CHAPTER # 4 ANALYSIS AND DESIGN OF BEAMS 2/2

Formatted by: Book by: Dr. Ali Ahmed Prof. Dr. Zahid Ahmed SIDDIQUE

Department of Civil Engineering University of Engineering & Technology Lahore

FLOW CHART FOR DESIGN OF BEAMS

Write Known Data

Estimate self-weight of the member.

- a) The self-weight may be taken as *10 percent of the applied dead* UDL or dead point load distributed over all the length.
- b) If only live load is applied, self-weight may be taken equal to *5 percent of its magnitude*.
- c) In case only factored loads are given, self-wt. may be taken equal to *3 % of the given loads*.

Calculate Factored Loads

Draw B.M. and S.F. Diagrams

Calculate C_b For Each Unbraced Segment

Find $M_{u,max}$, $V_{u,max}$, L_b for each segment and guess which segment is the most critical.

Design this segment first and then check for others.

Assume the section to be compact without LTB in the start and calculate Z_x accordingly.

$d_{min} = L/22$ for A36 steel and simply supported beams

For Δ_{max} required to be lesser than L/360, like L/500 or L/800, find $(I_x)_{req}$ from the deflection formula, with only the live load acting, and select section such that $I_x \ge (I_x)_{req}$.

Method 1: Use Of Selection Tables Refernce-1, Page 155

These tables are applicable only if $L_b < L_r$ and $C_b = 1$

- 1. Enter the column headed Z_x and find a value equal to or just greater than the plastic section modulus required.
- 2. The beam corresponding to this value in the shape column and all beams above it have sufficient flexural strength based on these parameters.
- 3. The first beam appearing in *boldface type* (top of a group) adjacent to or above the required Z_x is the lightest suitable section.

- 4. If the beam must have to satisfy a certain depth or minimum moment of inertia criterion, proceed up the column headed "Shape" until a beam fulfilling the requirements is reached.
- 5. If $C_b > 1.0$, use L_m in place of L_p for the approximate selection.
- 6. If L_b is larger than L_m of the selected section, use the unbraced design charts.
- 7. Apply moment capacity, shear capacity, deflection and all other checks.
- 8. The column headed $\phi_b M_p$ may also be used in place of the Z_x column in the above method.

Zx		For shapes used as beams, $\phi_b = 0.90$														
						F _y =	345 MPa	1			b√2t,	h/t _w	Z _y mm ³ x10 ³	Torsional Constant J mm ⁴ x10 ⁴	Warping Constant C _w mm ⁶ x10 ⁶	
Z _x 1 ³ x10 ³		SI SI	napo	e	φ _b M _p kN-m	¢₀M, kN-m	L _p m	L, m	BF kN	d mm						
180	w	310	x	32.7	149.0	90.4	0.91	2.78	34.82	312	4.74	41.8	60.0	12.2	44000	
464	S	250	x	37.8	144.1	87.6	1.02	3.81	22.47	254	4.75	25.6	81.8	25.1	40800	
46	W	200	x	41.7	138.5	86.5	1.74	6.40	12.40	205	7.03	22.3	166	22.4	83800	
26	w	250	x	32.7	132.3	82.6	1.43	4.20	19.93	259	7.99	36.9	100	10.0	73800	
105	w	310	x	28.3	125.8	75.9	0.89	2.62	31.90	310	5.72	46.2	48.8	7.49	35200	
379	W	-200	x	35.9	117.7	74.3	1.73	5.80	11.85	201	8.12	25.9	140	14.4	69600	
54	w	250	x	28.4	109.9	66.9	0.94	2.96	23.65	259	5.09	35.4	54.9	9.70	27900	
34	W	200	x	31.3	103.7	64.8	1.36	4.51	13.72	210	6.59	27.5	93.2	11.7	40800	
29	w	310	x	23.8	102.2	60.9	0.83	2.45	28.42	305	7.53	49.4	37.0	4.29	26000	
15	S	200	x	34	97.81	57.60	0.86	4.09	13.81	203	4.91	14.1	60.1	22.9	16400	
10	W	150	x	37.1	96.26	59.55	1.64	7.22	7.30	162	6.68	15.5	140	19.2	40300	
06	W	250	x	25.3	95.01	57.60	0.91	2.79	22.14	257	6.08	36.9	45.9	6.49	22900	
85	w	310	x	21	88.49	53.03	0.81	2.35	25.50	302	8.82	54.3	31.1	2.93	21600	
79	W	200	x	26.6	86.63	54.12	1.32	4.11	12.96	207	7.95	29.9	76.4	7.16	32800	
70	м	318	x	18.5	83.84	50.64	0.80	2.24	25.58	318	8.22	74.8	27.5	2.05	20400	
70	S	200	x	27.4	83.84	51.29	0.89	3.48	13:96	203	4.71	22.9	52.1	13.9	14200	
62	W	250	x	22.3	81.35	49.12	0.87	2.63	20.40	. 254	7.41	38.5	37.7	4.33	18300	
46	м	318	x	17.3	76.38	45.64	0.72	2.04	25.84	318	8.29	74.8	22.5	1.72	15300	
46	W	150	x	29.8	76.38	47.82	1.61	6.02	7.20	157	8.25	18.7	110	10.0	30300	
34	М	310	x	17.6	72.66	42.82	0.60	1.78	28.14	305	6.81	62.5	18.8	2.08	10100	
23	W	200	x	22.5	69.24	41.95	0.94	3.06	14.33	206	6.37	28.1	43.8	5.70	13900	
46 46 34 23	M W M W	311 150 310 200	8 0 0 0	8 x 0 x 0 x 0 x	8 x 17.3 0 x 29.8 0 x 17.6 0 x 22.5	8 x 17.3 76.38 0 x 29.8 76.38 0 x 17.6 72.66 0 x 22.5 69.24	8 x 17.3 76.38 45.64 0 x 29.8 76.38 47.82 0 x 17.6 72.66 42.82 0 x 22.5 69.24 41.95	8 x 17.3 76.38 45.64 0.72 0 x 29.8 76.38 47.82 1.61 0 x 17.6 72.66 42.82 0.60 0 x 22.5 69.24 41.95 0.94	8 x 17.3 76.38 45.64 0.72 2.04 0 x 29.8 76.38 47.82 1.61 6.02 0 x 17.6 72.66 42.82 0.60 1.78 0 x 22.5 69.24 41.95 0.94 3.06	8 x 17.3 76.38 45.64 0.72 2.04 25.84 0 x 29.8 76.38 47.82 1.61 6.02 7.20 0 x 17.6 72.66 42.82 0.60 1.78 28.14 0 x 22.5 69.24 41.95 0.94 3.06 14.33	8 x 17.3 76.38 45.64 0.72 2.04 25.84 318 0 x 29.8 76.38 47.82 1.61 6.02 7.20 157 0 x 17.6 72.66 42.82 0.60 1.78 28.14 305 0 x 22.5 69.24 41.95 0.94 3.06 14.33 206	8 x 17.3 76.38 45.64 0.72 2.04 25.84 318 8.29 0 x 29.8 76.38 47.82 1.61 6.02 7.20 157 8.25 0 x 17.6 72.66 42.82 0.60 1.78 28.14 305 6.81 0 x 22.5 69.24 41.95 0.94 3.06 14.33 206 6.37	8 x 17.3 76.38 45.64 0.72 2.04 25.84 318 8.29 74.8 0 x 29.8 76.38 47.82 1.61 6.02 7.20 157 8.25 18.7 0 x 17.6 72.66 42.82 0.60 1.78 28.14 305 6.81 62.5 0 x 22.5 69.24 41.95 0.94 3.06 14.33 206 6.37 28.1	8 x 17.3 76.38 45.64 0.72 2.04 25.84 318 8.29 74.8 22.5 0 x 29.8 76.38 47.82 1.61 6.02 7.20 157 8.25 18.7 110 0 x 17.6 72.66 42.82 0.60 1.78 28.14 305 6.81 62.5 18.8 0 x 22.5 69.24 41.95 0.94 3.06 14.33 206 6.37 28.1 43.8	8 x 17.3 76.38 45.64 0.72 2.04 25.84 318 8.29 74.8 22.5 1.72 0 x 29.8 76.38 47.82 1.61 6.02 7.20 157 8.25 18.7 110 10.0 0 x 17.6 72.66 42.82 0.60 1.78 28.14 305 6.81 62.5 18.8 2.08 2.08 2.08 5.70 <	

Method 2: Use Of Unbraced Design Charts

This method is applicable in cases where the above method is not fully applicable and $L_b \ge L_p$.

The design charts are basically developed for uniform moment case with $C_b = 1.0$.

Following notation is used to separate full plastic, inelastic LTB, and elastic LTB ranges:

1. According to M_u in kN-m units and L_b in meters, enter into the charts.

- 1. Any section represented by a curve to the right and above () the point selected in No.1 will have a greater allowed unbraced length and a greater moment capacity than the required values of the two parameters.
- 3. A dashed line section is not an economical solution. If dashed section is encountered while moving in top-right direction, proceed further upwards and to the right till the first solid line section is obtained. Select the corresponding section as the trial section, and it will be the lightest available section for the requirements.
- 4. If $C_b > 1.0$, use $M_{u,req} = M_u / C_b$ but check that the selected section has $\phi_b M_p > M_u$.

Move to the right and above in the arrow direction the point selected

Check the three conditions of compact section for internal stability, namely,

1. web continuously connected with flange,

2. flange stability criterion, and

3. web stability criterion.

If any one out of the above three is not satisfied, revise the section.

Either calculate L_p , L_r , and L_m or find their values from *beam selection tables*.

$$L_{p} = 1.76 r_{y} \sqrt{E/F_{yf}}, (mm)$$

 $L_p = 0.05 r_v(m)$ for A36 steel

$$L_{r} = 1.95 r_{ts} \frac{E}{0.7F_{y}} \sqrt{\frac{Jc}{S_{x}h_{o}}} \sqrt{1 + \sqrt{1 + 6.76 \left(\frac{0.7F_{y}}{E} \frac{S_{x}h_{o}}{Jc}\right)^{2}}}$$
$$M_{r} = 0.7F_{y} S_{x}/10^{6} \qquad (kN-m)$$
$$r_{ts}^{2} = \frac{\sqrt{I_{y}C_{w}}}{S_{x}} = \frac{I_{y}h_{0}}{2S_{x}}$$

For doubly symmetric I-sections

c = 1.0 for a doubly symmetric I-shape $h_0 = d - t_f$

$$BF = \frac{M_p - M_r}{L_r - L_p}$$
$$L_m = L_p + \frac{M_p}{BF} \left(\frac{C_b - 1}{C_b}\right) \le L_p$$

Calculate design flexural strength:
1. If
$$L_b \leq L_m$$
 $M_n = M_p = Z_x F_y / 10^6 (kN - m)$
2. If $L_m < L_b \leq L_r$ $M_n = C_b [M_p - BF(L_b - L_p)]$
 $\leq M_p (kN - m)$
3. If $L_b > L_r$ $M_n = C_b F_{cr} S_x \leq M_p$
where
 $F_{cr} = \frac{C_b \pi^2 E}{\left(\frac{L_b}{r_{ts}}\right)^2} \sqrt{1 + 0.078 \frac{J c}{S_x h_o} \left(\frac{L_b}{r_{ts}}\right)^2} \approx \frac{C_b \pi^2 E}{\left(\frac{L_b}{r_{ts}}\right)^2}$

Design moment = $\phi_b M_n$,

Where $\phi_b = 0.9$

Bending strength check:

 $M_u \le \phi_b M_n$ (OK) If not satisfied revise the trial selection.

Calculate design Shear Strength

For
$$\frac{h}{t_w} \le 2.24 \sqrt{E/F_{yw}}$$
 (= 63.4 for A36 steel) $C_v = 1.0$
 $\phi_v V_n = \frac{0.9 \times 0.6}{1000} F_{yw} A_w C_v, (kN)$

Shear check:

$$V_{u} \leq \phi_{v} V_{n}$$

If not satisfied revise the trial selection

Deflection check:

Find Δ_{act} due to service live loads. **Note:** If Live Loads are not directly known, service load may be taken equal to Factored load divided by 2.5

 $\Delta_{act} \leq L/360$ or other specified limit (OK)

Check self-weight:

Calculated self weight $\leq 1.2 \times \text{assumed self weight}$ (OK)

Otherwise, revise the loads and repeat the calculations.

Write final selection using standard designation.

Example 4.1:

BEAMS WITH CONTINUOUS LATERAL SUPPORT Design a **7m** long simply supported I-section beam subjected to *service live load of 5 kN/m* and *imposed dead load of 6 kN/m*, as shown in Figure 4.19. The compression flange is continuously supported.

Use (a) A36 steel and (b) steel with $f_y = 345$ MPa and permissible live load deflection of span / 450.

Solution:

In beams with continuous lateral support, unbraced length is not applicable or it may be assumed equal to zero in calculations.

Assumed self weight = 10% of superimposed DL = 0.1x6 = 0.6 kN/m $w_u = 1.2D + 1.6L = 1.2 \times 6.6 + 1.6 \times 5$ = 15.92 kN/m

If the beam is continuously braced, C_b value is not applicable but may be considered equal to 1.0 in case it is required in the formulas.

$$(Z_x)_{req} = \frac{M_u \times 10^6}{\phi_b F_y} = \frac{97.51 \times 10^6}{0.9 \times 250} = 433.4 \times 10^3, mm^3$$
$$d_{\min} = \frac{L}{22} = \frac{7000}{22} = 318mm$$

Selection of Section

i.
$$Z_{sel} \ge Z_{req} = 433.4 \text{ mm}^3$$

ii. Minimum weight
iii. $d \ge d_{min} = 318 \text{ mm}$

Consulting beam selection tables (Reference-1, Page 164), following result is obtained.

Trial Section	$Z_x (mm^3)$	Depth	Remark			
W310 × 32.7	480×10^{3}	$313 < d_{\min} = 318$	Not Good			
W360 × 32.9	544×10^{3}	$349 > d_{\min} = 318$	Check for Capacity			

Reference-1, Page 164

Z _x								Fo	r shap	es use	ed as	beam	s			
^										$\phi_b = 0$.90					
					<i>F_y</i> = 250 MPa									Torsional Constant	Warping Constant	EC _w
Z _x mm ³ x10 ³		SI S	hap	e	φ _b M _p kN-m	φ _b M _r kN-m	L _p	L, m	BF kN	d mm	b√2t,	h/t _w	Z_y mm ³ x10 ³	J mm ⁴ x10 ⁴	C.,	V GJ
895	W 360 x 51		51	201	125	1.93	5.87	21.5	355	7.4	43.1	174	23.7	287,333	1770	
885	w	410	×	46.1	199	122	1.48	4.41	29.3	403	63	51.6	115	19.1	198 448	1638
839	w	310	x	52	189	118	1.95	6.43	17.6	317	6.3	36.2	188	30.8	236.043	1410
803	W	200	x	71	181	112	2.63	14.53	6.4	216	5.9	15.8	375	81.6	250,007	892
776		200			474	400	4.00									
767	W	360	×	44	1/4	108	1.88	5.53	20.1	352	8.7	45.4	147	15.8	238,191	1974
101	vv	250	x	50	173	109	2.50	9.69	9.9	252	1.5	25.0	282	40.8	266,388	1300
724	w	410	x	38.8	163	99	1.42	4.12	26.3	399	8.0	56.8	89.8	10.8	151,723	1905
706	w	310	х	44.5	159	100	1.92	5.91	16.5	313	7.4	41.8	157	19.1	193,346	1618
650	w	360	~	20.0	149	01	1 27	4.15	22.0	252	6.0	40.4	00.0	45.0	400 767	4070
652	W	200	Č	59.0	140	01.7	2.59	4.15	6.2	353	0.0	48.1	90.8	15.0	108,757	1372
636	w	250	Ŷ	49 1	143	90	2.50	8.52	9.5	210	01	27.1	229	40.0	194,957	1041
		200	~	40.1	140		2.40	0.02	5.0	241	5.1	27.1	223	24.1	212,145	1505
610	w	310	×	38.7	137	86	1.91	5.57	15.5	310	8.5	47.2	134	12.5	163,001	1839
600	W	250	x	44.8	135	84	1.73	6.35	12.4	266	5.7	29.5	145	25.8	111,174	1057
569	w	200	x	52	128	80.5	2.57	10.96	6.3	206	8.1	20.4	264	32.0	166,224	1158
544	w	360	x	32.9	122	75	1.31	3.86	20.8	349	7.5	53.3	71.9	8.7	84,320	1580
513	w	250	х	38.5	115	72	1.72	5.77	11.9	262	6.6	34.0	123	16.6	92,645	1201
498	w	200	×	46.1	112	71.0	2.55	9.93	6.2	203	9.2	22.2	231	22.5	142,324	1280
480	w	310	×	32.7	108	66	1.07	3.46	19.8	313	4.7	41.8	60	12.1	44,040	973
446	w	200	x	41.7	100	62.7	2.05	8.48	6.5	205	7.0	22.2	166	22.5	83,783	983
426	w	250	x	32.7	96	60	1.68	5.25	11.2	258	8.0	36.9	100	10.0	73,847	1384
405	187	240														
405	W	310	X	28.3	91	55	1.04	3.22	18.4	309	5.7	46.2	48.8	7.5	35,178	1102
380	VV	200	X	35.9	85.5	53.9	2.04	7.57	6.4	201	8.1	25.8	140	14.6	69,551	1113

f

Trial Section 1: W360 × 32.9; $Z_r = 544 \times 10^3 \text{ mm}^3$ Check internal compactness of section as under: Web is continuously connected 1. (OK) $2. \qquad \frac{b_f}{2t_f} = 7.5 < \lambda_p \qquad \lambda_p = 10.8$ (OK) $\lambda_p = 107$ 3. $\frac{h}{1} = 53.3 < \lambda_p$ (OK)The section is internally compact. Continuously braced conditions imply: $L_h < L_n$ 4. and C_{h} = not included in formulas **Check for Moment Carrying Capacity:** $\phi_b M_n = \phi_b M_p \quad for \quad L_b < L_p$

 $\phi_b M_n = \phi_b M_p = 0.9 \times 544 \times 10^3 \times 250 / 10^6$ $\cong 121 \ kN-m$ $M_{\mu} = 97.51 \ kN - m < \phi_{\mu}M_{\mu} = 121 \ kN - m$ (OK)**Check for Shear Capacity:** $h/t_w = 53.3 < 63.4 \implies$ shear yield formula is applicable $\phi_{v}V_{n} = \frac{0.9 \times 0.6}{1000} F_{yw}A_{w}C_{w} = \frac{0.9 \times 0.6}{1000} \times 250.(349 \times 5.8).1.0$ $\phi_{v}V_{n} = 273.27 \, kN > V_{u} = 55.72 \, kN$ (OK)**Check for Deflections: Check only for service live load**

$$\Delta_{act} = \frac{5}{384} \times \frac{w_L L^4}{EI} = \frac{5}{384} \times \frac{5 \times (7000)^4}{2 \times 10^5 \times 8,300 \times 10^4} = 9.41 mm$$

$$\Delta_{all} = \frac{L}{360} = \frac{7000}{360} = 19.44$$

$$\Delta_{act} = 9.4 \quad < \quad \Delta_{all} = 19.44 \quad (OK)$$

Check for Self-weight:

$$Selfweight = \frac{32.9 \times 9.81}{1000} = 0.323, kN / m$$

lesser than 1.2x(assumed self-weight of 0.6 kN/m) (OK)

Final Section : W360x32.9

(b) Steel With $F_v = 345$ MPa

Assuming the section to be internally compact and knowing that there is no LTB,

$$(Z_x)_{req} = \frac{M_u \times 10^6}{\phi_b F_y} = \frac{97.51 \times 10^6}{0.9 \times 345} = 314.0 \times 10^3, mm^3$$
$$d_{\min} = \frac{F_y L}{5500} = \frac{L}{16} = \frac{7000}{16} = 437.5mm$$

Selection of Section

i.
$$Z_{sel} \ge Z_{req} = 314.0 \ mm^2$$

ii. Minimum weight
iii. $d \ge d_{min} = 437.5 \ mm$

This d_{\min} is much larger, so the direct deflection criteria will be used.

Equating the,

Selection of Section

i.
$$Z_{sel} \ge Z_{req} = 314.0 \ mm^3$$

ii. Minimum weight
iii. $I \ge I_{min} = 5024 \times 10^4 \ mm^4$

Consulting beam selection tables for F_y =345 MPa
 (Reference-1, Page 179), following result is obtained.

W310 \times 28.3 provides sufficient strength and moment of inertia.

; $Z_r = 405 \times 10^3 \text{ mm}_{24}^3$

 $I_x = 5410 \times 10^4 \text{ mm}^4$

Reference-1, Page 179

Zx							For s	beam	ns, φ _b	= 0.90)	s			
						F _v = 3	345 MPa	3						Torsional Constant	Warping Constant
Z _x mm ³ x10 ³	SI Shape		¢ _b M _ρ kN-m	¢ _b M, kN-m	L _p m	<i>L,</i> m	BF kN	d mm	b√2t₁	h/t _w	Z _y mm ³ x10 ³	J mm⁴x10⁴	C _w mm ⁶ x10 ⁶		
480	w	310	x	32.7	149.0	90.4	0.91	2.78	34.82	312	4.74	41.8	60.0	12.2	44000
464	S	250	×	37.8	144.1	87.6	1.02	3.81	22.47	254	4.75	25.6	81.8	25.1	40800
446	W	200	x	41.7	138.5	86.5	1.74	6.40	12.40	205	7.03	22.3	166	22.4	83800
426	w	250	x	32.7	132.3	82.6	1.43	4.20	19.93	259	7.99	36.9	100	10.0	73800
405	w	310	x	28.3	125.8	75.9	0.89	2.62	31.90	310	5.72	46.2	48.8	7.49	35200
379	w	-200	×	35.9	117.7	74.3	1.73	5.80	11.85	201	8.12	25.9	140	14.4	69600
354	w	250	x	28.4	109.9	66.9	0.94	2.96	23.65	259	5.09	35.4	54.9	9.70	27900
334	w	200	x	31.3	103.7	64.8	1.36	4.51	13.72	210	6.59	27.5	93.2	11.7	40800
329	w	310	x	23.8	102.2	60.9	0.83	2.45	28.42	305	7.53	49.4	37.0	4.29	26000
315	S	200	x	34	97.81	57.60	0.86	4.09	13.81	203	4.91	14.1	60.1	22.9	16400
310	W	150	х	37.1	96.26	59.55	1.64	7.22	7.30	162	6.68	15.5	140	19.2	40300
306	w	250	x	25.3	95.01	57.60	0.91	2.79	22.14	257	6.08	36.9	45.9	6.49	22900
285	w	310	x	21	88.49	53.03	0.81	2.35	25.50	302	8.82	54.3	31.1	2.93	21600
279	w	200	×	26.6	86.63	54.12	1.32	4.11	12.96	207	7.95	29.9	76.4	7.16	32800
270	м	318	x	18.5	83.84	50.64	0.80	2.24	25.58	318	8.22	74.8	27.5	2.05	20400
270	S	200	x	27.4	83.84	51.29	0.89	3.48	13.96	203	4.71	22.9	52.1	13.9	14200
262	w	250	x	22.3	81.35	49.12	0.87	2.63	20.40	. 254	7.41	38.5	37.7	4.33	18300
246	м	318	x	17.3	76.38	45.64	0.72	2.04	25.84	318	8.29	74.8	22.5	1.72	15300
246	W	150	х	29.8	76.38	47.82	1.61	6.02	7.20	157	8.25	18.7	110	10.0	30300
234	M	310	x	17.6	72.66	42.82	0.60	1.78	28.14	305	6.81	62.5	18.8	2.08	10100
223	w	200	x	22.5	69.24	41.95	0.94	3.06	14.33	206	6.37	28.1	43.8	5.70	13900

Check internal compactness of section as under:

1. Web is continuously connected

2.
$$\frac{b_f}{2t_f} = 5.7 < \lambda_p \qquad \lambda_p = 9.1 \qquad (OK)$$

(OK)

- 3. $\frac{n}{t_w} = 46.2 < \lambda_p \qquad \lambda_p = 90.5 \qquad (OK)$
 - . The section is internally compact.
- 4. Continuously braced conditions imply: $L_b < L_p$ and C_b = not included in formulas

Check for Moment Carrying Capacity:

$$\phi_b M_n = \phi_b M_p = 0.9 \times 405 \times 10^3 \times 345 / 10^6$$
$$\cong 125.8 \ kN-m$$

 $M_u = 97.51 \ kN - m < \phi_b M_n = 125.8 \ kN - m$

Check for Shear Capacity:

Reference-1, Page 318

$$\lambda_p = 2.24 \sqrt{E/F_y} = 2.24 \sqrt{2 \times 10^5} / 345 = 53.93$$

 $h/t_w = 46.2 < \lambda_p = 53.93 \implies$ shear yield formula is applicable

$$\phi_{v}V_{n} = \frac{0.9 \times 0.6}{1000} F_{yw}A_{w}C_{w} = \frac{0.9 \times 0.6}{1000} \times 345.(309 \times 6.0).1.0$$
$$\phi_{v}V_{n} = 345.4kN > V_{u} = 55.72 \, kN \qquad (OK)$$

 $\varphi_v v_n = 545.4 \text{KIV} > v_u = 55.72 \text{KIV}$

Check for Deflections:

Already Satisfied

$$\Delta_{act} = 9.4 \quad < \quad \Delta_{all} = 19.44$$

Check for Self-weight:

$$Selfweight = \frac{28.3 \times 9.81}{1000} = 0.28, kN / m$$

27

(OK)

lesser than 1.2x(assumed self-weight of 0.6 kN/m) (OK)

ALTERNATIVES TO THE SECTION REVISION

Sometime, in place of revising the section in case of less strength, following alternatives may be adopted.

- 1. Flange cover plates can be provided to increase the moments capacity and reduce the deflections
- 2. Pre-stress tendons may be used to induce opposite resisting moment
- 3. The shear capacity may be increased by using the web-doublers or Web stiffener.

Example 4.2:

BEAMS WITH COMPRESSION FLANGE LATERALY SUPPORTED (BRACED) AT REACTION POINTS ONLY Design the beam of Figure 4.20 with the lateral bracing only provided at the reaction points. Use A36 steel.

Assumed self weight:

$$(w_d)_{ass} = 0.1 \times \left(w_d + \frac{P_d}{L} \right) = 1 \times \left(8 + \frac{60}{7} \right) = 1.7, kN/m$$

29

Calculation of C_b Value: $M_B = M_{max} = 435.3 \text{ kN-m}$ $M_A = M_C = 172.4 \times 1.75 - 27.64 \times 1.75^2/2$ = 259.97 kN-m $C_{b} = \frac{12.5M \text{ max}}{2.5M_{\text{max}} + 3M_{A} + 4M_{B} + 3M_{C}}$ $C_b = \frac{12.5 \times 435.30}{6.5 \times 435.30 + 6 \times 259.97} = 1.24$

Assuming the section to be internally compact with no LTB

$$(Z_x)_{req} = \frac{M_u \times 10^6}{\phi_b F_y} = \frac{435.3 \times 10^6}{0.9 \times 250} = 1935 \times 10^3, mm^3$$
$$d_{\min} = \frac{L}{22} = \frac{7000}{22} = 318mm$$

Selection of Section

i.
$$Z_{sel} \ge Z_{req} = 1935 \ mm^3$$

ii. Minimum weight
iii. $d \ge d_{min} = 318 \ mm$

Consulting beam selection tables (Reference-1, Page 162), following result is obtained.

Trial Section: W610 × 82 $\phi M_p = 494.0 \text{ kN-m}, \quad \phi M_r = 295.0 \text{ kN-m}, \quad BF = 64.99, \quad L_p = 1.69 \text{ m}, \quad L_r = 5.10 \text{ m}$ $L_m = L_p + \frac{M_p}{BF} \left(\frac{C_b - 1}{C_b} \right) \le L_r$ $L_m = 1.69 + \frac{494/0.9}{65} \left(\frac{1.24 - 1}{1.24} \right) = 3.32m$

 $L_b = 7.0 \implies L_m = 3.32 \implies Revise the section using beam selection charts of Reference21$

Reference-1, Page 162

Z		10	1				For shapes used as beams												
											$\phi_b = 0$.90							
					1	F _v = 250 MPa									Torsional Constant	Warping Constant	EC w		
Z _x mm ³ x	10 ³		SIS	hape	•	<i>φ_bM_p</i> kN-m	φ _b M, kN-m	L _p m	L, m	BF kN	d mm	b₁/2t₁	h/t _w	Z_y mm ³ x10 ³	<i>J</i> mm⁴x10⁴	C _w mm ⁶ x10 ⁶	V GJ		
262	2	w	530	x	101	590	361	2.28	7.06	53.3	537	6.0	43.6	400	102	1,815,302	2146		
257	3	w	360	x	134	579	369	4.68	16.86	19.2	356	10.2	25.9	1239	169	4,296,574	2565		
250	7	w	610	x	92	564	339	1.74	5.33	69.9	603	6.0	50.1	257	71.2	1,240,636	2123		
245	8	W	410	x	114	553	347	3.12	10.83	29.8	420	6.8	31.2	674	149	2,306,723	2004		
240	9	W	310	x	143	542	339	3.91	19.11	14.9	323	6.8	17.7	1106	286	2,526,923	1514		
240	9	w	250	x	167	542	324	3.39	26.97	10.3	289	4.2	10.4	1134	629	1,616,586	815		
237	6	w	460	x	106	535	328	2.15	7.61	42.1	469	4.7	32.4	405	145	1,262,119	1501		
236	0	w	530	×	92	531	328	2 24	6 76	50.0	533	67	46.9	356	76.2	1 600 474	2332		
227	8	w	360	x	122	513	318	3 14	13.36	21.1	363	5.9	22 4	734	211	1 801 876	1486		
	~	100		~		0.0	0.0	0.14	10.00		000	0.0	22.4	104	211	1,001,070	1400		
219	6	w	610	x	82	494	295	1.69	5.10	65.0	599	6.9	54.6	218	49.1	1,039,234	2342		
217	9]	w	460	x	97	490	302	2.14	7.22	41.1	466	5.1	35.7	369	114	1,138,592	1610		
216	3	W	310	x	129	487	304	3.88	17.56	14.8	318	7.5	18.9	990	212	2,220,792	1646		
213	0	w	410	×	100	479	302	3.11	10.00	28.5	415	7.7	35.9	582	99.5	1,960,312	2258		
213	0	W	250	×	149	479	290	3.35	24.10	10.1	282	4.6	11.6	1000	454	1,382,960	889		
211	4	W	530	x	85	476	287	1.71	5.35	57.6	535	-5.0	46.3	243	73.7	856,629	1735		
206	5	W	360	x	110	465	290	3.14	12.41	20.9	360	6.4	25.3	665	161	1,608,530	1605		
201	6	W	460	x	89	454	279	2.14	6.94	40.4	463	5.4	38.7	338	90.3	1,033,863	1722		
195	0	W	310	×	117	439	276	3.86	16.18	14.7	314	8.2	20.7	890	160	1,968,368	1786		
188	5	W	360	x	101	424	266	3.11	11.59	20.7	357	7.0	27.5	605	126	1,444,723	1725		
185	2	w	250	×	131	417	254	3.33	21.37	10.0	275	. 5.2	13.0	870	313	1,162,760	980		
183	5	w	460	x	82	413	254	2.11	6.63	39.2	460	6.0	41.2	303	69.1	921,078	1857		
180	3	w	530	x	74	406	244	1.64	5.03	53.0	529	6.1	49.4	200	47.5	690,137	1941		
177	0	W	310	x	107	398	252	3.84	14.97	14.6	311	9.0	22.6	806	122	1,756,225	1930		
172	1	w	410	x	85	387	238	2.02	7.09	32.7	417	5.0	33.0	310	92.4	714 305	1415		
167	1	w	360	x	91	376	238	3.10	10.77	20.0	353	7.7	30.4	537	91.6	1,264,804	1892		

For $L_{b} = 7 \text{m}$ and $M_{u,eq} = M_u / C_b$ = 435.3 / 1.24= 351.05 kN-mFrom design charts of Reference-1, Page 211 **Trial Section** $W410 \times 100$ $\phi M_{\rm p} = 479 \text{ kN-m} > M_u$ $d = 410 > d_{min}$ (OK) $\phi M_r = 295.0 \,\text{kN-m}$ BF = 28.53 $L_p = 3.11 \text{ m}$ $L_r = 10.0 \text{ m}$

Check internal compactness of section as under:

Web is continuously connected 1. (OK)2. $\frac{b_f}{2t_f} = 7.5 < \lambda_p$ $\lambda_p = 10.8$ 3. $\frac{h}{t_w} = 53.3 < \lambda_p$ $\lambda_p = 107$ \therefore The section is internally compact. (OK)(OK) $L_m = L_p + \frac{M_p}{BF} \left(\frac{C_b - 1}{C_b} \right) \le L_r$ $L_m = 3.11 + \frac{494/0.9}{28.5} \left(\frac{1.24-1}{1.24}\right) = 6.72m$

Check for Moment Carrying Capacity:

 $L_m < L_b \le L_r \Rightarrow$ Inelastic Buckling

 $\phi_b M_n = C_b \times [\phi_b M_p - \phi_b BF(L_b - L_p)] \leq \phi_b M_{p35}$

 $\phi_{\mu}M_{\mu} = 1.24 \times [479 - 0.9 \times 28.53(7.00 - 3.11)]$ = 470.44 kN-m $M_{\mu} = 435.3 \ kN - m < \phi_{\mu}M_{\mu} = 470.44 \ kN - m$ (OK)**Check for Shear Capacity:** $h/t_{w} = 35.9 < 63.4 \implies$ shear yield formula is applicable $\phi_v V_n = \frac{0.9 \times 0.6}{1000} F_{yw} A_w C_w = \frac{0.9 \times 0.6}{1000} \times 250.(415 \times 10.0).1.0$ $\phi_{v}V_{n} = 560.25kN > V_{u} = 172.74 kN$ (OK)**Check for Deflections:**

Check only for service live load

$$\Delta_{act} = \frac{5}{384} \times \frac{w_L L^4}{EI} + \frac{Pa}{12EI} \left(0.75L^2 - a^2 \right)$$

$$\Delta_{act} = \frac{5}{384} \times \frac{10 \times (7000)^4}{200000 \times 39700 \times 10^4} + \frac{50000 \times 3500}{12 \times 200000 \times 39700 \times 10^4} (0.75 \times (7000)^2 - (3500)^2)$$

$$\Delta_{act} = 3.94 + 4.50 = 8.44 \ mm$$

$$\Delta_{all} = \frac{L}{360} = \frac{7000}{360} = 19.44$$

$$\Delta_{act} = 8.44 \ < \Delta_{all} = 19.44 \ (OK)$$

Check for Self-weight:

$$Selfweight = \frac{100 \times 9.81}{1000} = 0.981, kN / m$$

lesser than 1.2x(assumed self-weight of 1.7 kN/m) (OK)

Final Section : W410x100

Example 4.3:

BEAMS WITH COMPRESSION FLANGE LATERALLY SUPPORTED AT INTERVALS

Design the beam of Figure 4.21, ignoring self-weight and deflection check. Compression flange is laterally supported at points A, B and C. Use A36 steel.

Solution:

The factored loading and the shear force and bending moment diagrams are shown in Figure 4.22.

Calculation of Cb: i) Portion AC $M = 81.56 x - 6.8 x^2/2$ $M_{max} = 404.32 \text{ kN-m}$ $M_A = 132.32$ kN-m (x = 1.75 m) $M_{B} = 243.81 \text{ kN-m}$ (x = 3.50 m) $M_C = 334.48 \text{ kN-m}$ (x = 5.25 m) 12.5×404.32 C_b – --=1.49 $\overline{2.5 \times 404.32 + 3 \times 132.32 + 4 \times 243.81 + 3 \times 334.48}$ ii) Portion CB M = 404.32 - 118.04x (x starts from the end C) $M_{max} = 540 \text{ kN-m}$ $M_A = 168.24 \text{ kN-m}$ (x = 2 m) $M_B = 67.84 \text{ kN-m}$ (x = 4 m) $M_C = 303.92 \text{ kN-m}$ (x = 6 m) 12.5×540.00 $\overline{2.5 \times 540.00 + 3 \times 168.24 + 4 \times 67.84 + 3 \times 303.92}$ = 2.2240

iii) Portion BD

$C_b = 1.0$, for overhanging portion

Portion	(<i>M_u</i>) _{max} (kN-m)	$(V_u)_{max}$ (kN)	L _b (m)	C _b
AC	404.32	81.56	7	1.49
СВ	540	118.04	8	2.22
BD	540.0	90.0	6	1.0

Selection of Critical Segment:

- \blacktriangleright Greater value of M_{μ} makes a segment more critical.
- Similarly, a longer unbraced length reduces the member capacity.
- > However, smaller value of C_b is more critical for a particular segment.

The effect of these three factors together determines whether a₄₁

The decision about which part of the beam is more critical for design depends on experience but may not always be fully accurate.

If a wrong choice is made for this critical section, the procedure will correct itself. Only the calculations will be lengthy in such cases with the end result being always the same.

For this example, assume that portion **BD** is more critical and first design it. Later on, check for the other two portions.

$$d_{\min} \approx \frac{L}{22} = \frac{15000}{22} = 682$$

Depth for portion **AB** may be relaxed a little due to the presence of cantilever portion.

However, the portion **BD** may have its own larger depth requirements.

Portion BD

Assuming the section to be internally compact with no LTB

$$(Z_x)_{req} = \frac{M_u \times 10^6}{\phi_b F_y} = \frac{540 \times 10^6}{0.9 \times 250} = 2400 \times 10^3, mm^3$$

Selection of Section

i.
$$Z_{sel} \ge Z_{req} = 2400 \text{ mm}^3$$

ii. Minimum weight
iii. $d \ge d_{min} = 682 \text{ mm}$

Consulting beam selection tables (Reference-1, Page 162), following result is obtained.

Trial Section:W610 × 92 $C_b = 1 \text{ so } L_p = L_m$ $\phi M_p = 564.0 \text{ kN-m}, \quad \phi M_r = 339.0 \text{ kN-m},$ $BF = 69.9, \ L_p = 1.74 \text{ m}, \quad L_r = 5.33 \text{ m}$

 $L_b = 6 \implies L_m = 1.74 \implies Revise the section using beam selection charts of Reference-1$

Reference-1, Page 162

-	Z _x						For shapes used as beams											
	^										$\phi_b = 0$.90						
							<i>F_v</i> = 250 MPa								Torsional Constant	Warping Constant	EC w	
m	Z _x m ³ x10 ³	SI Shape			φ _b M _p kN-m	¢₅M, kN-m	L _p m	L, m	BF kN	d mm	b₁/2t₁	h/t _w	Z_y mm ³ x10 ³	<i>J</i> mm⁴x10⁴	C _w	V GJ		
	2622	w	530	x	101	590	361	2.28	7.06	53.3	537	6.0	43.6	400	102	1,815,302	2146	
	2573	w	360	x	134	579	369	4.68	16.86	19.2	356	10.2	25.9	1239	169	4,296,574	2565	
	2507	w	610	x	92	564	339	1.74	5.33	69.9	603	6.0	50.1	257	71.2	1,240,636	2123	
	2458	Ŵ	410	х	114	553	347	3.12	10.83	29.8	420	6.8	31.2	674	149	2,306,723	2004	
	2409	W	310	x	143	542	339	3.91	19.11	14.9	323	6.8	17.7	1106	286	2,526,923	1514	
	2409	W	250	x	167	542	324	3.39	26.97	10.3	289	4.2	10.4	1134	629	1,616,586	815	
	2376	w	460	x	106	535	328	2.15	7.61	42.1	469	4.7	32.4	405	145	1,262,119	1501	
	2360	w	530	x	92	531	328	2.24	6.76	50.0	533	6.7	46.9	356	76.2	1,600,474	2332	
	2278	w	360	x	122	513	318	3.14	13.36	21.1	363	5.9	22.4	734	211	1,801,876	1486	
	2196	w	610	x	82	494	295	1.69	5.10	65.0	599	6.9	54.6	218	49.1	1,039,234	2342	
	2179	W	460	x	97	490	302	2.14	7.22	41.1	466	5.1	35.7	369	114	1,138,592	1610	
	2163	W	310	x	129	487	304	3.88	17.56	14.8	318	7.5	18.9	990	212	2,220,792	1646	
	2130	W	410	x	100	479	302	3.11	10.00	28.5	415	7.7	35.9	582	99.5	1,960,312	2258	
	2130	W	250	x	149	479	290	3.35	24.10	10.1	282	4.6	11.6	1000	454	1,382,960	889	
	2114	W	530	x	85	476	287	1.71	5.35	57.6	535	-5.0	46.3	243	73.7	856,629	1735	
	2065	W	360	x	110	465	290	3.14	12.41	20.9	360	6.4	25.3	665	161	1,608,530	1605	
	2016	W	460	x	89	454	279	2.14	6.94	40.4	463	5.4	38.7	338	90.3	1,033,863	1722	
	1950	W	310	x	117	439	276	3.86	16.18	14.7	314	8.2	20.7	890	160	1,968,368	1786	
	1885	W	360	x	101	424	266	3.11	11.59	20.7	357	7.0	27.5	605	126	1,444,723	1725	
	1852	W	250	x	131	417	254	3.33	21.37	10.0	275	- 5.2	13.0	870	313	1,162,760	980	
	1835	w	460	x	82	413	254	2.11	6.63	39.2	460	6.0	41.2	303	69.1	921,078	1857	
	1803	w	530	x	74	406	244	1.64	5.03	53.0	529	6.1	49.4	200	47.5	690 137	1941	
	1770	W	310	x	107	398	252	3.84	14.97	14.6	311	9.0	22.6	806	122	1 756 225	1930	
	1721	W	410	x	85	387	238	2.02	7.09	32.7	417	50	33.0	310	92.4	714 305	1415	
	1671	w	360	x	91	376	238	3.10	10.77	20.0	353	7.7	30.4	537	91.6	1,264,804	1892	

For $L_{b} = 6 \text{m and}$ $M_{\mu} = 540 \ kN - m$ From design charts of Reference-1, Page 207 **Trial Section** W690 × 125 $\phi M_{\rm p} = 900 \, {\rm kN-m} > M_{u}$ $d = 678 \approx d_{min} = 682$ within the acceptable range (OK) $\phi M_r = 555.0 \,\text{kN-m}$ BF = 77 kN $L_{p} = 2.62 \text{ m}$ $L_r = 7.67 \text{m}, \quad L_m = L_p$

Check internal compactness of section as under:

The section is internally compact.

Check for Moment Carrying Capacity:

$$\begin{bmatrix} L_m < L_b \le L_r \Rightarrow \text{Inelastic Buckling} \end{bmatrix}$$

$$= C_b \times [\phi_b M_p - \phi_b BF(L_b - L_p)] \le \phi_b M_p$$

$$\phi_b M_n = 1.0 \times [900 - 0.9 \times 77.0(6.00 - 2.62)]$$

= 665.8 kN-m

 $M_u = 540 \ kN - m < \phi_b M_n = 665.8 \ kN - m$

Check for Shear Capacity: $h/t_{\rm m} = 52.7 < 63.4 \implies$ shear yield formula is applicable $\phi_{v}V_{n} = \frac{0.9 \times 0.6}{1000} F_{yw}A_{w}C_{w} = \frac{0.9 \times 0.6}{1000} \times 250.(678 \times 11.7).1.0$ $\phi_{v}V_{n} = 1070.9kN > V_{u} = 118.04 kN$ (OK)**CHECK FOR PORTION AC** $L_b = 7.0 \text{ m}, \quad C_b = 1.49$ $L_p = 2.62 < L_b = 7 \le L_r = 7.67 \Rightarrow$ Inelastic Buckling $\phi_b M_n = C_b \times [\phi_b M_p - \phi_b BF(L_b - L_p)] \leq \phi_b M_p$ $\phi_{h}M_{n} = 1.49 \times [900 - 0.9 \times 77.0(7.00 - 2.62)]$ = 888.7 kN-m $M_{\mu} = 540 \ kN - m < \phi_{\mu} M_{\mu} = 888.7 \ kN - m$ (OK)47

CHECK FOR PORTION CB

$$L_b = 8.0 \text{ m}, \quad C_b = 2.22$$

 $L_b = 8 > L_r = 7.67 \quad \Rightarrow \quad \text{Elastic Buckling}$

For W690x125:

 $S_x = 3490 \times 10^3 \text{ mm}^3$, $J = 117 \times 10^4 \text{ mm}^4$, $I_y = 4410 \times 10^4 \text{ mm}^4$ $r_y = 52.6$, d = 678 mm, $t_f = 16.3 \text{ mm}$, $\phi_b M_p = 900 \text{ kN-m}$

$$\phi_b M_n = \phi_b C_b F_{cr} S_x \leq \phi_b M_p (kN-m)$$

$$F_{cr} = \frac{\pi^2 E}{\left(\frac{L_b}{r_{ts}}\right)^2} \sqrt{1 + 0.078 \frac{J c}{S_x h_o} \left(\frac{L_b}{r_{ts}}\right)^2} \approx \frac{\pi^2 E}{\left(\frac{L_b}{r_{ts}}\right)^2} \qquad r_{ts} = \sqrt{\frac{I_y h_0}{2S_x}}$$

$$h_{o} = d - t_{f} = 678 - 16.3 = 661.7 \text{ mm}$$

$$r_{ts} = \sqrt{\frac{I_{y}h_{0}}{2S_{x}}} = \sqrt{\frac{4410 \times 10^{4} \times 661.7}{2 \times 3490 \times 10^{3}}} = 64.66mm$$

$$\frac{L_{b}}{r_{ts}} = \frac{8000}{64.59} = 123.72$$

$$F_{cr} = \frac{\pi^{2} \times 2 \times 10^{5}}{(123.72)^{2}} \sqrt{1 + 0.078 \frac{117 \times 10^{4} \times 1}{3490 \times 10^{3} \times 661.7}} (123.72)^{2}}$$

$$F_{cr} = 128.96x(1.27) = 163.78 \text{ MPa}$$

$$\phi_{b}M_{n} = \phi_{b}C_{b}F_{cr}S_{x} = 0.9x(2.22x163.78x3490x10^{3})/10^{6}$$

$$\phi_{b}M_{n} = 1142 \text{ kN-m} > \phi_{b}M_{p} = 900 \text{ kN-m}$$
Hence, $\phi_{b}M_{n} = \phi_{b}M_{p} = 900 \text{ kN-m} > M_{u} = 540 \text{ kN-m}$
and portion BD is most critical as expected earlier.

Deflection Check:

Requires detailed calculations for Δ_{actual} that is not asked for in this example. Very approximate calculations are performed as under:

For cantilever Beam ; Δ_{\max}

$$\approx \frac{Pa^2(L+a)}{3EI}$$

Where, a is the cantilever length and L is the span

Check only for service live load $P_L = 30$ kN at Free End

 $\Delta_{\max} = \frac{30,000 \times 6,000^2 (15,000 + 6,000)}{3 \times 200,000 \times 119,000 \times 10^4} = 31.76 mm$

(Deflection will be reduced by loads on span 'L')

Also Δ_{\max} considering one end of the overhang as fixed

$$A_{\max} = \frac{Pa^3}{3EI_x} = \frac{30,000 \times 6000^3}{3 \times 2 \times 10^5 \times 119,000 \times 10^4} = 9.08mm$$

$$\Delta_{all} = \frac{L}{360} = \frac{6000}{360} = 16.67 \, mm$$

... Deflection may be critical, detailed calculations are recommended.

Check for Self-weight:

$$Selfweight = \frac{125 \times 9.81}{1000} = 1.23, kN / m$$

(asked to be ignored in the problem statement)

Example 4.4:

Select suitable trial section for a **8m** long simply supported W-section beam subjected to service live load (P_L) of **10** kN/m and imposed dead load (P_D) of **4** kN/m. The compression flange is continuously supported in the lateral direction and the deflection is limited to span/1500.

Solution:

Assumed self weight = 10% of superimposed DL = 0.1x4 = 0.4 kN/msay 0.8 kN/m as live load is greater and deflection requirements are strict

$$w_u = 1.2D + 1.6L = 1.2 \times 4.8 + 1.6 \times 10$$

= 21.76 kN/m

$$M_{u} = M_{\max} = \frac{wL^{2}}{8} = \frac{21.76 \times 8^{2}}{8} = 174.08, kN - m$$
$$V_{u} = V_{\max} = \frac{wL}{2} = \frac{21.76 \times 8}{2} = 87.04, kN$$

 \succ

Assuming the section to be internally compact and knowing that there is no LTB,

$$(Z_x)_{req} = \frac{M_u \times 10^6}{\phi_b F_y} = \frac{174.08 \times 10^6}{0.9 \times 345} = 773.7 \times 10^3, mm$$
$$d_{\min} = \frac{L}{22} = \frac{8000}{22} = 364mm$$

To satisfy the deflection criterion equating the,

$$\begin{aligned} \Delta_{all} &= \Delta_{act} \\ \frac{L}{1500} &= \frac{5}{384} \times \frac{w_L L^4}{EI_{\min}} \end{aligned}$$

$$I_{\min} = \frac{5 \times 1500}{384} \times \frac{w_L L^3}{E} = \frac{5 \times 1500}{384} \times \frac{10 \times (8000)^3}{2 \times 10^5}$$

 $I_{\rm min} = 50,000 \times 10^4 \,\rm mm^4$

Selection of Section

i. $Z_{sel} \ge Z_{req} = 314.0 \text{ mm}^3$ *ii.* Minimum weight

iii.
$$d \ge d_{min} = 364 \ mm$$

v.
$$I \ge I_{min} = 50,000 \times 10^4 \ mm^4$$

Consulting beam selection tables

Trial section no.1:W360 × 44d= 352 mm < d_{min} I_x = 12,100 × 10⁴ mm⁴

Skipping W410 \times 60 and W460 \times 60,

Trial section no.5:

Trial section no.6:

Trial section no.7:

W530 × 66 $I_x = 35,100 \times 10^4 \text{ mm}^4$ **W530 × 74** $I_x = 41,000 \times 10^4 \text{ mm}^4$ **W610 × 82** $I_x = 56,200 \times 10^4 \text{ mm}^4$

Trial Section: W610 × 82

After selection of the trial section, all the checks are to be performed. This part of the exercise is left for the reader to be completed.

End of Chapter 4 ASSIGNMENTS