67 + 3.64 HD − 1.86 VD →    (4) 

 
Putting in Eq (2) 
 906.67 − 56 HD + 117.33 VD + 32 (−3.67 + 3.64 HD − 1.86 VD)  =  0 
 906.67 − 56 HD + 117.33 VD − 117.44 + 116.5 HD − 59.52 VD  =  0 
 789.23 + 60.5 HD + 57.81 VD  =  0 
 HD  =  −13.045 − 0.95 VD      →    (5) 
 
Putting the value of HD in Eq (4) 
 MD  =  −3.67 + 3.64 (−13.045 − 0.95 VD) − 1.86 VD  
 MD  =  −51.15 − 5.32 VD      →    (6) 
 
Putting the values of MD & HD in Eq (3) 
 230 − 30 (−13.045 − 0.95 VD) + 32 VD + 14 (−51.15 − 5.32 VD)  =  0 
 230 + 391.35 + 28.5 VD + 32 VD − 716.1 − 74.5 VD  =  0 
 −14 VD − 94.75  =  0 
 VD  =  −6.78 KN 
 
Putting in (5) & (6) 
 HD  =  −6.61 KN,   MD  =  −15.08 KN−m 

 
 From any equation above. We get 

 
    VD  = − 12.478  KN  
 

Apply the evaluated structural actions in correct sense on the frame. The correctness of solution 
can be checked afterwards by equilibrium conditions. 

 

A
Ma=1.8 KN

20KN

3m

3m

2m
B

2m

10KN
C

D
15.08KN=m

6.61KN

12.478 KN
Ha=13.39 KN

Va = 2.478 KN

4m

 
 

Fig. 2.35 shows all reactions after Evaluation 
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   ∑Fx  =  0  
   20 − Ha − 6.61  =  0 
 

 Ha  =  13.39 KN  
 
   ∑Fy  =  0 
   Va + 12.478 − 10  =  0 (asuming Va upwards) 
 

 Va  =  − 2.478 KN  
0 
   Ma+ 20 × 3 + 10 × 2 − 12.478 × 4 − 6.61 × 2 − 15.08 = 0  (assuming Ma 
clockwise) 
 

 Ma  =  − 1.8 KN-m  
ΣMa  =  0 12.478 × 4 + 15.08 + 6.61 × 2 + 1.8 − 20 × 3 − 10 × 2  =  0  Proved. 

 
1.16. ANALYSIS OF STATICALLY EXTERNALLY INDETERMINATE TRUSSES :- 
 A truss may be statically indeterminate if all external reactive components and internal member 

forces may not be evaluated simply by the help of equations of equilibrium available. The 
indeterminacy of the trusses can be categorized as follows :- 

 
 (1) Trusses containing excessive external reactive components than those actually required 

for external stability requirements. 
 
 (2) Trusses containing excessive internal members than required for internal stability 

requirements giving lesser the number of equations of equilibrium obtained from various 
joints. 

 
 (3) A combination of both of the above categories i.e. excessive external reactions plus 

excessive internal members. 
 

INTERNAL INDETERMINACY:- 

  b + r  =    2j    
  There are two equations of equilibrium per joint where 
   b  =  number of bars or members. 
  r  =  minimum number of external reactive components required for  
          external stability (usually 3). 
  j  =  number of joints. 

 The above formula can also be used to check the total indeterminacy of a truss if we define ‘r’ as 
the total number of reactive components which can be provided by a typical support system. 
1.17. METHOD OF MOMENTS AND SHEARS :    

A simple method is presented to evaluate axial member forces in parallel chord trusses. For other 
types of trusses method of joints, method of sections or Maxwell’s diagram may be used. For determining 
forces in members of trusses, this method has been used throughout this text. To develop the method, 
consider the truss loaded as shown below: 
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A
B  C

D

E  F G H

2P 3P

h

3 a

RA = P7
3

@ RD = P8
3  

Fig. 2.36 A typical Truss under loads 

 Consider the equilibrium of L.H.S. of the section. Take ‘D’ as the moment centre: we find Ra  

  Ra × 3a  =  2P × 2a +  3 P × a 

  Ra  =  
7Pa
3a   =  

7P
3  

  ∑ Mc  =  0     and assuming all internal member forces to be tensile initially, we have 
  Ra  x  2a − 2P × a +  SFG  ×  h  =  0 (considering forces on LHS of section) 

        or SFG  =  −  



Ra × 2a − 2 Pa

h  

  The ( −ve ) sign indicates a compressive force.     Or 

  SFG  =     



Ra × 2a − 2 Pa

h   =  
Mc
h   where numerator is Mc. Therefore 

 The force in any chord member is a function of bending moment. 
 “To find out the axial force in any chord member, the moment centre will be that point where other 
two members completing the same triangle meet and the force will be obtained by taking moments about 
that point and dividing it by the height of truss. The signs of the chord members are established in the very 
beginning by using an analogy that the truss behaves as a deep beam. Under downward loads, all upper 
chord members are in compression while all lower chord members are in tension. 
  Similarly, SBC  =  

MF
h  (using the guide line given in the above para) 

  Consider the equilibrium of left hand side of the section and  
  ∑Fy  =  0  

  Ra − 2P − SFC Cos θ  =  0 

  SFC  =  



Ra  −  2P

Cos θ  where Ra − 2P is equal to shear force V due to applied loads at 

the section. So in general the force in any inclined member is a 
function of shear force. 

  SFC  =  
V

Cosθ 

  The general formula is : 
  S  =  

± (V)
± (Cos θ) 
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 Where V is the S.F. at the section passing through the middle of inclined member and ‘θ‘ is the 
angle measured from “the inclined member  to the vertical” at one of its ends. Use (+ve) sign as a pre-
multiplier with the Cosθ if this angle is clockwise and (−ve) sign if  θ is anticlockwise. Take appropriate 
sign with the S.F also.  This treatment is only valid for parallel chord trusses. 
 The force in the vertical members is determined by inspection or by considering the equilibrium of 
forces acting at the relevant joints. To illustrate the method follow the example below. 

1.17.1:  EXAMPLE :− Analyze the following truss by the method of moment & shear. 
SOLUTION:-  Determine reactions and Draw SFD and BMD. 

A

1.5P

 I J K
P

L
P

 M
P

N O

H
h

GFEDCB P

1.5 P

8 @ a

0.5P

0.5P
0

S.F.D.

1.5P

1.5Pa
3 Pa

 

4.5

 

Pa 5 Pa 4.5 P

0

0

3 Pa
1.5 Pa

B.M.D.

1.5P
Given Truss under loads

Fig. 2.37  
TOP CHORD MEMBERS. 
 Considering the beam analogy of truss, all top chord members are in compression. Picking bending 

moment, at appropriate moment centers, from BMD and dividing by height of Truss. 

  Sij =  −
3 Pa

h  

  Sjk =  −
3 Pa

h  

  Stl =  −
5 Pa

h  

  Slm =  −
5 Pa

h  

  Smn =  −
3 Pa

h  

  Sno =  −
3 Pa

h   Negative sign means compression. 
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 BOTTOM CHORD MEMBERS. 

 All are in tension. Taking appropriate moment point and dividing by height of Truss. 

  Sap =  Spb  =  + 
1.5 Pa

h  

  Sbc =  Scd  =  + 
4.5 Pa

h  

  Sde =  Sef  =  + 
4.5 Pa

h  

  Sfg =  Sgh  =  + 
1.5 Pa

h  

 INCLINED MEMBERS. 

 The force in these members has been computed by the formula.  
±V

±(Cosθ). Follow the guidelines. 

  Sai =   
1.5 P
− Cosθ 

  Sib =  
1.5 P

+ Cosθ  Length AI  =  a2 + h2 

(if a and h are given, length and Cos θ will have also 
late values) 

  Sbk =  
1.5 P
− Cosθ  Cos θ =  

h
a2 + h2 

  Skd =  
0.5 P

+ Cosθ 

  Sdm =  
− 0.5 P
− Cosθ  =  

0.5 P
Cosθ 

  Smf =  
− 1.5 P
+ Cosθ 

  Sfo =  
− 1.5 P
− Cosθ  =   

1.5 P
Cosθ 

  Soh =  
− 1.5 P
+ Cosθ 

VERTICAL MEMBERS. 
For all vertical members of trusses in this book, member forces have been determined by Inspection or by 
Equilibrium of joints. So 
  Sip =  Sbj  =  Sck  =  Sem  =  Sfn  =  Sgo  =  0 
  Sld   =  − P ( If a and h values are given, all forces can be numerically evaluated) 

1.18.  EXTERNALLY REDUNDANT TRUSSES – FIRST DEGREE 
EXAMPLE 5 :- Analyze the following truss by the force method. (consistent deformation method). The 
following data is given. 
 E =200 × 106 KN/m2 
 A=5x10−3m2 for inclineds and verticals, 

A=4x10−3m2 for top chord members, 
A=6x10−3m2 for bottom chord members 
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SOLUTION:- 

A

         

F

 

G

 

H

  36KN 72KN

I  J

E

1.8m

D  CB

  

4
 

@
 

1.8m
  Fig. 2.38 Given Truss under loads  

 TOTAL INDETERMINACY :- 

  b + r  =  2 j where   r = total reactions which the supports are capable of providing. 

  17 + 4  ≠ 2 × 10 

  21   ≠   20 

  D  =  21 − 20  = 1 

  Indeterminate to Ist degree. 

 Apply check for Internal Indeterminacy :- 
  b  +  r   =  2 j where  r = Minimum number of external reactions required for stability. 

  17   + 3   =  2 × 10 

  20  =  20 

 This truss is internally determinate and externally indeterminate to 1st degree, therefore, we select 
reaction at point “C” as the redundant force. Remove support at C, the Compatibility equation is : 

∆ C  +  δcc  ×  Rc  =  0 (Deflection at C due to loads plus due to redundant 

should be zero.) 

 or Rc  =   − 
∆c
δcc  . Now we have to calculate ∆c  and  δcc  to get Rc. 

 where ∆c  =  ∑ 
F′ UL

AE   where F' =  Force induced in members due to applied loads  

acting on BDS. 

δcc  =  ∑ 
U2 L
AE  U  =  Forces in members due to Unit load applied in direction 

of applied loads, at external redundant support in BDS. 
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A

F G

36K

H

72K

I J

E

1.8m

DCCB
4 @ 1.8m

.

A

 

F

 

G

 

H

  

J

 

E

 

D

 

1

 

C

  

cc

  

B

Fig 2.39b B.D.S under unit Vertical Redundant at C
(U-Diagram)

(F-Diagram)

 
Analyze the given truss by the method of moments and shears as explained already for F' and U forces in 
members. 

A

F G
36KN 72KN

I J

E

Re = 45  KN4

 

@

 

1.8m

 

1

   (F -Diagram)/   
Ra

 
=

 
63

B               C              D

H

1.8m

 

0

0

63

27
+

0

S.F.D.

45

B.M.D.

0

81

162
45

113.4
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Determine forces in all members of trusses loaded as shown in this question and enter the results in a tabular 
form. (using method of moments and shears, F' and U values for members have been obtained). 

A

 
F G H I J

E
D1CB

U=Diagram

S.F.D.

B.M.D.

 0.9
1.8

0.9

+

+

½½

Fig 2.41 B.D.S under Unit redundant force at C  
 

Member F′ 
(KN) 

     U Ax  
10−3 

(m)2 

L 
(m) 

F′UL
AE   × 10 −3 

(m) 

U2L
AE  × 10−3 

(m) 

Fi = Fi′ − 
Rc × U1 
      (KN) 

FG 0 0   4  1.8 0 0 0 
GH − 90 − 1    ″    ″ 0.2025 2.25 × 10−3 + 2.5 
H I − 90 − 1    ″    ″ 0.2025 2.25 × 10−3 + 2.5 
I J 0 0 4 ″ 0 0 0 
AB +63 +0.5    6  1.8 0.04725 0.375 × 10−3     +16.75 
BC +63 +0.5 ″ ″ 0.04725 0.375 × 10−3 +16.75 
CD +45 +0.5 ″ ″ 0.03375 0.375 × 10−3 − 1.25 
DE +45 +0.5 ″ ″ 0.03375 0.375 × 10−3 − 1.25 
AG − 89.1 −0.707 ″ 2.55 0.16063 1.275 × 10−3 − 23.7 
GC +38.2 GC 5 ″ 0.06887 1.275 × 10−3 − 27.2 
C I +63.64 +0.707 ″ ″ 0.11473 1.275 × 10−3 − 1.76 
I E −63.64 −0.707 ″ ″ 0.11473 1.275 × 10−3 +1.76 
AF 0 0 ″ 1.8 0 0 0 
BG 0 0 ″ ″ 0 0 0 
HC − 72 0 ″ ″ 0 0 − 72 
I D 0 0 ″ ″ 0 0 0 
J E 0 0 ″ ″ 0 0 0 

     
∑ 

F′UL
AE  = 1.02596 

× 10−3  

∑ 
U2L
AE  =11.1 

× 10−6 
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  ∆ C =  ∑ 
F′ UL

AE   =  1.02596 × 10−3  = 1025.96 × 10−6 m 

  δ cc  =  ∑ 
U2 L
AE   =  11.1 × 10−6   m .  Putting these two in original compatibility equation 

  Rc  =  −  
∆ C
δcc  =  

−1025.96 × 10−6

11.1 × 10−6  

  Rc  =  −  92.5 KN. 
The (−ve) sign with Rc shows that the assumed direction of redundant is incorrect and Rc acts upward. 
If Fi is net internal force due to applied loading and the redundants, acting together, then member forces an 
calculated from  

  Fi  =  Fi′  −  Rc  ×  Ui   
The final axial force in any particular member can be obtained by applying the principle of superposition 
and is equal to the force in that  particular member due to applied loading ( ± ) the force induced in the 
same member due to the redundant with actual signs. 
 
Apply the principle of superposition and insert the magnitude of redundant Rc with its sign which has been 
obtained by applying the compatibility condition to calculate member forces. 
1.19. SOLUTION OF 2ND DEGREE EXTERNALLY INDETERMINATE TRUSSES:- 
Example-6 : Solve the following truss by consistent deformation method use previous 

member properties. 

A

  

F

  

36KN

  

G

  

72KN

  

H

  

I

  

J

E

  

1.8m

       

D

  

C

  

B

  

4

 

@

 

1.8m

Fig 2.42 Given Truss  

0

113.4
0

63

63KN

36KN

DC
45KN

S.F.D.

0

45

B.M.D.

0

81
+

162

1.8m

Fig 2.42a B.D.S under loads

72KN

(F -diagram)/
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0

0.9

dccc

S.F.D.

0 B.M.D.

0.9
(+)

1.8

1
2

1
2

1
2

+

1

+

(U  diagram)1

 
 

0

0

0.25

0.25
cd dd

0.75

0
S.F.D.

0.75

0 B.M.D.

(-)

1.35

(+)
0.9

(+)

0.45

Fig 2.42 c B.D.S under unit redundant at D

(U  diagram)2
1

 
Compatibility equations are: 
  ∆C + Rc. δcc + Rd × δcd  =  0     (1) Compatibility of deformations at C 
  ∆D + Rc . δdc + Rd . δdd  =  0     (2) Compatibility of deformations at D 
  δcd  =  δdc  by the law of reciprocal deflection. 
  δcc  =  deflection of point C due to unit load at C. 
  δdc  =  deflection of point D due to unit load at C. 
  δdd  =  deflection of point D due to unit load at D. 
  δcd  =  deflection of point C due to unit load at D. 
Flexibility coefficients of above two equations are evaluated in tabular form (Consult the attached table) 

  ∆C  =   ∑ 
F′U1L

AE  =  1026.2 × 10 −6 m 

  ∆D  =  ∑ 
F′U2L

AE  =  579.82 × 10−6  m 

  δcc  =  ∑ 
U1

2L
AE  =  11.1 × 10−6  m 
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  δdd  =  ∑ 
U2

2L
AE  =  9.3565 × 10−6  m 

  δcd  =  ∑ 
U1U2L

AE   =   6.291 × 10−6  m 

  δdc  =  ∑ 
U1U2L

AE  =  6.291 × 10−6  m Put these in equations 1 and 2 

1026.2 × 10−6   +  11.1  × 10−6  Rc  + 6.291 × 10−6 Rd =  0 →    (1) 
579.82 × 10−6 + 6.291 × 10−6 Rc + 9.3565 × 10−6  Rd  =  0 →    (2) 

Simplify 
  1026.2  +  11.1  Rc  +  6.291  Rd  =  0    →    (3) 
  579.82  +  6.291 Rc +  9.3565 Rd =  0     →    (4) 
 From  (3) 

  Rc  =  



−1026.2 − 6.291 Rd

11.1        →    (5) 

 Put Rc in (4) & solve for Rd 

  579.82 + 6.291 



−1026.2 − 6.291 Rd

11.1  + 9.3565 Rd = 0 

 
  − 1.786 + 5.791 Rd  =  0 
 

Rd  =  + 0.308 KN  

 So,  from (5),  ⇒   Rc  =  



−1026.2 − 6.291 × 0.308

11.1  

 
Rc  =  − 92.625 KN  

  ∴ Rc = − 92.625 KN 
      Rd = + 0.308 KN    
 These signs indicate that reaction at C is upwards and reaction at D is downwards. 
 By superposition, the member forces will be calculated as follows 
  Fi  =  Fi + Rc × U1 + Rd × U2  which becomes. 
  Fi   =  Fi − Rc × U1 + Rd × U2. It takes care of (−ve) sign with Rc. 
 Equilibrium checks:− 
 

   

1.082

0.308

1.082

0.308
 

   
Joint D
∑ Fx = 0 

   ∑ Fy = 0 

 Equilibrium is satisfied. Only check at one joint has been applied. In fact this check should be 
satisfied at all joints. 
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Table 79−A 
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23.722 27.178 72
1.954 0.308

1.519

1.0821.082

16.76516.765

G  0  F  

0  

A 

36KN
2.471

72KN
H 2.471 I 0 J

0

E
DCB

0

16.965KN 92.625KN 0.308KN 1.082KN

 
Fig 2.43 Result of analyzed Truss  

 
 Now find remaining reactions Ra and Re. 
  ∑Fy  = 0 
  Ra + Re + 92.625 − 0.308 − 36 − 72  = 0 
  Ra + Re  = 15.683       →    (1) 
   
  ∑MA  = 0 
  Re × ∆ × 1.8 − 0.308 × 3 × 1.8 + 92.625 × 2 × 1.8 − 72 × 2 × 1.8 − 36 × 1.8 = 0 

 
Re  = − 1.082 KN  

 
 As Ra + Re = 15.863 
 So Ra = 15.863 + 1.082 
 

Ra  =  16.945 KN  
 
   Now truss is determinate. Calculate member forces and apply checks in them. 
 Joint (C) 
   ∑Fx  =  0 
 

    

16.765

27.178 72 1.954

1.082

92.625
 

   − 1.082 − 16.765 − 1.954 × 0.707 + 27.178 × 0.707 = 0 
   − 0.0136  = 0 
   0  ≅ 0  equilibrium is satisfied. 
 
   ∑Fy  = 0 
   − 72 + 92.625 − 1.954 × 0.707 − 27.178 × 0.707 = 0 
   0.0286 = 0 
   0 ≅ 0  equilibrium is satisfied 
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 Joint (E)  
   ∑Fy = 0 
 

   

1.082

1.519

1.082
 

   1.519  × 0.707 − 1.087 = 0 
   0 = 0 
 
   ∑Fx  = 0  
   082 − 1.519 × 0.707 = 0 
   0 = 0   equilibrium is satisfied. 
 
1.20. Example–7:- SOLUTION OF 3RD DEGREE EXTERNALLY INDETERMINATE TRUSSES:- 

Now we solve the following truss by consistent deformation method. Choosing reaction of B, C 
and D as redundant. 

SOLUTION:- 
 First step. Choose BDS Draw BDS under loads and subsequently under applied unit loads at points 

of redundancy also. 

A

F G H I J

E

1.8m

DCB

4 @ 1.8m

36KN 72KN

Fig 2.44 Given 3rd degree externally 
    indeterminate truss under loads  

= 

A

F G H I J

E

1.8m

DCB B C
D

72 KN36 KN

Fig 2.44(a) B.D.S under loads  

+ 
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  bb cb
db1

Fig 2.44(b) B.D.S under redundant unit load at B
(U1 diagram)  

+ 

 

A

F G H I J

E
DCB bc cc dc

  

1

Fig 2.44(c) B.D.S under redundant unit load at C
(U2 diagram)

1

 

+ 

A

F G H I J

E
DCB bd cd dd

  

1

Fig 2.44(d) B.D.S under redundant unit load at D
(U3 diagram)

1

 

Step No.2:  Compatibility equations are: 

  ∆B + Rb.δbb + Rc.δbc + Rd x δbd = 0    For joint B →    (1) 

  ∆C + Rb.δcb + Rc.δcc + Rd x δcd  = 0     For joint C →    (2) 

  ∆D + Rb.δdb + Rc.δdc + Rd x δdd = 0     For joint D →    (3) 
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Step No.3:  Evaluation of Flexibility co-efficients 

  ∆B =  ∑ 
F′U1L

AE   ∆C  =  ∑ 
F′U2L

AE   ∆D  =  ∑ 
F′U3L

AE  

 

  δbb =  ∑ 
U1

2L
AE   δbc =  ∑ 

U1U2L
AE   δbd =  ∑ 

U1U3L
AE  

 

  δcb =  ∑ 
U1U2L

AE    δcc =  ∑ 
U2

2L
AE   δcd =  ∑ 

U2U3L
AE  

 

  δdb =  ∑ 
U1U3L

AE   δdc =  ∑ 
U2U3L

AE   δdd =  ∑ 
U3

2L
AE  

 
 By law of reciprocal deflections :- 
 We know that 
  δbc = δcb 

  δbd = δdb 

  δcd = δdc 

 
 In order to find member forces due to applied forces in BDS, consider. 
 
 

A

F G H I J

E
DCB63

63
0

63
27 27

45

173.4

162

+
81

45

B.M.D.

0
S.F.D.

45

72KN36 KN

B.D.S under loads
          (F’ diagram)

 
 
 
The above SFD and BMD are used to calculate member forces by method of moments and shears. Finally 
∆B, ∆C and ∆D due to applied loads on BDS are calculated in a tabular form as given below: 
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Table 84−A 
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0.75
0.75

0.75
(+)

0 0.25

1.3

(+)
0.9

0.45

(-)
0
0.25

S.F.D.

0.25

B.M.D.

1.0

δ
B.D.S under unit load at B
for calculating  bb,  cb and  dbδ δ

(U1 - diagram)

 
 

δ
B.D.S under unit load at C
for calculating  cc,  bc and  dcδ δ

1
0.5

0.5
0 +

0.5

0.5

0 S.F.D.

0.9
1.8

0.9
+

B.M.D.

U2 - diagram

 
 

(+)

(-)
(+)

0.25 0.751
Same as above

0.25

0.75

BMD

1.3

δbd, δcd and δdd U3 diagram for

SDF

 
 
  From the previous table we have the values of all flexibility co-efficients as given below: 

∆B=391.65 × 10−6 m 
  ∆C=1026.2 × 10−6 m 
  ∆D=692.42 × 10−6 m 
 
  δbb = 9.3616 × 10−6 m,  and  δcc = 11.1 × 10−6 m,   δdd = 9.3565 × 10−6 m   
  δbc = δcb =  6.417 × 10−6  m 
  δbd = δdb = 3.517 × 10−6  m 
  δcd = δdc = 6.291 × 10−6  m 
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Putting the values of flexibility co-efficients into compatibility equations we have. 

  391.65 × 10−6 +9.3616 × 10−6 Rb+6.292 × 10−6 Rc+3.517 × 10−6 Rd= 0 →  (1) 

  1026.2  × 10−6 +6.292 × 10−6 Rb+11.1 × 10−6 Rc + 6.291 × 10−6 Rd = 0 →  (2) 

  579.82 × 10−6 +3.517 × 10−6 Rb+6.291 × 10−6 Rc+9.3565 × 10−6Rd = 0 →  (3) 

 Step No. 4 

  Simplify equation (1), (2) and (3), we have  

  391.65 +9.3620 Rb+6.292 Rc+3.517 Rd =  0     →  (4) 

  1026.2 + 6.292 Rb + 11.1 Rc + 6.291 Rd = 0     →  (5) 

  579.82 + 3.517 Rb + 6.291 Rc+9.357 Rd = 0     →  (6) 

 Multiply (4) by 6.291 & (5) by 3.517 & subtract (5) from (4) 

  391.65 × 6.291+9.362 × 6.291Rb+6.292 × 6.291 Rc+3.517 × 6.291Rd=0 

  1026.2 × 3.517+6.292 × 3.517 Rb+11.1  × 3.517 Rc+3.517 × 6.291Rd=0 
             − 1145.275 + 36.767 Rb + 0.544 Rc = 0     →  (7) 

 Multiply (5) by 9.357 & (6) by 6.291 & subtract (6) from (5) :- 

  1026.2 × 9.357+6.292 × 9.357 Rb+11.1 × 9.357 Rc+6.291 × 9.357Rd=0  

  579.82 × 6.291+3.517 × 6.291Rb+6.291 × 6.291 Rc+6.291 × 9.357Rd=0 

  5954.506 + 36.749 Rb + 64.286 Rc = 0     →  (8) 
 

 From (7), Rb = 



1145.275 − 0.544 Rc

36.767   

 
 Put Rb in (8) & solve for Rc 

  5954.506 + 36.749 



1145.275 − 0.544 Rc

36.767  + 64.286 Rc = 0 

  5954.506 + 1144.71 − 0.544 Rc + 64.286 Rc = 0 

  7099.22 + 63.742 Rc = 0 

Rc  =  − 111.374 KN  

  Put this value in equation (7) and solve for Rb 

  Rb  = 



1145.275 − 0.544 × 111.374

36.767  

 
Rb = +32.797 KN  

  Put Rb and Rc values in equation (4)  to get Rd. 
 
  391.65 + 9.362 × 32.797 + 6.292 ×  (111.374) +3.517 Rd = 0 

Rd  =  + 0.588 KN  
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 After reactions have been calculated, truss is statically determinate and member forces can be easily 
calculated by Fi = Fi/ + RbU1 + RcU2 + RdU3 as given in table. Apply checks on calculated member forces. 
 
Step No. 5:  Equilibrium checks. 
 
  Joint  (C) 

   

32.058

51.814 72
3.828

2.047

111.374  
  ∑ Fx  =  0 
  − 2.047 − 32.058 − 3.828 ×  0.707 + 51.814  ×  0.707 = 0 
  − 0.179 ≅ 0 
   0 = 0 
  ∑ Fy = 0 
  111.374 − 72 − 3.828 × 0.707 − 51.814 ×  0.707 = 0 
  0.035  ≅  0 
  0  =  0  (satisfied) Solution is alright. 
1.21:  ANALYSIS OF 3-DEGREE REDUNDANT FRAMES 
Example No. 8: Analyze the following frame by consistent deformation method. 

A
3m

36KN

3m

B
  

3m
 96KN  

6m
  

C

  

3
2

  

7.5m

  

D

F

E

I

I

I

 
SOLUTION :- 
 The given frame is statically indeterminate to the 3rd degree. So that three redundants have to be 
removed at support  D or A. Consider HD, VD  & MD  as the redundants 

A
3m

36KN

3m

B
  

3m
 96KN  

6m
  

C

  

3
2

  

7.5m

  

D

F

E

I

I

I

 
 = 



STABILITY, DETERMINACY OF STRUCTURES AND CONSISTENT DEFORMATIONS METHOD 75 
 

  

96KN

396KN-m
A

36KN
2m

2 
E36KN

 

3m
B 3m

96KN
6m C

7.5m

D

D

DH

Dv

I I

3I

Fig. 2.45 B.D.S under loads  
 

A

1.5
3m

  

E

  

3m

 
B

  
3m

  
F

  
6m

  
C
 

7.5m

  

D

  

1

1

1

  

1.5m

  

dvdh

       

mH-Diagram

9

    

E

 

6m

  
B

  

F

  
9m

  
C

  

7.5m

    

1

  

dvdv

  

 

1

1

mV-Diagram

1

+

dhdv

    

A

  

3m

    

3m

  

B

  

3m

  

F

  

6m C

D

d d

m -diagram
d dh

d dv

dhddvd

dh dh

 
 

(BDS under redundants) 
Compatibility Equations:- 
 
∆DH + HD × δdh.dh + VD × δdhdv + MD × αdhdθ =0  (1) compatibility in horizontal direction at D. 

∆DV + HD × δdv.dh + VD × δdvdv + MD × αdvdθ  =0  (2) compatibility in vertical direction at D. 

θD    + HD × αdθ.dh +VD × αdθdv + MD × αdθdθ  =0 (3) rotational compatibity at D. 

 

 We have to determine the following flexibility co-efficients. 

  ∆DH    = Horizontal deflection of point D due to applied loads. 

  ∆DV   = Vertical deflection of point D due to applied loads. 

  θD      = Rotation    of point D  due to applied loads. 

  δdhdh = Horizontal deflection of point D due to unit horizontal redundant force at D 
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  δdhdv = Horizontal deflection of point D due to unit vertical redundant force at D 

  αdθdh = angular deflection of point D due to unit angular redundant force at D 

  δdvdh = Vertical deflection of point D due to unit horizontal redundant force at D 

  δdvdv = Vertical deflection of point D due to unit vertical redundant force at D 

  αdθdv = Rotation deflection of point D due to unit vertical redundant force at D 

  αdhdθ = Horizontal rotation of point D due to unit rotation at pt D 

  αdvdθ = Vertical rotation of point D due to unit rotation at pt D 

  αdθdθ = Rotation rotation of point D due to unit rotation at pt D 

  δdvdh  = δdhdv ( reciprocal deformations) 

  αdθdh = αdhdθ ( reciprocal deformations) 

  αdθdv = αdvdθ ( reciprocal deformations) 

 Now these flexibility co-efficients can be evaluated by following formulae. 

   ∆DH  = ∫ M × mH
EI   dX 

  ∆DV  = ∫ M × mV
EI   dX 

  θD  = ∫ M x mθ
EI   dX 

  δdhdh = ∫ (mH)2 dX
EI  

  δdvdv = ∫ (mv)2 dX
EI  

  αdθdh = αdhdθ = ∫  
mH × mθ

EI   dX  

  δdhdv = δdvdh = ∫  
mv × mH

EI   dX     from law of reciprocals deformations 

  αdθdv = αdvdθ = ∫  
mv × mθ

EI   dX  

  αdθdθ = ∫ m
2θ

EI   dX 
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ESTABLISH MOMENT EXPRESSIONS BY FREE BODY DIAGRAMS: 
Note:  Moments giving compression on outside and tension on inside of frame (sagging) will be positive. 

96KN

396KN-m
A

36KN
3m

E

3m

36KN

B 288KN-m

96KN

288KN-m

3m

96KN

6m C

C

7.5m

D

B

96KN
F

Fig 2.46 B.D.S under loads (M-diagram)  

 ΣMb  =  0 
  Mb + 36 × 6 − 396 − 36 × 3 = 0 

  Mb  =  + 288 KN − m. 

 ΣMc  =  0 
  Mc + 96 × 9 − 288 − 96 × 6 = 0  

  Mc + 0 = 0         

  Mc = 0  

Free body m − Diagrams 

A

1.5
3m

E

3m
7.5

B
1

7.5  B
3m F 6m

  

C

  
7.5

  

1

      

C

  

7.5

  

7.5m

  

1

 

D

 

M
Fig. 2.46a mH-Diagam

1

  

9

  

3m

  

E

  

3m

  

9

  

1

  

B

  
9   

3m

  

1

  

F

  

6m

  

C

  

1

  

1

  

C

7.5m

D
1

MFig. 2.46b mv-diagram

1

1
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1

1

3m

E
3m

B

1

 
3m F 6m C

1

1
C

7.5m

D1

Fig. 2.46 m diagram

B

 
 Write moment expressions alongwith limits in a tabular form 
 Portion Origin Limits M MH Mv Mθ I 

 AE A 0 − 3 36X−396 X + 1.5 − 9 − 1 2I 

 BE B 0 − 3 − 288 −X + 7.5 − 9 − 1 2I 

 BF B 0 − 3 96X−288 + 7.5 + X − 9 − 1 3I 

 CF C 0 − 6 0 + 7.5 − X − 1 3I 

 CD D 0 −7.5 0 + X 0 − 1 I 
 It may be done in a tabular form or may be directly evaluated. 
CALCULATIONS OF FLEXIBILITY CO-EFFICIENTS:- 

∆DH =  
1
EI ∫ M × mH dX 

 =  
1

2EI 
3

∫
o
 (36X −396)(X+1.5 )dX+

1
2EI 

3

∫
o

 (−288)(−X+7.5) dX + 
1

3EI 
3

∫
o
 (96X−288)(7.5)dX + 

6

∫
o

  0 + 
7.5

∫
o

 0 

 =  
1

2EI 
3

∫
o
 (36X2+54X −396X − 594) dX + 

1
2EI 

3

∫
o
 (288X−2160) dX + 

1
3EI 

3

∫
o
 (720X − 2160) dX 

 =  
1

2EI 
3

∫
o
 (36X2 −54X−2754) dX + 

1
3EI 

3

∫
o
 (720X − 2160)dX , (First two integrals have been combined) 

 =  
1

2EI 



36X3

3  − 
54X2

2  − 2754 X
3
 
o
 + 

1
3EI  



720X2

2  − 2160X
3
 
o
 

 

  =  
1

2EI 



12 × 33 − 

54
2  × 32  − 2754 × 3  + 

1
3EI 



720

2  × 32 − 2160 × 3   −  
4090.5

EI   −  
1080 

EI  

 

∆DH  =  
51.705

EI   
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δdhdh  =  
1
EI ∫ mH2 dX  

 

 =  
1

2EI 
3

∫
o

 (X + 1.5)2dX + 
1

2EI 
3

∫
o
 (−X+7.5)2dX + 

1
3EI 

3

∫
o
 (7.5)2dX  +  

1
3EI 

6

∫
o
 (7.5)2dX + 

1
EI 

7.5

∫
o

 X2dX 

 =  
1

2EI 
3

∫
o
(X2+3X+2.25)dX+ 

1
2EI 

3

∫
o
(X2−15X+56.25)dX+ 

1
3EI 

3

∫
o
56.25 dX+

1
3EI 

6

∫
o
56.25 dX+

1
EI 

7.5

∫
o

X2 dX 

        = 
1

2EI 



X3

3  + 
3X2

2  + 2.25X
3
 
o
+ 

1
2EI 



X3

3  − 
15X2

2  +56.25X
3
 
o
+ 

1
3EI 56.25X 

3
|
o
+

1
3EI 56.25X 

6
|
o
+

1
EI



X 3

3

7.5
 
o

 

 = 
1

2EI 



33

3 ×
3
2×32+2.25×3  +

1
2EI



33

3 −
15
2 ×32+56.25×3 + 

1
3EI (56.25×3) + 

1
3EI(56.25×6) + 

1
3EI



7.53

3  

 =  
14.625

EI   +  
55.125

EI   +  
56.25

EI   +  
112.5

EI   +  
140.625

EI  

 

 δdhdh  =  + 
379.125

EI    

αdhdθ = 
1
EI ∫ (mH × mθ) dX 

 

αdhdθ =
1

2EI 
3

∫
o
(X+1.5)(−1)dX+

1
2EI 

3

∫
o
(−X+7.5)(−1)dX+

1
3EI 

3

∫
o
(7.5)(−1)dX+

1
3EI 

6

∫
o
(7.5)(−1)dX+

1
 EI

7.5

∫
o

(X)(−1)dX 

 

 = 
1

2EI 
3

∫
o

 (−X−1.5)dX + 
1

2EI 
3

∫
o

 (X−7.5)dX + 
1

3EI 
3

∫
o

 (−7.5)dX + 
1

3EI 
6

∫
o

 (−7.5)dX + 
1
EI 

7.5

∫
o

(−X) 

 

 = 
1

2EI 
3

∫
o

 (−9)dX + 
1

2EI 
3

∫
o

 (−7.5)dX + 
1

3EI 
6

∫
o

 (−7.5)dX + 
1
EI 

7.5

∫
o

(−X)dX 

 

 = 
1

2EI −9X 
3
|
o
 + 

1
3EI −7.5X 

3
|
o
 +

1
3EI  −7.5X 

6
|
o
+ 

1
EI 



-

X2

2

7.5
 
o

 

 = 
1

2EI (−9 × 3) + 
1

3EI (−7.5 × 3) + 
1

3EI (−7.5 × 6) + 
1
EI 



−

(7.5)2

2  

 

αdhdθ  =  − 
64.125

EI   

∆Dv  =  
1
EI ∫ (M × mv) dX 

∆Dv  =  
1

2EI 
3

∫
o

 (36X − 396 )(−9 ) dX + 
1

2EI 
3

∫
o

 (−288 )(−9 ) dX +
1

3EI 
3

∫
o

 (96X − 288) (X−9)dX + 0 + 0 
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 =  
1

2EI 
3

∫
o

 (−324X+3564) dX + 
1

2EI 
3

∫
o
 2592 dX + 

1
3EI 

3

∫
o
(96X2−864X −288X + 2592) dX 

 =  
1

2EI 
3

∫
o
(−324X + 6156) dX + 

1
3EI  

3

∫
o
(96X2 − 1152X + 2592) dX 

 =  
1

2EI 



−324X2

2  + 6156X
3
 
o
 + 

1
3EI 



96X3

3  − 
1152X2

2  + 2592X
3
 
o
 

  =  
1

2EI (−162 × 32 + 6156 × 3) + 
1

3EI (32 × 33 − 576 × 32 + 2592 × 3) 

  =   
8505

EI   +  
1152

EI  

∆Dv  =  
9657

EI  

δdvdv  =  
1
EI ∫ (mv)2 dX 

 

 =  
1

2EI 
3

∫
o
(−9 )2  dX + 

1
2EI 

3

∫
o
(−9 )2 dX + 

1
3EI 

3

∫
o
(X−9 )2 dX + 

1
3EI 

6

∫
o
 (−X)2 dX + 

1
EI 

7.5

∫
o

( 0 ) dX 

 

 =  
1

2EI 
3

∫
o
162 dX + 

1
3EI 

3

∫
o
(X2  −18X + 81) dX + 

1
3EI 

6

∫
o
 X2 dX 

 

 =  
162
2EI X 

3
|
o
 + 

1
3EI 



X2

3  − 
18X2

2  + 81X
3
 
o
 + 

1
3EI 



X3 

3

6
 
o
 

 

 =  
81(3)

EI  + 
1

3EI  



33

3  − 9 × 32 + 81 × 3  + 
1

3EI 


63

3  
 

δdvdv  =  + 
324
EI   

αdvdθ  =  
1
EI ∫ (mv × mθ) dX   

αdvdθ  =  
1

2EI 
3

∫
o

  9 dX + 
1

2EI 
3

∫
o
 9 dX + 

1
3EI 

3

∫
o

 (−X + 9) dX +  
1

3EI 
6

∫
o
 × dX + 0 

 

 =  
1

2EI 9X 
3
|
o
 + 

1
2EI 9X 

3
|
o
 + 

1
3EI  



−

X2

2  + 9X
3
|
o
+ 

1
3EI  



X2

2

6
 
o
 

 

 =  
1

2EI (9 × 3) + 
1

2EI (9 × 3) + 
1

3EI 



−9

2  + 9 × 3  + 
1

3EI 



36

2  

 

αdvdθ =  + 
40.5
EI  
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αdθdθ =  
1
EI ∫ (mθ )2 dX 

 

αdθdθ  =  
1

2EI 
3

∫
o
 1dX + 

1
2EI 

3

∫
o
 1dX + 

1
3EI 

3

∫
o
 1dX + 

1
3EI 

6

∫
o
 1dX + 

1
EI 

7.5

∫
o

1dX 

 

 =  
1

2EI  X 
3
|
o
 +  

1
3EI  X 

3
|
o
 + 

1
3EI  X 

6
|
o
 + 

1
EI  X 

7.5
|
o

 
 

 =  
1
EI (3) + 

1
3EI (3) + 

1
3EI (6) + 

1
EI (7.5) 

 

αdθdθ =  + 
13.5
EI   

θD =  
1
EI ∫ (M x mθ) dX 

 

 =  
1

2EI 
3

∫
o
 (−36X +396) dX + 

1
2EI 

3

∫
o
 288 dX + 

1
3EI 

3

∫
o
 (−96X + 288) dX 

 

 =  
1

2EI 
3

∫
o
 (−36X + 684) dX + 

1
3EI 

3

∫
o
 (−96X + 288) dX 

 

 =  
1

2EI  



−36 

X2

2   + 684X
3
 
o
 + 

1
3EI 



−96 

X2

2  + 288X
3
 
o
 

 =  
1

2EI (−18 × 9 + 684 × 3)  +  
1

3EI (− 48 × 9 + 288 × 3) 
 

 θD  =  + 
1089

EI   

δdhdv  =  
1
EI ∫ (mH × mv ) dX 

 

δdhdv = 
1

2EI 
3

∫
o
 (−9X − 13.5)dX + 

1
2EI 

3

∫
o
 (+9X − 67.5)dX + 

1
3EI 

3

∫
o
 (7.5x − 67.5)dX + 

1
3EI 

6

∫
o
 (−7.5X) dX +0 

 

 =  
1

2EI 
3

∫
o
 (− 81)dX + 

1
3EI 

3

∫
o
 (7.5X − 67.5) dx +  

1
3EI 

6

∫
o
 (− 7.5X) dX 

 



82 THEORY OF INDETERMINATE STRUCTURES 
 

 =  
1

2EI −81X 
3
|
o
 + 

1
3EI 



7.5X2

2  − 67.5X
3
|
o
 + 

1
3EI 



− 

7.5X2

2

6
 
o
 

 

 =  
1

2EI (−81 × 3) + 
1

3EI 



7.5

2  × 9 − 67.5 × 3  + 
1

3EI 



− 

−7.5
2  × 36  

 

 δdhdv  =  − 
222.75

EI   

 

Putting above evaluated flexibility co−efficients in compatibility equations , we have. 

  (1)  ⇒ −5170.5 + 379.125 HD − 222.75 VD − 64.125 MD = 0   →  (4) 

  (2)  ⇒ +9657   − 222.75 HD   +   324 VD   +   40.5 MD  = 0   →  (5) 

  (3)  ⇒ + 1089  −  64.125  HD  +  40.5 VD  + 13.5  MD   = 0   →  (6) 

 Multiply (4) by 222.75 & (5) by 379.125  Then add (4) & (5) to eliminate HD  

  − (5170.5 × 222.75) +(379.125 × 222.75)HD−(222.75)2VD−(64.125 × 222.75)MD =0 

  +(9657×379.125)− (379.125×222.75)HD+(324×379.125)VD+(40.5×379.125) MD=0 

  2509481.25 + 73218.9375 VD +1070.72 MD = 0     →  (7) 

 
 Multiply (5) by 64.125 & (6) by 222.75 & subtract (6) from (5) to eliminate HD again  

  619255.125 − 14283.84 HD + 20776.5  VD + 2597.06 MD = 0 

  − 242574.75 −  14283.84 HD + 9021.375 VD + 3007.125 MD= 0 

  376680.375 + 11755.125 VD − 410.065 MD = 0   → (8) 

 Now equation (7) and (8) are in terms of VD and MD  
 
 From (7), VD  =  



−1070.72 MD − 2509481.25

73218.9375      → (9) 

 
 Put VD in (8)  to get MD  

  376680.375 + 11755.125 



−1070.72 MD − 2509481.25

73218.9375  − 410.065MD = 0 

 
  376680.375 − 171.90 MD − 402891.20 − 410.065 MD = 0 
 
  − 26210.83 − 581.965 MD = 0 
 
 MD  =  − 45.04 KN−m,  put this in (9) to get VD  
 

  VD  =  



−1070.72 × (45.04) − 2509481.25

73218.9375  
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 VD  =  − 33.62 KN.   Now put values of VD and MD in (4) to get HD  
 
  − 5170.5+379.125 × HD+222.75 × 33.62 + 64.125 × 45.04 = 0   
 
  379.125 HD + 5205.44  =  0 
 
 HD  =  − 13.73 KN 
 
 HD  = − 13.73 KN 

 
VD  = −  33.62 KN 
 
MD  = −  45.64 KN − m 

 

 

These reactions are applied to frame which becomes statically determinate now and shear force and moment 
diagram can be sketched (by parts) now. 

Ma=68.98Kn-m
VA =62.38KN

A
3m

HA=22.27KN

 E

2
3

36KN

3m

B
3m 6m C

7.5m

D 45.04KN-m

13.73KN

33.62KN

I

I

I

Fig. 2.47

96

 
 
 Applying condition of equilibrium at A, reactions can be obtained. 

  ∑ FX  =  0 

  36 − HA − 13.73 = 0 

  HA = 22.27 KN  

 

  ∑Fy  =  0 

  VA + 33.62 − 96 = 0 

  VA = 62.38 KN  
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  ∑ M  = 0 

  MA + 45.04 − 13.73 × 1.5 + 33.62 × 9 − 96 × 3− 36 × 3 = 0 

  MA − 68.98  = 0 

  MA = 68.98 KN-m  Applying these reactions to frame, various free-body diagrams 
     can be drawn and moments expressions can be set-up for 

determining combined deflections of any point due to applied 
loads and reactions (at supports) acting simultaneously. 

 

62.38Kn

22.27Kn
68.98KN-m

3m

E36KN
3m 13.73KN

43.36KN-m

62.38KN

43.36KN-m 96KN 57.94KN-m

57.94KN-m

13.73KN C

7.5m

D
45.04KN-m

13.73Kn

33.62KN

E

M  = 0 ,  Mb+22.27 x 6 68.98-36 x 3 = 0b -
Mb = 43.36  KN-m

M+62.38 x 9-43.36-96x 6=0
Mc=57.94 KN-m (for beam)

62.38KN

13.73KN 6m3m
F

C 13.73KN

33.62KN33.62KN
6m

B

B

A

Mc=0 , 

 
BENDING MOMENT AND SHEAR FORCE DIAGRAMS :− 

For beam BC 

43.36

0

-

x=0.695

 

33.62
143.78

 0
+

62.38
62.38KN

B
43.36KN-m

3m
96KN

6m
57.94KN-m
C

33.62KN

S.F.D.
0
33.62

=1.723mx

0 B.M.D.

57.94

m

 
 

   Mx = −45.04 + 13.73x  = 0 

    x  =  3.28 m 
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FOR COLUMN AB 
(Seen rotated at 90°) 
 

68.98

0

0
+22.27

  

22.27KN

  

A

  

68.98KN-m

  

3m

36KN

3m B

43.36KN-m

13.73KN

S.F.D.
0
13.73

  

0

  

43.36

      

2.17  
 
FOR COLUMN DC 
(Seen rotated at 90°) 

45.04

0

X=3.28m

+
0

+

13.73

13.73KN
D
45.04KN-m

7.5m
57.94KN-m

C
13.73KN

13.73

0 S.F.D.

0

57.94

B.M.D.

+

Mx=-45.04+13.73x  = 0
x = 3.28m  

 

68.98

2.17
B.M.D.

43.36 4 .36

+

143.78

57.94

57.94
+

45.04

3

 

  

22.27

+

13.73
S.F.D.

62.38

13.73

33.62

+

13.73
Composite S.F.D. for analysed frame

Fig. 2.48  
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Elastic Curve:-

 
1.22: Analysis of Continuous Beams 
Example No. 9: 
 Analyze the following beam by consistent deformation method. Check the results by the method of 

least work. 
SOLUTION:- 

A        30m               B  40m           C    40m         D   30m          E

15m 10KN
10m

5KN E1=Constt

Number of reactions=5
number of equations=2

Fig. 2.56  
Step No.1: 
 In this structure, we treat reactions at B, C & D as redundants and the B.D.S. is a simply supported 

beam AE. 

140m

A B

B

C

C

D E

D

15m
10KN

10m
5KN

B.D.S.  Under applied loads.
            Fig. 2.56a  

 

A B C D E

bb  x  Vb cb x Vb
D

dbxVb

B.D.S.  Under Unit redundant load at B.
                     Fig. 2.56 b

1

 
 

A B C D  E  
bc x Vc

  
cc

 
x

 
Vc

   
dc x

  
Vc

1

B.D.S.  under Unit redundant load at C.
                        Fig. 2.56c

U
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A B C  D  E  
bd

 
x

 
Vd

  
cd

 
x

 
Vd

   
dd

  
x

  
Vd

1

B.D.S.  under Unit redundant load at D.
                       Fig. 2.56d

U
 

Step No.2: Compatibility Equations. 
 
∆B + Vb × δbb + Vc × δbc + Vd × δbd  =  0    →  (1)   Compatibility of deformations at B 

∆C + Vb × δcb + Vc × δcc + Vd × δcd   =  0   →  (2)   Compatibility of deformations at C 

∆D + Vb × δdb + Vc × δdc + Vd × δdd  =  0   →  (3)   Compatibility of deformation at  D 
 

 Sketch BDS, Draw SFD, and 
M
EI diagram for use in conjugate beam method. 

       

A                           B                  C            D                
E

A1 A2

A3

A4

9748.339/E111631.161/E1

  

0 0
3.93

S.F.D.+
+

1.07 1.07
11.07

= 11.07KN

3.93KN = RE

140m
80m 60m

A
B C D E

15m
10KN 5KN

RA
 
=

  10x 125
140

5x60
140

x
Fig. 2.57

65 m

M/EI diagram over
conjugate beam

166.05/EI
235.8/EI

 
 

 Splitting above 
M
EI in 4 parts as shown, calculate areas of these portions. 

  A1 =  
1
2 × 15 × 

166.05
EI   =  

1245.375
EI  

 

  A2 =  
166.05

EI  × 65  =  
10793.25

EI  
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  A3 =  
1
2 × 

69.75
EI  × 65 = 

2266.875
EI  

 

  A4 =  
1
2 × 235.8 × 60  =  

7074
EI  

 

 A1+A2+A3+A4  =  
21379.5

EI  

  ∑ M′E  = 0 
 

 RA′ x 140 =  
1
EI



1245.375 



125+

15
3 +10793.25 



60+

65
2 +2266.875 



60+

65
3 +7074 



2

3×60  

 

 RA′ =  
11631.161

EI  

 

 RE′ =  
21379.5

EI  − 
11631.161

EI  

 RE′ =  
9748.339

EI  

 Isolating the upper part of 
M
EI diagram between two loads. 

 

15

65
55

235.8

Y1 Yy2y166.05/EI

B
C

 
y2
55 = 

235.8
65    By conjugate beam method, ∆B would be moment at B' of conjugate beam 

                 loaded with 
M
EI diagram. 

 y2 = 199.52 
 y1 =  54.4 
 

 ∆B = 
1
EI 



11631.161×30−1245.375 



15+

15
3  − (166.05×15) × 7.5 − 



54.42×

15
2  × 



15

3  

       = 
303080.955

EI     KN−m3 

 
 Moment at C' of conjugate beam 

 ∆C =  
1
EI 



11631.161×70−(1245.375) 



15

3 +55 −(166.05×55) 



55

2 −



1

2×100.52×5.5 ×



1

3×55  

 

  =  
387716.812

EI  KN−m3 
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60m

Y y3

30
235.8

D
y  = 117.9/EI3

 
Isolating the portion of 

M
EI diagram between right support and 5 KN load. 

Moment at D' of conjugate beam 

 ∆D  =  
1
EI 



9748.339 × 30 − 



1

2 × 117.9 × 30  × 
30
3  

 ∆D  =  
274765.17

EI  KN−m3 

If we construct 
M
EI diagram for above figures 2.56b, 2.56c and 2.56d and place them over conjugate beam, 

we have  δcb= 34501.88, δcc= 57166.66, δcd= 34501.88   on similar lines as above. From conjugate beam 
for fig: 2.56b, you will have 

 δbb  =  
1
EI 



982.086 × 30 − (353.565) 



30

30  = 
25926.93

EI  

 δcb  =  
1
EI 



667.884 × 70 − 



1

2 × 15 × 70  



70

3  = 
34501.88

EI  

 δdb  =  
1
EI 



667.884 × 30 − 



1

2 × 6.423 × 30  



30

3  = 
19073.07

EI  
 

 We already know from law of reciprocal deflections that  
 δcb  =  δbc 
 δbd  =  δdb 
 δcd  =  δdc 
 From conjugate beam for fig: 2.5d, you will have 

 δcd   = 
1
EI 



667.884 × 70 − 



15 × 70

2  



70

3  = 
34501.88

EI  

 δdd  =  
1
EI 



982.086 × 30 − 



1

2 × 23.571 × 30  



30

EI  = 
25926.93

EI  

 
 Putting above flexibility co-efficients in compatibility equations, we have 

 303080.955 + 25926.93 Vb + 34500 Vc + 19073.07 Vd = 0  → (1) 
 387716.812 + 34501.88 Vb + 57166.67 Vc + 34501.88 Vd = 0  → (2) 
 274765.17 + 1907307 Vb + 34500 Vc + 25926.93 Vd = 0   → (3) 
 

 Solving above three linear – simultaneous equations, we have 
 

Vd  =  − 14.30 KN  
 

Vc  =  12.98 KN  
 

Vb  =  18.44 KN  
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Now the continuous beam has become determinate. Apply loads and redundants reactions, other 
support reactions can be determined. 
 
 

A                           B                   C                       D                         E

Va                       18.44KN         12.98KN            14.30KN            Ve

10KN                                          5KN
15m                                          10m

 
 
  ∑ME  =  0 
  Va × 140 − 10 × 125 − 18.44 × 110 − 12.98 × 70 − 5 × 60 + 14.3 × 30  =  0 
 

Va = 28.9 KN  
 
  ∑ Fy  =  0 
 gives         Ve  =  3.22 KN upwards 
 
 Now shear force and BMD can be plotted as the beam is statically determinate now. 
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