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CHAPTER ONE

STABILITY, DETERMINACY OF STRUCTURES AND
CONSISTENT DEFORMATIONS METHOD

1.1 STABILITY OF STRUCTURES:

Before deciding the determinacy or indeterminacy of a structure we should first of all have a structure
which is stable. The question of determinacy or indeterminacy comes next. We shall now discuss 2-D or
single plane structures. (Defined and accommodated in a single plane).

1.1.1. STABLE STRUCTURE;

A stable structure is the one, which remains stable for any conceivable (imaginable) system of loads.
Therefore, we do not consider the types of loads, their number and their points of application for deciding
the stability or determinacy of the structure. Normally internal and external stability of a structure should be
checked separately and if its overall stable then total degree of indeterminacy should be checked.

1.2. ARTICULATED STRUCTURES:

This may be defined as “A truss, or an articulated structure, composed of links or bars, assumed to be
connected by frictionless pins at the joints, and arranged so that the area enclosed within the boundaries of
the structure is subdivided by the bars into geometrical figures which are usually triangles.”

1.3. CONTINUOUS FRAME:

“ A continuous frame is a structure which is dependent, in part, for its stability and load carrying capacity
upon the ability of one or more of its joints to resist moment.” In other words, one or more joints are more
or less rigid.

14. DETERMINACY:

A statically indeterminate structure is the one in which all the reactive components plus the internal forces
cannot be calculated only from the equations of equilibrium available for a given force system.These
equations, of course, are

>H=0, XV=0and XM=0

The degree of indeterminacy for a given structure is, in fact , the excess of total number of reactive
components or excess of members over the equations of equilibrium available.

It is convenient to consider stability and determinacy as follows.
a) With respect to reactions, i.e. external stability and determinacy.
b) With respect to members, i.e. internal stability and determinacy.

c) A combination of external and internal conditions, i.e. total stability and determinacy.
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14.1. EXTERNAL INDETERMINACY:
A stable structure should have at least three reactive components, (which may not always be sufficient) for
external stability of a 2-D structure, which are non-concurrent and non-parallel.
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Fig. 1.1. Stable & determinate.
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Fig. 1.2. Stable & determinate.
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External indeterminacy is, in fact, the excess of total number of reactive components over the equations of

equilibrium available.
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Fig. 1.3.
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No. of reactions possible = 5
No. of Equations of equilibrium available = 3
Degree of External indeterminacy = 5—-3 = 2
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Fig. 1.4
Stable & Indeterminate to 2nd degree. (Fig. 1.3)
Fig. 1.4. Stable & externally indeterminate to 3rd degree.
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Fig. 1.5.
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Stable & Indeterminate to Ist degree. (Fig. 1.5)
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Fig. 1.6.
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Stable & externally indeterminate to 5th degree. (Fig. 1.6)
Remove any five suitable redundant reactions to make it statically determinate.

1.4.2. INTERNAL INDETERMINACY:

This question can be decided only if the minimum number of reactive components necessary for
external stability and determinacy are known and are acting on the structure. This type of
indeterminacy is normally associated with articulated structures like trusses. We assume that the
structure whose internal indeterminacy is being checked is under the action of minimum reactive

components required for external stability at the supports.

The basic form of the truss is a triangle.

To make the truss, add two members and one joint and repeat.

Fig 1.7
Let us assume that

Total number of joints.

o -
1 1

Total number of bars.

_.;
1

Minimum number of reactive components
required for external stability/determinacy.

-

total number of total number of
unknowns. equations available (at joints).
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1. If b+r=2j Stable & internally determinate. Check the arrangement of
members also.

2. If b+r > 2j Stable & internally indeterminate.
(degree of indeterminacy would be
decided by the difference of these
two quantities).

3. If b+r < 2j Unstable.

A structure is said to have determinacy or indeterminacy only if it is stable. Now we consider some
examples.

y
X
Fig. 1.8.
b =11
r =3 (Minimum external reactions required for external stability/determinacy)
j=7
b+r=2j
11+3 = 2x7
14 = 14
This truss of fig. 1.8 is stable and internally determinate.
8 12
13 15
10 14
Fig. 1.9.
b =15
r =3
i =9
b+r =2j
15+ 3 = 2x9
18 = 18
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The truss of fig. 1.9 is stable and internally determinate.

4 6 12 15
10
1 3 5 7 9 14 16 18
11
2 8 13 17
Fig. 1.10.
b =18
r =3
j =10
b+r =2j
18+ 3 = 2x10
21 > 20

This truss of fig. 1.10 is stable & internally indeterminate to 1st degree.

2 6 10 13
m -

1 3 5 7 9“. ho 14 16

4 8 11 15
Fig. 1.11.

b =16

r =3

j =10

b+r =2j

17+ 3 =2x10

20 = 20

This truss is Unstable by inspection although the criterion equation is satisfied. The members in
indicated square may get displaced and rotated due to gravity loads.

Always inspect member positions. Insert one member in the encircled box or manage prevention of
sliding by external supports to make it stable.

NOTE:- The difference between the internal and the external indeterminacy is only in the definition of ‘r’

1.4.3.

TOTAL INDETERMINACY

The question of total indeterminacy is of little interest and we have got different equations for
different types of structures. For example, the previous equation, i.e., b +r =2 can be used to
check the total degree of indeterminacy of an articulated structure like truss by slightly modifying

the definition of “ r ” which should now be considered as the “total number of reactive
components available”.
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b+r=2j

Total number of bars.

where b

Total number of reactive components available.

r
j
Example No. 1: Determine the external and internal conditions of stability and determinateness for the

Total number of joints

following structures:-

Fig. 1.12

(i) External Stability And Determinacy:-
Number of reactive components available = 2

Number of equations of equilibrium available = 3
Unstable. (Visible also)

(i) Internal Stability And Determinacy
b

r

b =2j

9 =2x6

12 = 12

Degree of Indeterminacy = D = 12-12=0

+ 4+ 1o N
W= o w ©

Stable and Internally Determinate, if arrangement is improved to have X = 3.

Example No. 2:
Link

o /

Fig. 1.13.

™
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*In this case the presence of a pin at each end of the link makes one additional type of movement
possible if reaction components are removed. Two condition equations are therefore provided by
the link in terms of algebraic sum of moments equal to zero at the joints of link.

External Stability and Determinacy.
Number of reactive components = 5

*

Number of equations of equilibrium available=3+2 =5
Degree of indeterminacy = 5-5= 0

Stable and Externally Determinate. (Structure of fig. 1.13.)
Example No. 3:

14 18
11 15 ? 92

13 2 |17 6 0

Fig. 1.14.
(M External Stability and Determinacy:—
Number of reactions =3
Number of equations =3
D=3-3=0
*. Externally Stable and Determinate
(i) Internal Stability and Determinacy:-
22
3
11
r =2j
= (b+r)-2j
= (22+3)-(2x11)
=25-22
D =3 where D = Degree of indeterminacy.
Stable and indeterminate to 3rd degree.

[ g

\

Continuous frame

Oo——=oT
+ 1

Example No. 4:

Fig. 1.15.
External Stability and Determinacy:-
Number of reactions = 9
Number of equations = 3
D =9-3=6
Stable and Indeterminate to 6th degree. (fig. 1.15).
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Example No. 5:
3
2 4
6
1 5
S AN
Fig 1.16

(1 External Stability And Determinacy :-
Number of reactions = 6
Number of equations = 3
Degree of indeterminacy = 6 -3 =3
Stable and externally Indeterminate to 3rd degree.
(i) Internal Stability and Determinacy :-
b==6
r = 3, where r isthe minimum reactive components required for external
j 6 stability and determinacy.

Degree of indeterminacy of rigid jointed structure. (Fig. 1.16)
D=@Bb+r)-3j

D=(3x6+3)-(3x6)
D=21-18
D=3
Stable and indeterminate to 3rd degree.
Example No. 6:
(i External Stability and Determinacy :-

4

Fig. 1.17.
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SN

Number of reactions
Number of equations
D=4-3=1

Stable and indeterminate to Ist degree.

I
w

(i) Internal Stability and Determinacy :-
b=21
r =3
j =1
D= (b+r)-2j

(21+3)-2x11
D=24 -22 =2
Stable and indeterminate to 2nd degree.

Note: In case of a pin jointed structure, there is one unknown per member and in case of rigid jointed
structure there are three unknowns at a joint.
Example No. 7:

Fig. 1.18.

M External Stability and Determinacy :-
Number of reactions =3
Number of equations = 3
D =3-3=0
Stable and Determinate.

(i) Internal Stability and Determinacy :-
b =38
=3
=20
(b+r)-2j
(38+3)-2x20
= 41-40
D=1
Stable and indeterminate to Ist degree. (Fig. 1.18)

g-— -
1

Example No. 8:

Fig. 1.19.
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M External Stability and Determinacy :-
Number of reactions = 3
Number of equations = 3
D=3-3=0
Stable and Determinate.

(i) Internal Stability and Determinacy :-
b = 54
r =3
j =25
b+r=2j
54+3 > 2x25

57 > 50
D=57-50= 7
Stable and indeterminate to 9th degree. (Fig. 1.19)

Example No. 9:

14 17

9 12 16 19

/77777 /7 / /77777 /77777
Fig. 1.20.

Q) External Stability and Determinacy :-
Number of reactions = 12
Number of equations = 3
D=12-3=9
Stable and indeterminate to 9th degree.
(i) Internal Stability and Determinacy :-
b =19
3
16
(3b+r) =3j
= (3x19+3)=3x16

= 60 > 48

;
i
D

D =60 -48 =12
Stable and Internally Indeterminate to twelfth degree. (Fig. 1.20)
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11

Example No. 10:

10 1
9 , 2
7 8
6 5 3
AN >
Fig. 1.21.
(M External Stability and Determinacy :-
Number of reactions = 6
Number of equations = 3
D =6-3=3
Stable and Indeterminate to 3rd degree.
(i) Internal Stability and Determinacy : -
b =11
r =3
j =9
D=(3b+r) —3j
= (3x11 +3) -3x9
=36 - 27
D=9

Stable and indeterminate to 9th degree. (Fig. 1.21)
Example No. 11:

/N
1 3 5
7 8
2 4 6
s AN s
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M External Stability and Determinacy :-
Number of reactions = 6
Number of equations = 3
D=6-3=3
Stable and indeterminate to 3rd degree.

(i) Internal Stability and Determinacy :-

b =10

r =3

j =9

D= (3b+r)-3j

= (3x10+3)-3x9

D= 33-27

D=6

Stable and indeterminate to 6th degree. (Fig. 1.22)
Example No. 12:

12

13 11

10

H
a
H

Fig. 1.23.

M External Stability and Determinacy :-
Number of reactions = 2
Number of equations = 3
Unstable Externally. (Visible also)

(i) Internal Stability and Determinacy :-
b =14
r =3
j =8
D= (b+r)-2j
= (14+3)-2x8
D=1

Stable and Internal Indeterminacy to Ist degree.



STABILITY, DETERMINACY OF STRUCTURES AND CONSISTENT DEFORMATIONS METHOD 13

Example No. 13:

=M=0
4 7 10 P 15
6 14 16
9 19
3 5 13 17
8
1 20
18
2
[
A
Fig. 1.24.
Q) External Stability and Determinacy :-
Number of reactions = 4
Number of equations= 3+1 = 4
D=4-4=0
Stable and Determinate.
(i) Internal Stability and Determinacy :-
b =20
r = 4 (Note this. A roller at either support will create instability)
j =12
(b+r)=2]j
(20+4) = 2x12
24 = 24

D =24-24=0
(Here minimum r is 4 for internal stability and determinacy.)
Stable and determinate.

Example No. 14:

1 5 9 13
6 10
2 14 |\ 17
4 8 Nl
3 / ANEERNEL
Do .
< M=0 < M=0
r=1 r=1

Fig. 1.25.
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M External Stability and Determinacy :-

Number of reactions = 6

Number of equations= 3+2 = 5
D=6-5=1

Stable and Indeterminate to Ist degree.

(i) Internal Stability and Determinacy :-
b =43
r = 3+2=5 (take notice of it). Two pins where M = 0
i 24
b+r=2j
43+5 = 2x24
48 = 48
D =48-48=0
Stable and Determinate. (Fig. 1.25)

Example No. 15:

Fig. 1.26.

Q) External Stability and Determinacy :-
Number of reactions = 8
Number of equations = 8 = (3 + 5)
D=8-8=0
Stable and Determinate.

(i) Internal Stability and Determinacy :-
b =42
r = 3+5 = 8. There are 5 joints where XM = 0
j =25
b+r =2j
42+8 =2x25
50 = 50
D =50-50=0

Stable and Determinate.
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Example No. 16:

(M External Stability and Determinacy :-

Number of reactions = 4
Number of equations = 3

D=4-3=1
Stable and Indeterminate to Ist degree.
(i) Internal Stability and Determinacy :-
b =16
r =3
=9
D= (b+r)-2j
= (16+3)-2x9
=19 - 18
D=1

. Stable and Indeterminate to Ist degree.
In the analysis of statically determinate structures, all external as well as internal forces are completely
known by the application of laws of statics.Member sizes do not come into the picture as no compatibility
requirements are to be satisfied. However, in the analysis of indeterminate structures we should have
member sizes, sectional and material properties before doing the analysis as member sizes would be
involved in the determination of deflections or rotations which are to be put in compatibility equations
afterwards. Now we discuss methods for finding deflection and rotations.

1.5. METHODS FOR FINDING DEFLECTION AND ROTATION;-
Usually following methods are used in this classical analysis of structures..
Unit - load method. (Strain energy method).
Moment - area method.
Conjugate beam method (a special case of moment - area method).

151. MOMENT AREA THEOREM (1) ;-
The change of slope between tangents drawn at any two points on the elastic curve of an originally
straight beam is equal to the area of the B.M.D between these two points when multiplied by 1/EI
(reciprocal of flexural stiffness),
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Elastic curve
B
_1
6,,= % (Area of B.M.D.
between A & B)
Tangent at A
0. <
=1 T tatB
eAB £ (AREA%B angent al
Signs of Change of Slope:- )
Elastic curve Tangent at A
A B
4
Tangent at B(
Elastic curve
Tangent at A
A B
Fig 2.1(a) A e

Tangent at B Fig 2.1(b)
(@) Positive change of slope, 6g is counterclockwise from the left tangent. (Fig. 2.1a)
(b) Negative change of slope, 0,5 is clockwise from the left tangent. (Fig. 2.1b)

152. MOMENT AREA THEOREM (2) :-

“The deviation of any point on elastic curve from the tangent drawn at some other point on the
. . 1 - . .
elastic curve is equal to El multiplied by the moment of the area of the bending moment diagram

between these two points”. The moment may generally be taken through a point where deviation is
being measured.

A B
Elastic curve. T
AN

'BA = Deviation of point B w.r.t

taa= 1 (A 0 A tangent at A
BA = (Ared) g X \ l

Fig 2.2 tangent at A

tangent at B
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153. SIGN CONVENTION FOR DEVIATIONS:-
A

tBA=Deviation of point B on elastic curve w.r.t.
tangent at point A on elastic curve

Fig 2.2 (8 Positive deviation

tBA=Deviation of point B on elastic curve w.r.t.

tangent at point A on elastic curve

A Elastic curve B
Fig 2.2 (b) Negative deviation
(a) Positive Deviation:- B located above the reference tangent. (Tangent at A; Fig. 2.2a)

(b) Negative Deviation:- B located below the reference tangent. (Tangent at A; Fig. 2.2b)

15.4. INEQUALITY OF tga AND tpp
Depending upon loading, these two deviations t,, and t,, may not be equal if loading is

unsymmetrical about mid span of the member.

Elastic curve

/

S~ / ‘AB #'BA

Reference tangent at B Reference tangent at A

Fig. 2.3

1.6. BENDING MOMENT DIAGRAM BY PARTS:
In order to compute deviations and change of slope by moment area method, bending moment
diagram may be drawn in parts i.e. one diagram for a particular load starting from left to right.
Same sign convention would be followed for bending moment and shear force as have been
followed in subjects done earlier. Bending moment would be positive if elastic curve resembles
sagging i.e. compression at top fibers and tension at the bottom fibers while shear force would be
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positive at a section of a portion being considered as a free body when left resultant force acts
upwards and right resultant force acts downwards. Negative bending moment and shear force
would be just opposite to this.

1.6.1. SIGN CONVENTIONS FOR SHEAR FORCE AND BENDING MOMENT

Compression L
+ Positive B.M. Positive Shear Force |:| Iil
\ Tensi I l
‘ension LR
/Tension
Negative Shear Force
— Negative B.M. \
Compression
R
L R |:

Fig 2.4

Consider the following loaded beam. Start from faces on LHS and move towards RHS. Construct
BMS due to all forces encountered treating one force at a time only.

lpl fz
A B
VAN © > 4o
Ra Rb
Loua o, usa L2 3
1 K ] 1

B.M.D. dueto Ra=RaxL

- B.M.D. due to Fi

3
Fix I L
B.M.D. due to Fé
- Bx &
272

- B.M.D. due to U.D.L.
W x (L/2) x (U2) = wi2
2 8

We observe that the moment effect of any single specified loading is always some variation of the general

equation. Like
y = kX" 1)
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This Relationship has been plotted below. While drawing bending moment diagrams by parts and starting
from left, for example, Ra is acting at A. Imagine that Ra is acting while support at A has been removed and
beam is fixed adequately at B ( just like a cantilever support), the deflected shape whether sagging or
hogging will determine the sign of B.M.D. Similar procedure is adopted for other loads.

y

X Pl
T
where k = constant
n = degree of
curve of
B.M.D A
h
ie. y=|§’X = k=P, n=1
=Wk =w/2, n=2
y == w/2, n N
| |
i< 7l
b
Fig. 2.6
Generalized variation of B.M. w.r.t. X
- Xd A
Ingeneral X —j A
Area of the strip = ydX = kX" dX by putting value of .
b
Total area = A = [ kX"dX
o]
kX" P
A =
n+1],
Kb
A =
(n+1)

We want to find the total area under the curve in terms of ‘b’ and ‘h” and for that the constant ‘k’ has to be
evaluated from the given boundary conditions.

At X=b , y=h
Put thisin (1), y = kX"
we get h=kb"
or k = % Put this in equation for A above.
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A =

h b™* o
m Simplifying
hb".b
b" (n+1)
bh
So A=ToeD) )

Now its centroid would be determined with reference to fig. 2.6..

X =

£

X (ydX
I JALI Put y= kX"

:J' X kX" dX

A

b n+1
k X" dX h bh
£ A Now put k= b7 and A= (n+1) we have

_ }’ h/b” (X)™* dx

0

bh/(n+1)

b n+1
- (ROCLIO  Girpiiying step by step
0]

b
+1
KT)TH XX

o}
(n + 1) Xn+2
b™ | (n+2)

b

(o]

_ (n + 1} bn+2

b™ (n+2)

(n+1) b™.b
b ™D - (n+2)

_ b+l
X = o) ®

X is the location of centroid from zero bendihg moment
From above figure 2.6, we have

X +x = b
xX' =pb - X
b(n+1 L
:b—%”—z)l Simplify
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b(+2)-b(n+1)
- (n+2)

_bn+2b-bn-b
(n+2)

/ b

X ) 4)

This gives us the location of centroid from the ordinate of B.M.D

bh
A=+ @)

Note:- While applying these two formulae to calculate the deflection and the rotation by moment area
method and with diagrams by parts, it must be kept in mind that these two relationship assume zero

slope of the B.M. Diagram at a suitable point. It may not be applied to calculate A & X within
various segments of the B.M.D where this condition is not satisfied. Apply the above equations for
area and centroid to the following example.

Tangent of elastic curve at A.

A mmmm%mm (N NY B
V\

Cantilever under u.d.l

Oab

Elastic curve

) |
L
/_ -——
=g
>
0
o (-)
/ B.M.D
/ W
2nd degree curve 2
A_WE
Vit

Fig 2.7
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Tangent at A on

F|’ Elastic curve.
A E B
A eab E
2~ taAB \
Eleastic
curve
- A
B.M.D
5 PL
) X = 2/3L l
Iﬁl
X=L/3
Fig. 2.8

(—ve) sign in the deflection of diagram below does not mean that area is (—ve) but ordinate of BMD is
(—ve). For loads the fig. 2.7.

1.7.

1.7.1.

1 3L
Aa—EI(Ax 4>

_i[-WLS %}
“EIL 6 *4
_-w!
= 8EI

FIRST THEOREM OF CONJUGATE BEAM METHOD :—
In simple words the absolute slope at any point in the actual beam is equal to the shear force at the

. . . L M
corresponding point on the conjugate beam which is loaded by El diagram due to loads on actual

beam.

SECOND THEOREM OF CONJUGATE BEAM METHOD_-
The absolute deflection at any point in the actual beam is equal to the B.M at the corresponding

point on the conjugate beam which is loaded by% diagram.

The reader is reminded to draw conjugate beams for actual beams under loads very carefully by
giving due consideration to support conditions of actual beam. In general for a fixed and free end
of actual beam, the corresponding supports would be free and fixed in conjugate beam
respectively. Deflection A at any point on actual beam is associated with the bending moment at
corresponding point on conjugate beam while rotation 6 at any point on actual beam is associated
with shear force at corresponding point on conjugate beam. At an actual hinge support A is equal
to zero and 0 is there indicating non development of moment at the support (Shear force present,
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bending moment zero). The corresponding support conditions in conjugate beam would be such
where bending moment is zero and shear force may be there i.e., a hinge is indicated. See the

following example.

EXAMPLE :- Calculate the central deflection by the conjugate beam method:

P
A L/2 B
MAC Actual beam
under load
o PL/4 P/2
+
= ; x L xE’-ELI B.M.D/EI
_Pppe , PL/SEI
8ElI
0a = Ob = PE
16El Conjugate beam
AT “ , under M/EI diagram
AT 4’+44,‘ as aload

A ,’l ,‘/ ! 4}| ,) ‘} 4‘,’4 c | B

VAN fve AN
P2 PL

PL2 16EI 16EI | —PE
16EI 16EI
Fig. 2.9
PL> L PL> L o
AC = Mc’ = 16E1 X2 16E1° B (considering forces on LHS of
PL® PL® 3PL®-PL® 2EPL’ .
= 3EIT9EI-_ 96EI - 96EI point C of shaded area)
PL®
AC = UgEl

1.8. STRAIN ENERGY :-
“The energy stored in a body when it undergoes any type of deformation (twisting, elongation,

shortening & deflection etc.) under the action of any external force is called the strain energy.” If
this strain energy is stored in elastic range it is termed as elastic strain energy. All rules relating to
strain energy apply. The units of strain energy are the same as that of the work i.e., joule (N — mm,

N —m).
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1.8.1. TYPES OF STRAIN ENERGY :-
1.8.1.1 STRAIN ENERGY DUE TO DIRECT FORCE_:-

.........

AE = Axial Stiffness
D e AN

Fig. 2.10

Work done by a gradually increased force ‘P’ is equal to area of load — deflection diagram = P/2 A.
(From graph)

. Stress oc Strain (Hooke’s Law)
So f o« €
f = Constt . €
f=E.€e
P A
A~ BxXL
PL 1 N
o) A =47E Strain energy will be PA from above. So putting it we have.
P (PL . . .
= =3 A_) , where U is the internal strain energy stored.

2
U= 2AE (for single member)
PL : .
Uu=%x AE (for several members subjected to axial forces)

1.8.1.2. STRAIN ENERGY DUE TO BENDING, SHEAR FORCE AND TORSION :-
L 2

M2 dX
1) u=|

> El . This is elastic strain energy stored due to bending.
(0]

2
(2) Strain Energy Due to shear force:- U = [ %E where Q is shear force and G is shear modulus
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1.9.

19.1

1.9.2.

L 12
. . T°d .
(3) Strain Energy Due to Torsion:- U =] —2GJS (Consult a book on strength of Materials). Where
(0]

T is Torque and J is polar moment of inertia.
CASTIGLIANO’S THEOREM :-

In 1879, Castigliano published two theorems connecting the strain energy with the deformations
and the applied loads.

CASTIGLIANO’S FIRST THEOREM :-
The partial derivative of the total strain energy stored with respect to a particular deformation
gives the corresponding force acting at that point.

Mathematically

oU . . . .
A P Where U is strain energy stored in bending
oU . . .
and 0 - M. Here A is connected with loads and 6 with moment.

CASTIGLIANO’S SECOND THEOREM :-
The partial derivative of the total strain energy stored with respect to a particular force gives the

corresponding deformation at that point.

1.10.

Mathematically,

ou
o A
U

o™ Here A is connected with loads and 6 with moment.

and

CONSISTENT DEFORMATION METHOD :-

This method may be termed as redundant force method or simply a force method. In this method,
the statically indeterminate structure is idealized as a basic determinate structure under the action
of applied loads plus the same structure under the action of redundant forces considered one by
one. The deformations produced at the points of redundancy are calculated in the above-mentioned
basic determinate structures and then these calculated deformations are put into compatibility
requirement for the structure. Normally these are satisfied at a joint.



26 THEORY OF INDETERMINATE STRUCTURES

Now for a given beam, various possible Basic determinate structures (BDS) would be given. A
clever choice of BDS for a given structure can reduce the amount of time and labour.

ﬂ Y Y Y Y B .
A Given structure
under load
Fig. 2.11
No. of actual reactions = 3 TRb
No. of equations = 2
degree of indeterminacy =3 -2=1
2 COY YN B
1. First A é ] ]
alternative B.D.S (Basic determinate
Fig. 2.11a structure under loads
A é B
Fig. 2.11b B.D.S under redundant
Rb /reactions
2 d COCCCCCCY
’ :ﬁ:?r?ative AA% é F\f B.D.S under loads
Fig. 2.12

B
C A 4 >‘ B.D.S under redundant

M Ma
a Fig. 2.12 a
4 B
= Oé N Actual Beam
=0 Fig. 2.13 )
0 / o /\is present
Elastic curve .
O is present
\’\;| =(§) & Conjugate Beam

Fig. 2.14 § M

\Y

An indeterminate structure can be made determinate in several ways and the corresponding
quantities may be calculated very easily. However, we will notice that a clever choice of making a basic
determinate structure will reduce the time of our computations tremendously. In Figs. 2.11 and 2.12 various
options regarding choice of BDS are given while Figs. 2.13 and 2.14 illustrate how to make conjugate beam
for a given beam using the guidelines stated earlier. Consider another loaded beam in Fig. 2.15.
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N S

Fig. 2.15

Rb has been chosen
B as redundant.

Basic determinte structure
under applied loads only. B/
Fig. 2.15a

where AB is the deflection at point B due to the applied loads.

B.D.S. under unit
redundant force at B.

Fig. 2.15b

So compatibility of deformation at B requires that
AB + Rb x 3bb = 0  (Deflection Produced by loads Plus that by redundant should
where  AB = Deflection at B due to applied loads in a BDS. be equal to zero at point B)
dbb = deflection at B due to redundant at B in a BDS.

AB . _—
or Rb = ~50b (sign is self-adjusting)

L

A Ga B Ma has been
—_— considered as
redundant force.
Fig. 2.16

0a = Slope at point. A due to applied loads only in a BDS.
The other option of a simple beam as BDS is shown in fig. 2.16.
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KA xaa —”%B
— 7

M= 1
B.D.S. under unit redundant moment at A.
where @aa = slope at A due to unit redundant moment at A.
Fig 2.16a
Compatibility equation 6a + Ma.«caa = 0 (Slope created by loads + slope created by redundant
moment should be zero)
0a
or Ma= ———
ocaad

“In consistent deformation method (force method ), there are always as many conditions of geometry as is
the number of redundant forces.”

1.11.  Example No. 1:- Analyze the following beam by the force method. Draw S.F. & B.M. diagrams.

SOLUTION :-

P
M& 2 Li2 l L/2 5
r 7 o
T El = Constt. T
Rb
Ra
Fig2.17

Number of reactions = 3

Number of equations = 2

Degree of Indeterminacy =3-2=1
Indeterminate to Ist degree.

SOLUTION: (1) Chose cantilever as a basic determinate structure.

j Li2 Pl L/2 B, y . |

El = Constant A BN dbb

Fig 2.17a Fig 2.17b B

Sbb=Deflection of point B due to unit load at B
B.D.S. under applied loads. B.D.S. under unit redundant
force at B.
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Therefore, now compatibility requirement is

AB +Rb x dbb =0

( Deflection created by actual loads + deflection
created by redundant Rb should be equal to zero at support B)

4B

or Rb = ~5bb - (1)

Therefore, determine these deflections AB and 8bb in equation (1) either by moment area method

or by unit load method.

1.11.1. DETERMINE AB AND &bb BY MOMENT - AREA METHOD :-
P

El = Constant

1, L PL _PE B
Area of BMD = > X 5 x2 =3

(0]

P8
PL/2
w | II |
[ L6 7 73 7 L2 il
| [ PL2/L L
AB = [‘ 8 (2*3)}
_ 1 [ PL? i}
EI|”8 *6
5pL®
AB ~28E|
|
Q AZ‘ L lB
IT Fig 2.18 a
(0] (0]
_1 __ L
> XLXxL= 5
2/13 L |
L=Lx1 l 7]

BDS under
applied loads

BMD due to
applied loads.

dpb

BDS under unit
redundant at B

BMD due
Unit redundant
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3

dbb = ~3E

, Putting AB and 8bb in equation (1)

2 3
Rb = — [ oPL /—%} By putting AB and &bb in compatibility equation

~48E|
_ 5PL® 3EI _ 5P
RTINS ~ 716

The (- ve) sign with Rb indicates that the direction of application of redundant force is actually

upwards and the magnitude of redundant force Rb is equal to % . Apply evaluated redundant at point B.

P
3PL
Ma ==—
y gmg L2 ‘L L2
L\ 2 AN
5P
1P 5P
pip s
Fig. 2.19
2fy =0
Ra+Rb = P
5P 11P
Ra =P-Rb = P_E ST Now moment at A can be calculated.
I . _ 5P L _5PL PL
Direction of applied momentat A = 16 < L—P.2 =6~ 2
_ 5PL —8PL
B 16
_ _3PL
-7 16

. L 3PL. . . .
The (—ve) sign with 16 indicates that the net applied moment about ‘A’ is clockwise. Therefore, the

reactive moment at the support should be counterclockwise (giving tension at top). Apply loads and
evaluate redundant on the given structure.
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31

=]
Ma = _3PL

L2

El Constant VAN -5P
<_7 11P\\ Rb=16

1P
1
6 +
0 0 SFD
5PL %
32
+
0 0 BwMD
(-ve) B.M
8
3PL ==L — 3
31PGL k—— x=9rL
Fig. 2.20

LOCATION OF POINT OF CONTRAFLEXURE :-

5 PX L
MX =16 —P(X—2>-0
5 PX L
= 16 PX + > = 0
_11PX . PL 0
- 16 2
_PL _11PX
-2 7 16
8L
X=11
Note:- In case of cantilever, moment — area method is always preferred because slope is absolute
everywhere.
P
A3 L/2 J, L/2 B

Elastic curve
Fig. 2.21
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Solution: (2) As a second alternative, Chose Simply Supported Beam as a basic determinate structure.

P
L2 ‘L L2 B BDS under A : 8 BDS under
A loads +C_MM unit redundant
P2 T Fig. 2.21a T P2 Fig. 2.21b
PL B.M.D due
= to unit redundant I\
moment at A
B.M.D. due to
applied leads.
0 0
1/El
e
4El
M diagram on % diagram +
E| conjugate beam v A
L3, 3L %
! L
: Loi- L |——
| VA 2 X8 28 6E|
1 Lx ) L/3EI
p 4E| 8EI T P2 N
o T6E] Olga- el (by 1srt] mome)nt
i area theorem
Fig. 2.21c Fig 2.21d
_ L
*ad = 3E|
0 = by 1* t area th
a = 16El (by 1 moment area theorem)
For fixed end, there is no rotation. Therefore compatibility equation becomes
0a + Maxaa =0 (slope at A created by loads + slope at A created
0a
So Ma = —-— by redundant should be zero).
ocaa
0 a & oc aa are the flexibility co—efficients. Putting these in compatibility equation
h M - _fL s
we have, a = - T6EI XL
3PL
Ma T

The (—ve) sign with Ma indicates that the net redundant moment is in opposite direction to that
assumed. Once M, is known, R, and R, can be calculated.

3PL
<; 16 / lf
| L2 L/2 B
A
(" [rp=s2
AT 16

Fig. 2.22
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To calculate R, >M, = 0

L 3PL
beL—Px2+ 16 =0
PL 3PL
Ry x L =%~
_ 8PL — 3PL
B 16
5PL
RbXL— 16
5P
Rb:E
2fy =0
R, + Ry = SO R.=P - Ry
5P
=P -6
11P
Ra:]__

Note:- In case of simply supported beam, conjugate beam method is preferred for calculating slopes and
deflections.

1.12. Example No. 2:-  Analyze the following beam by the force method. Draw S.F. and B.M. diagrams.

SOLUTION :-
Ma WKN/m Mp
Q Aﬂmmmmmmm O B)
é El = Constant E
T L |
Ra | |Rb

No. of reactions = 4

No. of equations = 2

Degree of Indeteminacy =4-2=2
Indeterminate to 2nd degree.

Fig. 2.23

Choosing cantilever with support at A as BDS. Vertical reaction at B and moment at B will be
redundants. To develop compatibility equations at B regarding translation and rotation at B, we imagine the
BDS under applied loads and then under various redundants separately.
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WKN/m
Aﬁr\mmmmmmr‘w

AB

L , Op

1
Fig. 2.23a B.D.S under loads tangent at B

Fig. 2.23b B.D.S. under redundant unit
vertical force at B

i O\ s

EI:Con Stant

| L OChbb

Fig. 2.23c B.D.S. under unit redundant
moment at B

Compatibility Equations
AB + Vb x 8bb + Mb x &6'bb = 0 — (1) For vertical displacement at B

6B + Vb x oc'bb + Mb x o«cbb= 0 — (2) For redundant moment at B

Notice that rotation produced by Unit load at B (o'bb) and deflection produced by unit moment of B (&'bb)
are denoted by dash as superscript to identify them appropriately.

In matrix form

[Sbb 8’bb:| |:Vb:| _ [- AB:|
o'bb  ochb Mb] ~ [-6B

T ) )
Structure flexibility Column vector Column vector of
matrix. of redundants.  flexibility coefficients.

[Vb] _ [Sbb 6’bb} [-AB}
Mb] = [ocbb  ocbb] [-6B
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Now we evaluate AB, 0b, 5bb, a'bb, §'bb and ocbb with the help of moment area theorems
separately, where A = Deflection at B in BDS due to applied loads

6b = Rotation at B in BDS due to applied loads.

WKN/m

WP B

C—Z Agmmmmmmmm
WL T
| L |
B.D.S. under loads
Fig. 2.24a
B.M.S. due to . 3L
applied loads. i’ X'=L/4 ¢ 4 |
0 0
B.M.D
we
WE 6
2
Calculate area of BMD and fix its centroid
_ bh Lx(=wL) = wL® o
A = n+) = 2+1) = -7% b = width of BMD.
h = ordinate of BMD.

b L __L lyi d th f h

X' = nt2-(2+2) " 4 By applying second theorem of moment area, we have

AB‘A[WLS 3 }_ wL*

TEILT 6 *4-]7 T 8El
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L

3
( 3
L !
Fig. 2.24b  B.M.D. due to unit redundant force at B
2
| %x LxL= %
0 l 0
L L/3 2L/3
L | l/
71 4l !
B.D.S. under unit redundant force at B.
17 L2 2 L3 . .
obb =B |2 x3 L|= ~3E] S8bb = Deflection at B due to unit redundant at B
1[ L2 L? . .
o’bb =B l21° 2\ ; o'bb = Rotation at B due to unit redundant at B
1
(3 @I
3hbb
/
e 'bb
[ | —
| L 4\
Fig. 2.24c B.D.S under unit redundant
moment at B
Lx1l=L
N
L/2
0 -V O BmD
1 1

&bb =g, [‘Lxﬂ = 28

1
ochb =5 [—L] -5
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or

or

Normally BMD’s are plotted on the compression side of beam.

Putting values in first equation, we have

wL* L L2 . L
~8El ~ Vb x 3El ~ 2EI Mb =0 1) multiply by 24 and simplify to get
equation (3)
Putting values in second equation, we have 2 multiply by 6 and simplify to get
WL®  VbxL® LxMb _ o ion (4
“6El ~ 281~ El equation  (4)
-3WL* — 8L x Vb - 12> x Mb = 0 (3)
3wL* + 8L3Vvb + 1212 Mb =0 (3)
-wL® - 3L Vb - 6L Mb =0 (4)
wL® + 3L Vb + 6L Mb =0 (4)

Multiply (4) by 2 L & subtract (4) from (3)

3WL* + 8L% Vb + 1212 Mb =0 (3)
2WLY +6L° Vb + 1212 Mb =0 4)
wL* + 2L Vb =0
wL' = - 2L% Vb

vo- WL

The (—ve) sign with Vb shows that the unit redundant load at B is in upward direction.( Opposite

to that assumed and applied)

Putting the value of Vb in (3)

awL* + 8L (—M)+12|_2 Mb = 0

2
or 3WL* — 4wWL* + 1212 Mb =0
WL* = 12L% Mb
wL?
Mb =57
WL2
Mb = =7

The (+ve) sign with Mb indicates that the assumed direction of the unit redundant moment at B

is correct. Now apply the computed redundants at B and evaluate and apply reactions at A.
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) WKN/m
- WL 2
M=o a gmmmmmmmmg 5 D Mb= WL

T T 12

Va=WL/2 | L A vb=wL/2
Fig. 2.25
w2
24
0 + 0
/ ~ B.M.D
we? w2
12 12
0.789 L
i
0.211L 0.578L 0.211L

Points of Contraflexure : -
B asorigin :- write moment expression

WL, wL? o wx?

Mx =7 X - 2 ~ 2 - 0
. 12
Multiply byW and re-arrange.
6X* - 6LX + L2 =0
2 2
X :+6Li\/36L—4><6xL
2x6
_ 6Lx+f36 122417
- 12
_BLxAf1212
- 12
_ 6L+24317
- 12
6L +3.464L

12
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_ 9464 L 2.536 L

12 ’ 12
X =0.789L , 0211L Location of point of contraflexure
From both ends.
X =0211L

Same can be done by taking A as origin and writing moment expression : —

S WLX wL? o wx?
M =% -2 — 72 =0

6WLX' — WL? - 6WX? =0 Simplify

X =

_ L+0577L
- 2

X' = 0789L, 0211L Location of points of contraflexure.

X'=0.211L
We get the same answer as before.

This is a flexibility method and was written in matrix form earlier. The matrix inversion process is
given now for reference and use.
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1.13. MATRIX INVERSION : -

These co-efficients may also be evaluated by matrix Inversion so basic procedures are given.

Adjoint of matrix

Inverse of matrix =

Adjoint a matrix

co-factors.

Co-factors of an element = (- 1)™ x minor of element.where i

~ Determinant of matrix

= Transpose ( Interchanging rows & columns) of matrix of

Row number in which

that element is located and j = Column number in which that element is located.

Minor of element = Value obtained by deleting the row & the column in which that
particular element is located and evaluating remaining determinant.

Let us assume a matrix :

' 3
5
10

A

1
4
8

Determinant of matrix A

47
MINORS OF MATRIX :-

7
9
11

|

1(5x11-10x9)-3(44-72) +7(4x10-8x5)
~35+84+0

Find out the minors for all the elements of the matrix. Then establish matrix of co-factors.

35 28 O
Matrix of Minors= |-37 -45 -14
-8 -19 -7
-35 28
Matrix of co-factors =|37 -45
-8 19
-35 37
Adjoint of matrix A =28 -45
L0 14
1 -35
Inverse of matrix =— |28
49 0

-0.71
0.571
0

A-l

|

1 0
AxAl =1 :[0 1
0 O

Aij x Bjk = Cik

-87

19
-7

37
-45
14

0.75
-0.91

0.286

0
0] C
1

0
14
-7

-8
19
-7
5
8

-0.163

-0.143j|

0.387

heck for correct matrix inversion
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1 3 7 -0.71 0.755 -0.163
AAl =14 5 9 0571 -0.918 0.387

8 10 11 0 0.286 -0.143
—1x0.71+3x0.571+7x0 1x0.755-3x0.918+7x0.286 —1x0.163+3x0.387 —7x0.143
= 0 1 0
0 0 1
1 0 0
AALT =10 1 0 Proved.
0 0 1
1.14.  2"° DEGREE INDETERMINACY :-
Example No. 3:
Solve the following continuous beam by consistent deformation method.
40 kN
A B J C D
[ 3m L 4m Je 5m =
| “1 |

4
El = constant
Fig. 2.26

In this case, we treat reaction at B and C as redundants and the basic determinate structure is a
simply supported beam AD.

40 kN
A D
Fig. 2.26 a

Bending under applied loads

Fig. 2.26 b
Bending under unit redundant force at B
+ 1
A B J C D
Fig. 2.26 ¢

Bending under unit redundant force at C
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Compatibility equations are as follows:
AB +3bb x Rb+38bc x Rc = 0 — (1) For compatibility at B
AC+3dch x Rb+dcc x Rc = 0 — (2) For compatibility at C

Evaluate the flexibility co-efficients given in equation (1) and (2). Using Conjugate beam method.

\LAO KN

A 5m 7m D
? o
T]é.(ﬁ KN
23.33 KN| 23.33 0 SED.
2MD=0 C—————  116.67
RAX12 - 40x7=0 116.67 KN
RA=23.33 KN '
SFY=0 N BMD.
RA+RD=40
RD=16.67 KN 116.67
70/El El 83.35/E .
K L8 dl
AN 4,% M dlagram
T<— 5.67—> | «—|6.33—>
(m (291 675) (70 2) (408345 ) (330565)
El
In general for a simple beam loaded as below,
the centroid is a shown
W
a ‘l/ b
1 L 4
Wab
M="
|
k \\!, (]
"L 1 L+b 7
&) 52)
Fig. 2.27
>MD’' =0, Calculate ga'
, _ 291.675 1 408.345 (2
Ry x12 = El (+3 ) El (3x7)
_2527.85  1905.61
B El El
, _ 369.455
Ra = TE

2Fy =0
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369.455 700.02
Ra+Ro'= g+ Ro' =
R = 700.02  369.455
b~ El —  El
330.565 . M . . .
Rp' = Bl Now ordinates ofadlagram are determined by comparing

Similar triangles.

116.67 Y 70
3 =Yg

Now by using conjugate beam method (theorem 2)

AB = % [369.455><3—(%><3><70)><%:|
AB _ 1003.365 KN — 1
El
Determine
116.67 Y
7 75

Y = 83.34
AC -1 [330 565 x 5 G 5x 83 34) é}

T El 09 X9 T X9 X 83,95 ) X3
AC _ 1305.575 KN — 1

El

Now apply unit redundant at B.

1
A 3m B 4m C 5m D
) idch oA
T Fig. 2.28 T
2/3 1/3

2.25/El

1.25/El

13.5
>t
7.875/El Conjugate beam under M/EI 5.625/El

— §>\
>Plo,
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Computing Co-efficients by Conjugate beam method. (Theorem 2)

1
Mg = 8bb = 5 [7.875x3 — 3.375x 1]
20.25
5bb == KN-m®
El
. . 2.25 Y
Determine ordinate = - =
9 5
1.25
Y - El
Mc' = 8cb —i[5625 5-3.125 é}
c = oC = . x5—-3. ><3
22,92 ;
5cb = TE KN-m

A 3m B 4m C 5m D
AN Sbe 8 7N
1x7x5

12
2.92 =2.92

+ B.M.D.

Y =1.25/El

A/ 8 ce D/
AN B’ c’ AN
8.28 |4 Dl > 9.24
El 6.33m 5.67m !
17.52
El
Fig. 2.29 Conjugate beam under M/EI
Moment at B’ in conjugate beam gives
. 1 1
Mg' = 8bc = E 8.28x3—§x1.25x3x1
22.965
Mc' = 8bc =~ KN - m? (8bc = 6¢cb ) PROVED.
1 1 5
dcc =El [9.24x5—2x2.92x5x3}
_ 34.03 3
dcc =Bl KN -m”,
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Inserting evaluated Co-efficients in equation (1) and (2)
1003.365 . 20.25 Rb + 22.965
El El El

Rc=0 (1)

1003.365 + 20.25 Rb +22.965 Rc =0 (3) Canceling 1/EI throughout

1305.575  22.92 34.03 .1
El + TE Rb + El Rc=0 (4)CanceII|ngElthroughout

1305.575 + 22.92 Rb +34.03Rc =0 (4)

Multiply (3) by 22.92 and (4) by 20.25 & subtract (4) from (3)

22997.1258 + 464.13 Rb + 526.357 Rc=0 3)
26437.8938 + 464.13 Rb + 689.1075Rc =0 4
— 3460.768 — 162.75 Rc=0 ()
| Rc =—21.264 KN| Putting this in equation  (3)

1003.365 +20.25 Rb - 22.963 x 21.264 = 0

[Rb = —25.434 KN|

The ( —ve) signs with the values of the redundants are suggestive of the fact that the directions of
the actual redundants are in fact upwards. Now apply loads and evaluated redundants to original beam
calculate remaining reaction.

2m | 40 KN
H

B C D

A 3m ﬁ 4m % 5m %

RA <174.602 KN <T25.434KN T21.264 KN <LRD =2.096 KN

Fig. 2.30
2Fy =0 Considering all upwards at this stage as Ra and Rd are unknown.
Ra+Rp+25.434 + 21.264 — 40 = 0
RA+ RD = —6.698 4 (1)
>MD =0 Considering all upward reactions

Ra x12 + 25454 x 9 — 40x 7 +21.264x5 =0
|RA = —4.602 KN| . It actually acts downwards.

RD =— RA — 6.698
= 4.602 — 6.698
| Rp = — 2.096 KN| All determined reactions are shown in figure 2.30

above sketch SFD and BMD.
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Elastic curve
40 KN
|<_ 2
A B C D

A A —— % P

J 4.602 KN 125431 KN 121.264 KN { 2.096 KN

Fig. 2.31
20.832
0 + 2.096 2.096
S.FD. | + lo
4.602 —
19.168
17.858
13.806 10.48
'|<X1=3.663m | | x2=5.547mI

LOCATION OF POINTS OF CONTRAFLEXURE :- These are in Span BC.
A as origin. Write moment expression and equate to zero.
MX; =-4.602X;+ 25434 (X; -3)
— 4602 X; + 25.434X; — 76.302 = 0

X; = 3.663m from A.

D as origin. Write moment expression and equate to zero.
MX, =- 2.096X, + 21.264 (X, — 5) = 0
- 2.096 X, + 21.264 X, — 106.32 = 0
19.168 X, —-106.32 = 0
X = 5547 m.

These locations are marked above in BMD.
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1.15. 3%° DEGREE INDETERMINACY :-

Example No. 4:
Solve the frame shown below by consistent deformation method.
J’ 10KN outer sides
B C
2m 2m /
3m
4m . .
. inner sides ]
20 KN outer sides / N outer sides
El=Constant”
3m D
mrrrn
A

B.Mis +ve for
Fig. 2.32 Tension on inner sides

1.15.1. SOLUTION:
Sign convention for S.F. and B.M. remains the same and are shown above as well. In this case, any
force or moment which creates tension on the inner side of a frame would be considered as a (+ve)
B.M. Removing right hand support to get BDS. The loads create three defermations as shown.
OKN

1
B J, C B C
2m 2m
3m 4m
+ 6m
20KN 1
D |ADH /
A DV dddv| D——=
3m 2 X—X
ddh
AL D] AL fadn ®
Fig. 2.33 (a) M - Diagram Fig. 2.33 (b) mH-Diagram

Note:  ADH = Deflection of point D in horizontal direction due to applied loads on BDS.
ADV = Deflection of point D in vertical direction due to applied loads on BDS.
6 D = Rotation of point D due to applied loads on BDS.

B C B C
am
4m Am
4
m 6m
’ §ddh 1
6m ,
oc ddv D
dddv| D| < L
v
4 ( A 1 X—X
hid ocddv e ocdd oc ddh
A .
Tl mv_Dia9ram me -Diagram
Fig. 2.33c B.D.S. under unit vertical Fig. 2.33d B.D.S. under unit rotational

redundant force at D redundant moment at D
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Where (See mH diagram Fig. 2.33b)
8ddh = Deflection of point D due to unit load at D in horizontal direction acting on BDS.
d'ddv = Deflection of point D, in vertical direction due to unit load at D in horizontal direction.
o'ddh= Rotation of point D, due to unit load in horizontal direction at D acting on BDS.

(See mV diagram Fig: 2.33c)

dddv = Deflection of point D due to unit load at D in vertical direction.

8'ddh = Deflection of point D (in horizontal direction) due to unit vertical load at D.
o'ddv = Rotation of point D due to unit vertical load at D.

(See mo diagram Fig: 2.33d))

o'ddh = Horizontal deflection of point D due to unit moment at D.
o'ddv = Vertical deflection of point D due to unit moment at D.
odd = Rotation of point D due to unit moment at D.

Compatibility equations :-
ADy + Hp x 8ddh + Vp x 8'ddv + Mp x o'ddh = 0 (1) Compatibility in horizontal direction at D.
ADy + Hp x 8'ddh + Vp x 8ddy + Mp x oc’ddy, = 0 (2) Compatibility in vertical direction at D.
Op + Hp x o’/ddh+Vp x oc’ddv+ Mp x ocdd = 0 (3) Compatibility of rotation at D

Now evaluate flexibility co-efficients used in above three equations. We know that

Aor6 = J.% (Mmdx)

There are 12 co-efficients to be evaluated in above three equations.

S0  ADy = j M XEImH dx )
2
sddh = J'Km—HHm @)
giagh = [TH- VX dx @3)
ADv = nggv)dx @)
(mH xmv) dx
sdd :ImeErrlw dx 5)
2
5 ddv = J'K—Lm"EI i ©)

B dx (7)
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0 =g [ (M)(mo) ox ®
m’ddh=%j(mH)(m6)dx (9)
oc'ddv = % J(mv)(me) dx (10)
ocdd = % j (m0)? dx (11)

Multiplying the corresponding moment expressions in above equations, we can evaluate above
deformations. Draw M-diagram.

10KN
B 2m 2m c
F
4m
3m
20 KN
E
3m D
X
80 KN-m T
g/ ,/i,., 20KN
M - Diagram

M =10 x 2 + 20 x 3 = + 80KN-m
Fig. 2.34 B.D.S under applied loads
M — Diagram by parts

10KN
20KN-m llOKN
X X
20KN-m ( B QB C
F
2m Jm IC
X 3m am
10KN
20KN T
— E
X
3m D
80KN-m
. 20KN
<+ M=20 x 6-20 x 3 - 80 = 20KN-m

A

I

10KN
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4
) 4 4B F C
B c % . N
4
1 — B 1 ¢
4m
E| 6m
L L D__ 51
D
A .
< 1
1
MH - Diagram
Fig. 2.34a Fig 2.34b
y A 1
G . C K G c)l
F - ' 1
B f’ i BN " “18
(I
1E 1E

A
4L> 1 mv-diagram (by parts) 1 me-diagram (by parts)

Fig 2.34c Fig 2.34d

Moments expressions in various members can now be written in a tabular form.

Portion Origin Limits M mH mv MO
AE A 0-3 20X - 80 X-2 -4 -1
BE B 0-3 -20 - X+4 -4 -1
BF B 0-2 10X - 20 4 X-4 -1
CF C 0-2 0 4 - X -1
CD D 0-4 0 X 0 -1

Put these moment expressions, integrate and evaluate co-efficients
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ADy

ADy

A Dy

d ddh

dddh

d'ddv

El
1
El

1
El

ij M(mH) dX

3
J(2ox 80) (X —2) dx+I( X+4) (=20) dX + I(1ox 20) 4 dX +0+o}

_3
J(zox2 80X — 40X+160)+J (20X — 80)dx+I(4ox 80)dx}

il 80X>  4x’ ) 20X 40X? !
“E||7s 2 2z +160X| +=5— —80X| ‘ - 80X ]

r 3
= % (20::3 —40><32—20><(3)2+160><3>+(1O><9—80><3)+(20><4—80><2):|
_ 110
T T El
:%J.(mH)Z dX

- :
= % I(x 2)? OIXJff( ><+0)2dx+I 16dX+f16dX+ I NG dx}

_3
:%I(X 4x+4)d><+f(16 8X+><2)dx+I16o|x+116o|x+Ix2 dx}
1_X3 4x? NG 2 2 X34
=&l 13 _T+4X|+|16X_T |+ |16X|+ |16X| + 15
o]
3
:%[(3_—2(3)+4x3) (16><3 4><9+33 ((16X2)+(16X2)+|£_L ﬂ
109.33
5ddh ==
1
=§J.(mH)(mv)dX
- ; : 2

== (X=2)(-4) dX + [ (-X+4)(-4)dX+] (4)(X-4)dX +]4(-X)dX +0

3
=&l J(—4x+8)dx+J(4x 16)dx+I(4x 16)dx+f 4de}

o ax NG NG 2 NG
8X|+|——16X| | = _16X| + | - —=
2 2 ' 2

]

|
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1
= Sl -2x (@ +8x3|+@xF ~16x3)+(2x2-16x2)+(-2x2)]

iy = 28
yddv = -
o'ddh =%j(mH)(me)dx
1 3 3 2 2 4
=§[f(—1)(X—2)dX +J(—1)(—x+4)dX+f—4dX+J—4dx+f—XdX}
(0] ] [o] ] [o]
1 xz 3 Xz 3 2 2 X24
=S| -5+ 22X+ [ S —aX |+ | —aX| + | —axX |+ | -5
SIS o e B v maxd o
_L[(2+2 3) (9 4 3>+ Ax2)+ (-4 2+(4—2 Oﬂ
= EI[\ 272 TAXBH(AxDF(Ax)H (-
30
ddh = -5
% =%j|v|(me)dx
1 3 3 2
=aJ—(ZOX—SO)dX+J20dX+J(—10x+20)dX+0+0}
LO ] ]
_1f 20><2+80X|+|20X|+| 10X2
TEI|T 2 -
=%'(—10x32+80x3)+(zox3)+(—5x4+20x2)]
230
% =

A Dv =%IM(mv)dX

3 3 2
= il [ (20X — 80) (—4) dX + [ (~20) (-4) dX +[ (10X — 20) (X —4) dX + 0 + o}

1 3
=&l J (- 80X + 320) dX +J 80 dX +J (10X? — 20X — 40X + 80) dx}
1] X 3 s X3 60X° 2 }
[0]

=5 —807+320xL+ | 80XL+ | 105 -5
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&'ddh

Sddv

El

1
El

10
[( 40x9+320><3)+(80x3)+( x8— 30><4+80x2>}

906.67

ADv = El

j;j(mH)(mv)dX

3
J(x -2) (- 4)dx+I( X +4) (- 4)d><+I4(>< 4)dx+J 4de+o}

3
J (~4X + 8)dX +J (4X — 16) dX +J (4X — 16) dX +J 4de}

2 3 2 2 2
4? 8X|+|4 —16X|+|l—16xl+ﬁ}
L 0.
(—2><9+8><3)+(2X9—16><3)+(2><4—16><2)+(—2><4)]
56
s'ddh = —2;
j(mvz)dx

3
J16dX+J16dx+J(x 4)? dx+I( X)de+o}

3 3
J 16 dx+I 16 dx+I (x2 8X +16)dx+J + X2 dx}

3 2 3

3 3
X% 8X X
16x|+|16x|+|—3 -5+ 16X|+|+—
o] [0]

]
:ﬂ6x3)+(16x3)+(%—4x4+16x2>+(+%ﬂ

117.33

dddv = El
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1
oc'ddv aijXme dXx
1 B 3 2 2
= J+4dX+J+4dX+J(—X+4)dX+fXdX}
LO (o] (o] o]
1 B 3 3 x2 2 2|2
= 14X ]+ | 4X | + | =5 +4X | + |5
EI_‘ o] [0} 2 [0} |2 0
17 2
El (4x3)+(@4x3)+(-2+4x2)+ (?Z):|
i = 32
o(:ddV—-EI
1 2
ocdd aj(me) dX

1 3 3 2 2 4
E[J (-1)%dX + [ (-1)%dX + ] (=1)?dX + | (=1)?dX + | (-1)? dx}

1 3 3 2 2 4
§[|x|+|x|+|x|+|x|+|x|}
0 o] 0 o] 0

1
El

[3+3+2+2+4]

14
ocdd = El

Putting all values of evaluated co-efficients, equations 1,2 and 3 become

110 109.33 56 30

“&E tE *HM-FExVo-f Mo=0
906.67 56 117.33 32

and EI — EI X HD + EI X VD + EI MD - 0

230 30 32 14
and EI—EIXHD+EIXVD+EIMD—O

-110 + 109.33 Hp — 56 Vp — 30 Mp = 0
906.67 — 56 Hp+117.33 Vp + 32 Mp = 0
230—30HD+32VD+14MD =0

(1)

()

(3) Simplifying

- 1)
-
- Q)
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From Eq (1)

MD _ —110 + 109.33 Hp — 56 Vp

30

= —367+364Hp-186Vp, — (4)

Putting in Eq (2)
906.67 — 56 Hp + 117.33 Vp + 32 (-3.67 + 3.64 H, — 1.86 Vp) = 0
906.67 — 56 Hp + 117.33 Vp — 117.44 + 116.5 Hp — 59.52 VVp = 0
789.23+60.5Hp +57.81Vp = 0
Hp = -13.045-0.95 Vp — (5)

Putting the value of Hp in Eq (4)
Mp = —3.67 + 3.64 (—13.045 — 0.95 Vp) — 1.86 Vp
Mp = -51.15-5.32 Vp - (6)

Putting the values of Mp & Hp in Eq (3)
230 — 30 (-13.045-0.95Vp) +32Vp + 14 (-51.15-532Vp) = 0
230 +391.35+285Vp+32Vp—-716.1-745Vp = 0
-14Vp—-94.75 = 0
Vp = —6.78 KN

Putting in (5) & (6)
Hp = —6.61 KN, Mp = —15.08 KN-m

From any equation above. We get

[ Vp =—12.478 KN |

Apply the evaluated structural actions in correct sense on the frame. The correctness of solution
can be checked afterwards by equilibrium conditions.

llOKN

2m 2m

3m 4m

20KN 15.08KN=m

wﬁl’}% 6.61KN

3m 12.478 KN

Ma=1.8 KN Ha=13.39 KN
< A < Ha=13.

7T

Va=2.478 KN

Fig. 2.35 shows all reactions after Evaluation
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2Fx =0
20-Ha-6.61 =0
[ Ha = 13.39 KN |
2Fy =0
Va+12.478-10 = 0  (asuming Va upwards)
| Va = —2.478 KN |
0
Ma+20x3+10x2—-12.478 x4 —-6.61 x 2—-15.08 =0 (assuming Ma
clockwise)
[ Ma = — 1.8 KN-m |
*Ma = 0 12478 x4+ 15.08 +6.61x2+1.8-20x3-10x2 = 0 Proved.
1.16.  ANALYSIS OF STATICALLY EXTERNALLY INDETERMINATE TRUSSES :-

A truss may be statically indeterminate if all external reactive components and internal member
forces may not be evaluated simply by the help of equations of equilibrium available. The
indeterminacy of the trusses can be categorized as follows :-

o))

@

@)

Trusses containing excessive external reactive components than those actually required
for external stability requirements.

Trusses containing excessive internal members than required for internal stability
requirements giving lesser the number of equations of equilibrium obtained from various
joints.

A combination of both of the above categories i.e. excessive external reactions plus
excessive internal members.

INTERNAL INDETERMINACY :-

1.17.

b+r = Iﬂi

There are two equations of equilibrium per joint where

b = number of bars or members.

r = minimum number of external reactive components required for
external stability (usually 3).

j = number of joints.

The above formula can also be used to check the total indeterminacy of a truss if we define ‘r’ as
the total number of reactive components which can be provided by a typical support system.

METHOD OF MOMENTS AND SHEARS :

A simple method is presented to evaluate axial member forces in parallel chord trusses. For other
types of trusses method of joints, method of sections or Maxwell’s diagram may be used. For determining
forces in members of trusses, this method has been used throughout this text. To develop the method,
consider the truss loaded as shown below:
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2P 3P

A\

) |
l

A N D
L4

_1 B C
RA=—3 P

3@ a TRD:%P

Fig. 2.36 A typical Truss under loads

Consider the equilibrium of L.H.S. of the section. Take ‘D’ as the moment centre: we find Ra
Rax3a = 2Px2a+ 3Pxa

7Pa 7P
Ra =73 =73
2.Mc = 0 and assuming all internal member forces to be tensile initially, we have
Ra x 2a—2P xa+ Sgg x h = 0 (considering forces on LHS of section)

(RaxZa—ZPa)
o S =-\" 1

The (—ve ) sign indicates a compressive force. Or

S = (w) = % where numerator is Mc. Therefore

The force in any chord member is a function of bending moment.

“To find out the axial force in any chord member, the moment centre will be that point where other
two members completing the same triangle meet and the force will be obtained by taking moments about
that point and dividing it by the height of truss. The signs of the chord members are established in the very
beginning by using an analogy that the truss behaves as a deep beam. Under downward loads, all upper
chord members are in compression while all lower chord members are in tension.

Similarly, Sgc = % (using the guide line given in the above para)

Consider the equilibrium of left hand side of the section and
2Fy =0

Ra—2P -SgcCos6 = 0

Ra — 2P . .
Skc = (i:o—se) where Ra — 2P is equal to shear force V due to applied loads at

the section. So in general the force in any inclined member is a
function of shear force.
\

Src = Coso

The general formula is :

g -t
" +(Cos 0)
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Where V is the S.F. at the section passing through the middle of inclined member and ‘0 is the
angle measured from “the inclined member to the vertical” at one of its ends. Use (+ve) sign as a pre-
multiplier with the Cos® if this angle is clockwise and (—ve) sign if 0 is anticlockwise. Take appropriate
sign with the S.F also. This treatment is only valid for parallel chord trusses.

The force in the vertical members is determined by inspection or by considering the equilibrium of
forces acting at the relevant joints. To illustrate the method follow the example below.

1.17.1: EXAMPLE :— Analyze the following truss by the method of moment & shear.

SOLUTION:- Determine reactions and Draw SFD and BMD.
P P P
J K L M_ N O _
0 0 1
NN 0 0 "

1.5F>T 8@a !

1.5P
Given Truss under loads
15P
+ l— 0.5P
0 0
_ S.FD.
0.5P
1.5P

B.M.D.

0

Fig. 2.37
TOP CHORD MEMBERS.
Considering the beam analogy of truss, all top chord members are in compression. Picking bending
moment, at appropriate moment centers, from BMD and dividing by height of Truss.

.. 3 Pa
Sij = -
. 3 Pa
Sjk =
5 Pa
Stl =
5 Pa
SIm =
3 Pa
Smn = -
3 Pa . . .
Sno = Negative sign means compression.
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BOTTOM CHORD MEMBERS.
All are in tension. Taking appropriate moment point and dividing by height of Truss.

Sap = Spb = + 1.5hPa
Shc = Scd = + 4.5hPa
Sde = Sef = +4.5hPa
Sfg = Sgh = + 1.5hPa
INCLINED MEMBERS.
+
The force in these members has been computed by the formula. +(6(\)/se)' Follow the guidelines.
. _ 15P
Sai ~ —Coso
sip = 2L Length Al = [a? + h?
i = Coso eng = 4/a
(if aand h are given, length and Cos 6 will have also
late values)
15P h
Sbk = T Coso Cos 0= \/azThz
05P
Skd ~ +Cosh
—-05P 05P
Sdm == Cos® ~ Cosf
—-15P
Smf =73 Cos0
—-15P 15P
Sfo ~ —Cos® ~ Coso
—-15P
Soh ~ +Cosh

VERTICAL MEMBERS.
For all vertical members of trusses in this book, member forces have been determined by Inspection or by
Equilibrium of joints. So

Sip Sbhj = Sck = Sem = Sfn = Sgo = 0

Sld = —P (Ifaand h values are given, all forces can be numerically evaluated)

1.18. EXTERNALLY REDUNDANT TRUSSES - FIRST DEGREE
EXAMPLE 5 :- Analyze the following truss by the force method. (consistent deformation method). The
following data is given.

E =200 x 10° KN/m?

A=5x10"m? for inclineds and verticals,

A=4x10"*m? for top chord members,

A=6x10">m?for bottom chord members
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SOLUTION:-

36KN 72KN
E vG vH |
A
B C D
° 4@ 1.8m

TOTAL INDETERMINACY :-

b+r = 2j

17+4 #2x10

21 # 20

D=21-20=1

Fig. 2.38 Given Truss under loads

Indeterminate to Ist degree.

Apply check for Internal Indeterminacy :-

b+r =2j

17 +3 =2x10

20 = 20

where r = total reactions which the supports are capable of providing.

where r = Minimum number of external reactions required for stability.

This truss is internally determinate and externally indeterminate to 1st degree, therefore, we select
reaction at point “C” as the redundant force. Remove support at C, the Compatibility equation is :

AC + 6cc x Rc =0

AC

or Rc = ~3cc
h Ac = F" UL
where C=27AE
UL

8cc = 2, AE

(Deflection at C due to loads plus due to redundant

should be zero.)

Now we have to calculate Ac and &cc to get Rc.

where F' = Force induced in members due to applied loads

acting on BDS.

U = Forces in members due to Unit load applied in direction

of applied loads, at external redundant support in BDS.
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36K 72K
E G H | J
1.8m
A E
B CiAc D
| 4@ 1.8m” |
Fig 2.39a B.D.S under applied Loads
(F-Diagram)
= G H | J
A C E
B scc 1 D

Fig 2.39b B.D.S under unit Vertical Redundant at C
(U-Diagram)
Analyze the given truss by the method of moments and shears as explained already for F' and U forces in
members.

36KN 72KN
E G H | J
< 1.8m
2N
Al E
B c D
'T‘—14 @ 1.8m—1\Re =45 KN
Ra =63 .
(F-Diagram)

Fig 2.40 B.D.S under Loads

|l

+

— S.ED.

45 45
1134 162

81
B.M.D.
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Determine forces in all members of trusses loaded as shown in this question and enter the results in a tabular
form. (using method of moments and shears, F' and U values for members have been obtained).

E G H ! J
A E
B Co1 D
T 1 U=Diagram Tl/z
| i | SFD.
1.8
0.9 0.9

B.M.D.

Fig 2.41 B.D.S under Unit redundant force at C

Member F u AX L F'UL ,3 UL . 5 |Fi=Fi'-
(KN) 10° | (m) AE *10 AE * 107 | rexu,
(m)” (m) (m) (KN)
FG 0 0 41 18 0 0 0
GH - 90 -1 N 0.2025 2.25x 107 +25
HI - 90 -1 ml| oo 0.2025 2.25 x 10°° +25
1J 0 0 4 0 0 0
AB +63 +0.5 6| 1.8 0.04725 0.375x 107° +16.75
BC +63 +0.5 m|om 0.04725 0.375 x 107 +16.75
CcD +45 +0.5 m| o 0.03375 0.375 x 10°° -1.25
DE +45 +0.5 mlom 0.03375 0.375 x 10°° -1.25
AG | -89.1 |-0.707 v | 255 0.16063 1.275x 102 | -23.7
GC +38.2 | GC 5 0.06887 1275x10°| -27.2
Cl +63.64 | +0.707 m| o 0.11473 1.275 x 107 ~-1.76
I E —63.64 | -0.707 vl o 0.11473 1.275 x 107 +1.76
AF 0 0 n| 1.8 0 0 0
BG 0 0 m|om 0 0 0
HC | -72 0 m|om 0 0 72
ID 0 0 m| om 0 0 0
JE 0 0 m| o 0 0 0
F'UL UL
Y AE - 102596 | XA =111
x 107 x 10°°
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F UL
AC= X 3g = 1.02596 x 107 =1025.96 x 10°m

UL & . L . .
dcc = X AE - 11.1 x 10 m . Putting these two in original compatibility equation
AC _ -1025.96 x 10°°
dcc ~ 111x10°
Rc = — 925 KN.

The (—ve) sign with Rc shows that the assumed direction of redundant is incorrect and Rc acts upward.
If Fi is net internal force due to applied loading and the redundants, acting together, then member forces an
calculated from

Rc = —

Fi = Fi"’ — Rc x Ui
The final axial force in any particular member can be obtained by applying the principle of superposition
and is equal to the force in that particular member due to applied loading ( + ) the force induced in the
same member due to the redundant with actual signs.

Apply the principle of superposition and insert the magnitude of redundant Rc with its sign which has been

obtained by applying the compatibility condition to calculate member forces.

1.19. SOLUTION OF 2ND DEGREE EXTERNALLY INDETERMINATE TRUSSES:- .

Example-6 : Solve the following truss by consistent deformation method use previous
member properties.

36KN | 72KN
= G H J
1.8m
A E
B C D
&— 4@ 1.8m —>
Fig 2.42 Given Truss
36KN |72KN
1.8m
AC AD
63KN , 45KN
(F-diagram)
0 63 S.FD.
I 45
0
B.M.D.
0 162
113.4 81

+

Fig 2.42a B.D.S under loads

+
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8cc|1 &d
0 v 0 1
1 (U, diagram) 2
2
| +
- | 1 S.ED.
1.8 2
0.9 0.9
™) B.M.D
0 0 BMD.
+
5 cd 6dd
0.25 0.75
1 — 1, 1
(U, diagram)
0.25
o ™ 0
) S.FD.
0.75
0.9 1.35
0.45
*) B.M.D.
0 0

Fig 2.42 ¢ B.D.S under unit redundant at D

Compatibility equations are:
AC +Rc. 6cc + Rd x dcd = 0

(1) Compatibility of deformations at C
AD+Rc.ddc+Rd.ddd = 0

(2) Compatibility of deformations at D

dcd = 8dc by the law of reciprocal deflection.

dcc = deflection of point C due to unit load at C.
ddc = deflection of point D due to unit load at C.
ddd = deflection of point D due to unit load at D.
dcd = deflection of point C due to unit load at D.

Flexibility coefficients of above two equations are evaluated in tabular form (Consult the attached table)

_ <FUL _ 6
AC = Y p = 10262x10°m
_ < FUL 6
AD = T —F =579.82x10° m

2
Sce = zul L 111x10%m

AE
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RV 6

_ Ul _ 6
dcd = X AE - 6.291x 10° m

U,U,L & . .
ddc = Z? = 6.291x107° m Put these in equations 1 and 2
1026.2x10° + 11.1 x10° Rc +6.291x10°Rd=0 — (1)
579.82 x 10°+6.291 x 10°Rc+9.3565x10° Rd = 0 — (2)
Simplify
1026.2 + 11.1 Rc + 6.291 Rd = 0 - (3
579.82 + 6.291 Rc + 9.3565Rd = 0 - (4
From (3)
~1026.2 — 6.291 Rd

Re = ( 111 ) - 0O

Put Rc in (4) & solve for Rd

579.82 + 6.291 (_1026'211 ?'291 Rd

) +9.3565Rd =0

-1.786+5.791Rd = 0

[Rd = +0.308 KN|

1026.2 — 6.291 x 0.308)
111

So, from (5), = Rc = (_

[Rc = —92.625 KN]

- Rc=-92.625 KN
Rd =+ 0.308 KN
These signs indicate that reaction at C is upwards and reaction at D is downwards.
By superposition, the member forces will be calculated as follows
Fi = Fi+ Rc x U; + Rd x U, which becomes.
Fi = Fi—Rcx U; + Rd x U,. It takes care of (—ve) sign with Rc.
Equilibrium checks:—

0.308

1.082 1.082
@

0.308

Joint D
> Fx=0

2Fy=0

Equilibrium is satisfied. Only check at one joint has been applied. In fact this check should be
satisfied at all joints.
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Table 79-A
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36KN | 72KN
F_0 2;‘371\|/H 2471, 0 J

- 72 :
23.72 7.178 7 \1.519
o+ o+ 1.95470.308 +0
1.0827 1.082\|g
D

>d >

16.765B16.765 #™>C

16.965KN 92.625KN 0.308KN 1.%82KN
|e— —

Fig 2.43 Result of analyzed Truss

Now find remaining reactions Ra and Re.
YFy =0
Ra+ Re +92.625-0.308-36-72 =0
Ra + Re =15.683 - 1

ZMA:O
RexAx18-0308x3x18+92625x2x18-72x2x%x18-36x18=0

[Re =—1.082 KN|

As Ra + Re = 15.863
So Ra = 15.863 + 1.082

[Ra = 16.945 KN|

Now truss is determinate. Calculate member forces and apply checks in them.
Joint (C)
2Fx =0
27.178 72 1,954

16.765—2 %D 0 1 082

92.625

—1.082 — 16.765 — 1.954 x 0.707 + 27.178 x 0.707 =0
—0.0136 =0
0=0 equilibrium is satisfied.

>Fy =0

—72+92.625 - 1.954 x 0.707 — 27.178 x 0.707 =0
0.0286 =0

0=0 equilibrium is satisfied
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Joint (E)
2Fy=0

1.519
1.082 Q‘
J/1.082

1519 x0.707 -1.087=0

0=0

>Fx =0

082 - 1.519x0.707=0

0=0 equilibrium is satisfied.

1.20. Example-7:- SOLUTION OF 3"° DEGREE EXTERNALLY INDETERMINATE TRUSSES:-
Now we solve the following truss by consistent deformation method. Choosing reaction of B, C
and D as redundant.

SOLUTION:-

First step. Choose BDS Draw BDS under loads and subsequently under applied unit loads at points
of redundancy also.

36KN 72KN
F G H | J
]:1.8m
A E ¥
B C D
«—— 4@ 1.8m é'
Fig 2.44 Given 3rd degree externally
indeterminate truss under loads
36KN 72 KN
F Gl Hl/ | J
1.8m
A E
N —EB] M AC D

AD
Fig 2.44(a) B.D.S under loads

+
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bb b
[ v
Y1 8db

Fig 2.44(b) B.D.S under redundant unit load at B

(U1 diagram)

+
F G H J
1
A E
sbc scc Dysd
c
vl

Fig 2.44(c) B.D.S under redundant unit load at C
(U2 diagram)

+
F G H | J
1
A E
B18hd C scd D fd

A\ 4

Fig 2.44(d) B.D.S under redundant unit load at D
(U3 diagram)

Step No.2: Compatibility equations are:
AB + Rb.8bb + Rc.8bc + Rd x 8bd =0 For joint B - (1)
AC + Rb.8ch + Re.6cc + Rd x 6¢cd =0 For joint C - (2)
AD + Rb.8db + Rc.8dc + Rd x 8dd = 0 For joint D - (3)
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Step No.3: Evaluation of Flexibility co-efficients

F'U,L F'U,L F'UsL

AB = ZA—El AC = ZA—E AD = ZA—I;
UL _ v UlUL _ +UiUsl

U,U,L U,2L U,UsL

Scb = zﬁ scc= 3 AZE Scd = zﬁ
U,UsL U,UsL U42L

3db = T e ddc= T =hp 3dd = X-AF

By law of reciprocal deflections :-
We know that
dbc = &cb

6bd = &db
écd = &dc

In order to find member forces due to applied forces in BDS, consider.

36 KN 72KN
F G H J
B.D.S under loads
E (F’ diagram)
45
63 B C D
‘ 03 S.FD
63 27 27 FD.
0 0
45 |45
162
173.4 81
+
B.M.D.

The above SFD and BMD are used to calculate member forces by method of moments and shears. Finally
AB, AC and AD due to applied loads on BDS are calculated in a tabular form as given below:
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Table 84—-A
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B.D.S under unit load at B
for calculating sbb,5cb and db

(U1 - diagram)

1.0

0.75
0.75 0.75 0.25
o 0 SFD.
025 0 0.25
1.3
0.9
*) 0.45
B.M.D.
F G H J

B.D.S under unit load at C
for calculating scc, 8bc and édc

E U2 - diagram
B 1 D
105 Tos
0.5
ol + | 0 SFD.
| los
1.8
0.9 0.9
+
B.M.D.

U3 diagram for 8bd, dcd and ddd

Same as above

1
2 T T 7
025 ] . 0.75

| () SDF
0 |

1.3

(+)
BMD

From the previous table we have the values of all flexibility co-efficients as given below:
AB=391.65 x 10° m
AC=1026.2 x 10° m
AD=692.42 x 10°m

5bb =9.3616 x 10 °m, and dcc=11.1x10°m, &dd =9.3565 x 10°m
Sbc=8ch = 6.417 x 10° m
dbd = 8db = 3.517 x 10° m
dcd = 8dc=6.291 x 10 m
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Putting the values of flexibility co-efficients into compatibility equations we have.
391.65 x 10°+9.3616 x 10 °Rb+6.292 x 10 *Rc+3.517 x 10 °Rd=0 — (1)
1026.2 x 10°+6.292 x 10°Rb+11.1 x 10 Rc + 6.291 x 10°Rd =0 — (2)
579.82 x 10°+3.517 x 10 °Rb+6.291 x 10 ®Rc+9.3565 x 10 °Rd =0 — (3)

Step No. 4
Simplify equation (1), (2) and (3), we have
391.65 +9.3620 Rb+6.292 Rc+3.517Rd = 0 - 4
1026.2 +6.292 Rb + 11.1 Rc + 6.291 Rd = 0 - (5)
579.82 + 3.517 Rb + 6.291 Rc+9.357 Rd =0 — (6)

Multiply (4) by 6.291 & (5) by 3.517 & subtract (5) from (4)
391.65 x 6.291+9.362 x 6.291Rb+6.292 x 6.291 Rc+3.517 x 6.291Rd=0

1026.2 x 3.517+6.292 x 3.517 Rb+11.1 x 3.517 Rc+3.517 x 6.291Rd=0
—1145.275 + 36.767 Rb + 0.544 Rc =0 - (7)

Multiply (5) by 9.357 & (6) by 6.291 & subtract (6) from (5) :-
1026.2 x 9.357+6.292 x 9.357 Rb+11.1 x 9.357 Rc+6.291 x 9.357Rd=0
579.82 x 6.291+3.517 x 6.291Rb+6.291 x 6.291 Rc+6.291 x 9.357Rd=0
5954.506 + 36.749 Rb + 64.286 Rc =0 — (8)

From (7), Rb = (1145.275 —0.544 Rc)

36.767
Put Rb in (8) & solve for Rc
1145.275 — 0.544 Rc
5954.506 + 36.749 ( 36767 ) +64.286 Rc=0
5954.506 + 1144.71 — 0.544 Rc + 64.286 Rc = 0
7099.22 + 63.742Rc =0

[Rc = —111.374 KN|

Put this value in equation (7) and solve for Rb

Rb = (1145.275 —0.544 x 111.374)
B 36.767

[Rb = +32.797 KN|
Put Rb and Rc values in equation (4) to get Rd.

391.65 + 9.362 x 32.797 + 6.292 x (111.374) +3.517 Rd =0
[Rd = +0.588 KN|
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After reactions have been calculated, truss is statically determinate and member forces can be easily
calculated by Fi = Fi’ + RbU; + RcU, + RdUj as given in table. Apply checks on calculated member forces.

Step No. 5: Equilibrium checks.

Joint (C)
51.81\ 7;/ 3.828
32.058 <2 ® 2047
111.374
2Fx =0
—2.047 — 32.058 — 3.828 x 0.707 +51.814 x 0.707=0
-0.179=0
0=0
YFy=0
111.374 -72 - 3.828 x 0.707 — 51.814 x 0.707 =0
0.035 = 0
0=0 (satisfied) Solution is alright.

1.21: ANALYSIS OF 3-DEGREE REDUNDANT FRAMES
Example No. 8: Analyze the following frame by consistent deformation method.

96KN
B 3m\lf 6m c
3m F 3l
21
36KN
—>|E
3m | [ 7.5m
A
D

SOLUTION :-

The given frame is statically indeterminate to the 3rd degree. So that three redundants have to be

removed at support D or A. Consider Hp, Vp & Mp as the redundants
96KN

B3m\lf

6m

Cc

3m F

36KN 2
—>|E
3m

Al

3l

7.5m

jo
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lQGKN
B 3m 6m C
36KN |
21 117.5m
2m
36KN
396KN-m(QE<— Ao
A T D)@H—
<
96KN 0, &Dv

Fig. 2.45 B.D.S under loads

+
Bam F _6m C B om C B 3m, 6m C
I
3m F am F
TE E| om 7.5m
EY 7.5m+ 3m
. rm—— — + A
T Q’T B
1.5m D
9 k>
<> 1
Y 1 8dvdVM Bdhdv @vdﬂ ocdhdd
D -
Y ddhdh ocdOdv
ocd@dh
mH-Diagram mV-Diagram me-diagram
(BDS under redundants)

Compatibility Equations:-

ADy + Hp x 8dh.dh + Vp x 8dhdv + Mp x adhdd =0 (1)
ADy + Hp x ddv.dh + Vp x ddvdv + Mp x advdd =0 (2)
Op + Hp x add.dh +Vp x adddv + Mp x ad6d6 =0 (3)

We have to determine the following flexibility co-efficients.

ADy = Horizontal deflection of point D due to applied loads.

ADy = Vertical deflection of point D due to applied loads.

Op = Rotation of point D due to applied loads.

compatibility in horizontal direction at D.
compatibility in vertical direction at D.

rotational compatibity at D.

8dhdh = Horizontal deflection of point D due to unit horizontal redundant force at D
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8dhdv = Horizontal deflection of point D due to unit vertical redundant force at D
odddh = angular deflection of point D due to unit angular redundant force at D
ddvdh = Vertical deflection of point D due to unit horizontal redundant force at D
ddvdv = Vertical deflection of point D due to unit vertical redundant force at D
adbdv = Rotation deflection of point D due to unit vertical redundant force at D
adhd6 = Horizontal rotation of point D due to unit rotation at pt D

advd6 = Vertical rotation of point D due to unit rotation at pt D

ad6d6 = Rotation rotation of point D due to unit rotation at pt D

ddvdh =3dhdv ( reciprocal deformations)

adbdh = adhd® ( reciprocal deformations)

adbdv = advdd ( reciprocal deformations)

Now these flexibility co-efficients can be evaluated by following formulae.

M x mH
ADy = XEIm dX
M x mV
ADy = XEIm dX
M X mo
0o = —EI dx

2
sdhdh = J‘ﬁm_HHﬂ
2
sdvdv = J'mEIﬂ
adodh = adhd = I( mH x m9) dx

ddhdv = &dvdh = I (mvx_mH) dx from law of reciprocals deformations

adodv = odvde = I(M) dX

2
d0do jm—e dX
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ESTABLISH MOMENT EXPRESSIONS BY FREE BODY DIAGRAMS:
Note: Moments giving compression on outside and tension on inside of frame (sagging) will be positive.
288KN-m 96KN

(_'B 3m l 6m C
96KN F
l 96KN
C

(B ¥288KN-m
3m
36KN | g
7.5m
3m
<+—36KN
A
U396KN-m
D
96KN
Fig 2.46 B.D.S under loads (M-diagram)
ZMb =0
Mp+36x6-396-36x3=0
Mp = +288 KN —m.
M, =0
M. +96x9-288-96x6=0
M.+0=0
M.=0
Free body m — Diagrams
75 7.5 9
1 "8 . Ce 1 B 3m  6m C ,1
B\ 3m F 6m 75 QT = ¢1 T
L «—(|c (! 1
75 9 C
3m 3m
sy E e FE
7.5m 7.5m
3m
15| 1 3m
L v
A (o®
Di—1 T D
1

1
Fig. 2.46a mH-Diagam Fig. 2.46b mv-diagram l
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B<>13m F 6m f)c
Bl {c

1
3m
E

7.5m
3m

Jl

e
Fig. 2.46 m@ diagram
Write moment expressions alongwith limits in a tabular form

Portion Origin Limits M MH Mv M0 |
AE A 0-3 36X-396 X+15 -9 -1 21
BE B 0-3 —288 -X+75 -9 -1 21
BF B 0-3 96X-288 +75 +X-9 -1 3l
CF C 0-6 0 +75 -X -1 3l
CD D 0-75 0 + X 0 -1 I

It may be done in a tabular form or may be directly evaluated.
CALCULATIONS OF FLEXIBILITY CO-EFFICIENTS:-

ADH = ijMmedx
6 7.5

= 2E| I (36X —396)(X+1. 5)dx+2E|I (~288)(—X+7.5) o|x+3EI I (96X—288)(7. 5)dx+I 0+I 0
— 2
= 361! J (36X*+54X —396X — 594) dX + 5= 2EI I (288X-2160) dX +5=7 3E| I (720X — 2160) dX
= 2EI f (36X?—54X—-2754) dX + SJI-EI [ (720X — 2160)dX , (First two integrals have been combined)

36x3 542 3 720x2 3
= 2E| = —2754X +3EI — 2160X ]
1 . 54, ) 1 (720 5 ) 4090.5 1080
= 2E|(12><3 ~ S x & - 2754x3 | +3= (S5 x 3 -2160x3) -~ - T

51.705
ADw = g
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ddhdh = —ijz dX

7.5
= I (X + 1.5)%dX + 5 I (7.5)°dX + 5 I XX

2E| I (-X+7.5)2dX + 527

I (7.5)%dX +

2EI 3EI 3EI

7.5

156 25 dX+—f56 25 dX+5; L I X2 dX

2
I (X?~15X+56.25)dX+ 57 3E|

— 2
= 56 J(x +3X+2.25)dX+ 5=7 2EI

X3 3x? x3 15X2
‘ + +225X 2EI )

3EI

3,75

3

5625X‘+ |5625X|+ |5625X|+

3El 3EI

1 33 1 33 . 3)
=261 (3 ><2><3 +2.25><3) EN3 2 ><3 +56.25><3)+ 361 (56.25%3) + 3E|(56.25><6) + ﬁ( 3

_ 14625 N 55.125 N 56.25 N 112.5 N 140.625
- El El El El El

379.125
El

ddhdh = +

adhde =%j (MH x M) dX

75

adhd® =5=7 I(x+1 5)(—1)dX+557 I( X+7.5)(-1)dX+55s I(? 5)(—1)dX+5g7 I(? 5)(-1)dX+5 I (X)(-1)dX

2EI 2EI 3EI 3EI

7.5
I(x15)dx+ J(x75)dx+ I(75)dx+ J(75)dx+ II(—X)

2EI 2El 3EI 3EI

7.5

2EII( g)dx+2E|I( 75)dx+3E|I( 75)dX + 5 I (-X)dX

2175

10X
|75X| El |72

| 9x|+ | 75x|

2EI 3EI 3EI

]

:E(9><3)+3E|(75><3)+3E|(75X6)+ ﬂz)

64.125
odhdd = — El

ADv

%J.(Mxmv)dx

ADv J(36x 396 )(-9 ) dX + 5=+ f(288)(9)dX+ I(gex 288) (X—9)dX + 0 +0

2El 2EI 3El
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3
= AEI (—324X+3564) dX + 5= 2E| I 2592 dX + 5= 3E| I (96x2 864X —288X + 2592) dX
(o]
13 1
= —J (324X + 6156) dX + 57 I (96)(2 1152X + 2592) dX
2El, 3EI
1 |-324%? 96X3 1152%? 3
= 5 5+ 6156X + 3EI 5> +2592X i
1
= 557 (162 32+ 6156 x 3) + 5= 3E| (32 x 3%~ 576 x 32+ 2592 x 3)
_ 8505 1152
El El
9657
ADv = El

ddvdv = % j (mv)? dX

7.5
3E|J( X)? dX + 5 I (0)dx

(-9)% dX + (-9)? dx+3E|J(x 9)2dX +

2EIJ 2EIJ

J162dx+ I(x2 ~18X + 81) dX + =7 szdX

2El 3EI 3EI

37 2

62,0 1 ‘xz 18X?

e X +3g

X3
3EI ‘

+ 81X

+ﬁ

81(3) 1 (3 ) 1 (6
El +3EI (3 9x3 +81><3)+3E|(,;)
324

ddvdv = +E

odvdo :%J.(mVXme)dX
1 6
advde _2E|J9dx+2E|I9dx+3EII(x+9)dx+3E|0xdx+o
X? 1 |X?°
2EI|9X|+2EI|9X| 3EI‘ 2 +X |+3E| 2

1 1 1 (-9 1 (36
_2EI(9X3)+2EI(9X3)+3EI(2+9X3) 3EI(2)

40.5

advdd = + Bl
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adodo

adodo

Op

ddhdv

ddhdv

%j(me)zdx

2EI

2EI

I 1dX + =— 2EI

|><|+3E|

Bl (3) + 50T 3E| 3) +

%J.(Mxme)dx

2El

2El

1

2EI

J (-36X +396) dX + 557

J( 36X + 684) dX +

2

X
_32

1 7.5

I1dx+3E|Ildx+3E|I1dx+ |£ 1dX
7.5
|x|+3E||x|+ x|
|(6)+ I(7.5)
135
ad0dd = +—— El
2ET J 288 o|x+3EI J( 96X + 288) dX
3E|I( 96X + 288) dX

+E

‘ 96—+ 288X

3

]

1
E(—18x9+684><3) + 3EI( 48 x 9 + 288 x 3)

& [ maxm,) ax

2EI

2EI

I( 9X — 13.5)dX + 55+

J (- 81)dX + 5=7

3EI

GD:+

1089

El

2EI

J(75x 67.5) dx +

I (+9X — 67.5)dX + 5=

3EI

3E| I (7.5% — 67.5)dX + 57

J( 7.5X) dX

3EI

I( 7.5X) dX +0
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1 31 75X 31| 75x3°
= 2e1 181X + 357 |75 _67'5X‘L+3EI T2 |,
1 1 (15 1 ( -15
= 2EI(—81><3)+3E|(2 X9_67'5X3)+3E|(_ 5 ><36>
222.75
sdhdv = - =75

Putting above evaluated flexibility co—efficients in compatibility equations , we have.

(1) = -5170.5 + 379.125 Hp, — 222.75 Vp — 64.125 Mp = 0 - (4
(2) = +9657 —222.75Hp + 324Vp + 40.5Mp =0 - (5)
(3) = + 1089 — 64.125 Hp + 40.5Vp +13.5 Mp =0 - (6)

Multiply (4) by 222.75 & (5) by 379.125 Then add (4) & (5) to eliminate Hp
— (5170.5 x 222.75) +(379.125 x 222.75)Hp—(222.75)*Vp—(64.125 x 222.75)Mp =0
+(9657x379.125)— (379.125x222.75)Hp+(324x379.125)Vp+(40.5%379.125) Mp=0
2509481.25 + 73218.9375 Vp +1070.72 Mp =0 - (7)

Multiply (5) by 64.125 & (6) by 222.75 & subtract (6) from (5) to eliminate Hp again
619255.125 — 14283.84 Hp + 20776.5 Vp + 2597.06 Mp =0
— 24257475 — 14283.84 Hp + 9021.375 Vp + 3007.125 Mp=0
376680.375 + 11755.125 Vp — 410.065 Mp =0 — (8)

Now equation (7) and (8) are in terms of Vp and Mp

1070.72 Mp — 2509481.25)

From (7), Vp = (_ 73218.9375

—(9)

Put Vp in (8) to get Mp

~1070.72 Mp, — 2509481.25
376680.375 + 11755.125 ( D

73218.9375 ) —410.065Mp =0

376680.375 — 171.90 Mp — 402891.20 — 410.065 Mp =0
—26210.83 — 581.965 Mp =0

Mp = —45.04 KN—m, put this in (9) to get Vp

Ve = [—1070.72 x (45.04) — 2509481.25}
b~ 73218.9375
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Vp = —33.62 KN. Now put values of Vp and Mp in (4) to get Hp
—5170.5+379.125 x Hp+222.75 x 33.62 + 64.125 x 45.04 =0
379.125 Hp + 5205.44 = 0

Hp = —13.73KN

Hp =-13.73 KN

Vp =- 33.62 KN

Mp =— 45.64 KN-m

These reactions are applied to frame which becomes statically determinate now and shear force and moment
diagram can be sketched (by parts) now.

196
5 3m 6m c
3l
3m| 2]
36KN|__E
|| 7.5m

3

( A HA=22.27KN
. €—
Ma=68.98Kn-m > A

VA =62.38KN D <§’-O4KN'”‘
A

N ——
7 13.73KN

Fig. 2.47 33.62KN

Applying condition of equilibrium at A, reactions can be obtained.
2FEX =0
36 —H,—13.73=0

Ha =22.27 KN
2Fy =0
VaA+33.62-96=0

Va=62.38 KN
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M =0

Mp +45.04 —13.73x 1.5+33.62x9-96x3-36x3=0

Ma—68.98 =0

[M, = 68.98 KN-m| Applying these reactions to frame, various free-body diagrams

can be drawn and moments expressions can be set-up for
determining combined deflections of any point due to applied
loads and reactions (at supports) acting simultaneously.

43.36KN-m l96KN 57.94KN-m
B 3 6m 13.73KN
13.m,<; i 5 94—

62.38KN T62.38KN T
l 33.62KN 33.62KN
43.36KN-% 57.94KN-
— —
B 13.73KN 13.73KN  |C
3m
36KN,( ¢ 7.5m
3m
A 22.27Kn @ 13.73Kn
68.98KN-m 45.04KN-m ‘
62.38Kn 33.62KNT
IM, =0, Mb+22.27 x 6-68.98-36 X 3 =0 EM.=0, M+62.38 x 9-43.36-96x 6=0

M, =43.36 KN-m M:=57.94 KN-m (for beam)

BENDING MOMENT AND SHEAR FORCE DIAGRAMS -

For beam BC
43.36KN-m J/QGKN 57.94KN-m
3m 6m C
A 62.38KN 33.62KN
62.38
* SED.
33.62 - 10
"m_143.78 33.62
x=0.695, X=1.723m
=/ 4 55
0 0 B.M.D.
4 —
43.36 57.94

Mx = -45.04 + 13.73x =0
X = 3.28m
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FOR COLUMN AB
(Seen rotated at 90°)
36KN
68.98KN-mM 3m 43.36KN-m
gA 3m B
1 22.27KN
13.73KN
22.27
i S.F.D.
0 ; 0
‘ 13.73
0 |/\| 0
68.98 2.11 43.36

FOR COLUMN DC
(Seen rotated at 90°)

45.04KN-m 57.94KN-m

D A

T 13.73KN 7 13.73KN

13.73 13.73
d ' |
0 sFD.
X=3.28m 5794

< ﬁ/‘
¥ [-—— OB.M.D.
45.04

Mx=-45.04+13.73x =0

X =3.28m
143.78 62.38
i 57.94 1373
43.36 12 4336 L 5704 13.73 - 33.62
+ S.F.D. =
2.17
B.M.D. + +
rzad
A 22.27
,7 r77riTm
68.98 A 13.73
Composite S.F.D. for analysed frame

(Trrrry
45.04 Fig. 2.48
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Elastic Curve:-

b
1.22: Analysis of Continuous Beams
Example No. 9:
Analyze the following beam by consistent deformation method. Check the results by the method of
least work.
SOLUTION:-
15m | 10KN 1om |PKN E1=Constt
<—> <—>.
ALN30M  ANB 40m A4NC 40m 4N D 30m 4N E
Number of reactions=5
number of equations=2
Fig. 2.56
Step No.1:
In this structure, we treat reactions at B, C & D as redundants and the B.D.S. is a simply supported
beam AE.
10KN 5KN
I(—lsmél B Clélor&l D E
Q\FB\AC P
—7
K 140m >
B.D.S. Under applied loads.
Fig. 2.56a
ll
C
A B D E

W 8cbeW

B.D.S. Under Unit redundant load at B.
Fig. 2.56 b

+

A B C D E

WW

B.D.S. under Unit redundant load at C.
Fig. 2.56¢
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+

Dll
A B c E

N&bdx\vd Scdw

B.D.S. under Unit redundant load at D.

Fig. 2.56d
Step No.2: Compatibility Equations.
AB +Vb x3bb+Vcxdbc+Vdxdhd =0 — (1) Compatibility of deformations at B
AC+ Vb xdcbh+Vexdcc+Vdxded = 0 — (2) Compatibility of deformations at C
AD +Vbxddb+Vecxddc+Vdxddd = 0 — (3) Compatibility of deformation at D

Sketch BDS, Draw SFD, and

M . . .
El diagram for use in conjugate beam method.

L 65 m J
I~ “1

10KN 5KN
AN — l B, ¢ l P E
a o 10x125 5x60 T T Fig. 2.57
140+ 140 80m #—60m |3.93KN = RE
[¢———140m |
= 11.07KN
11.07
S.F.D.
. + 1.07 _ 107 .
= 1
3.93
35.8/El
166.05/El A3 M/EI diagram over
conjugate beam
Al A2 A4 o
AA B/ C/ D/
11631.161/E1T T 9748.339/E1

- M. .
Splitting above Ein 4 parts as shown, calculate areas of these portions.

1 166.05  1245.375
A =X xTET = T
166.05 __ _ 10793.25

Ay

El <65 =""F
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1 69.75 2266.875
As = X7 x65="F
1 7074
A4 =§x235.8x60=F
21379.5
Al+A2+A3+A4 = El
XM =0

Ra’'x 140 = %[1245.375 (125+%)+10793.25 (60+%)+2266.875 (60+6—3?)+7074 (%XGO)}

, _ 11631.161
Ra B
R _ 21379.5 11631.161
E - El T El
, _9748.339
Re - El
. M .
Isolating the upper part ofa diagram between two loads.
235.8
C
|L>|B 5
166.05/E| yl1 ¥
1<——55——>1
| 65 |
235.8 . .
%% ="e5 By conjugate beam method, AB would be moment at B of conjugate beam
M
loaded with £, diagram.
Y2 =199.52
Y1 = 544
L 15 15\ (15
AB = 5[11631.161x30—1245.375 (15+?) — (166.05x15) x 7.5 — (54.42x7) « (?ﬂ
303080.955
=T KN-m®

Moment at C' of conjugate beam

1 15 55\ (1 1
AC = E[11631.161x70—(1245.375) (?+55)—(166,05x55) (7)_(7100.52x5.5)x(§x55ﬂ

_ 387716.812

3
= El KN-m
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235.8

=117.9/El
v3 Y3

| 60m |

. . M . .
Isolating the portion ofa diagram between right support and 5 KN load.
Moment at D' of conjugate beam
1 1 30
AD = 5[9748.339 x 30 — (5 x 117.9 x 30) x —}

3
274765.17
AD = =g~ KN-m?®

M . . .
If we construct & diagram for above figures 2.56h, 2.56¢ and 2.56d and place them over conjugate beam,

we have dcb=34501.88, dcc=57166.66, dcd= 34501.88 on similar lines as above. From conjugate beam

for fig: 2.56b, you will have

1 30 25926.93
8bb =5 [982.086 x 30 — (353.565) (30)} =TE

1 1 70 34501.88
dcb = 5[667.884 x 70 — (E x 15 x 70) (?ﬂ =

1 1 30 19073.07
adb = 5[667.884 x 30 — (E x 6.423 x 30) (?ﬂ ==
We already know from law of reciprocal deflections that
dch = dbc
dbd = &db
dcd = adc
From conjugate beam for fig: 2.5d, you will have

1 15 x 70\ (70 34501.88
sed = « 70— (15270) (19)] 252

1 1 30 25926.93
&dd =B [982.086 x 30 — (E x 23.571 x 30) (Elﬂ =T R

Putting above flexibility co-efficients in compatibility equations, we have

303080.955 + 25926.93 Vb + 34500 V¢ + 19073.07 Vd =0 - (1)
387716.812 + 34501.88 Vb + 57166.67 V¢ + 34501.88 Vd = 0 —(2)
274765.17 + 1907307 Vb + 34500 Vc + 25926.93 Vd =0 —(3)

Solving above three linear — simultaneous equations, we have

[Vd = —14.30 KN|

[Vc = 12.98 KN|

[Vb = 18.44 KN|
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Now the continuous beam has become determinate. Apply loads and redundants reactions, other

support reactions can be determined.

10KN 5KN
15m 10m
A 1<—>. B C &<—>. D E
TVa i 18.44KN l,12.98KN T14.30KN T Ve
ZME =0

Vax140-10x125-18.44x110-1298 x 70 -5x60+14.3x30 = 0
Va=28.9 KN

0

> Fy
3.22 KN upwards

gives Ve
Now shear force and BMD can be plotted as the beam is statically determinate now.
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