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ANALYSIS AND DESIGN OF BEAMS

INTRODUCTION

A beam is a structural member in which the major

deformation is bending.

The bending moment is primarily generated due to

transverse loads. This member carries the loads

throughout its span and transfers it to its ends with or

without accompanying moment.

Beam is a combination of a compression member on

one side of neutral axis and a tension member on the

other side, joined together through a shear element.



Following terms are used for various types of beams

according to their use:

Girder:

The primary beams that are frequently used at wide

spacing supporting the smaller beams and other structural

components are called girders.

Frequently, girders are made of built-up sections and carry

heavier loads over larger spans. These are supported

directly on columns (Figure 4.1).

Secondary Beam:

These are relatively smaller beams resting on primary

beams/girders carrying load of lesser part of roof and

having smaller span lengths (Figure 4.1).



Secondary 

Beams

Joist

Main Beam (Girder)

Column

Figure 4.1.  Typical Plan of a Building Showing Layout of Columns and 

Beams



Joists: Joists are less important beams that are closely

spaced and are frequently having truss-type webs.

These are closely spaced smaller beams resting on

secondary beams in majority of the cases.

With the presence of joists, the strength requirements of

the roof sheathing or slab are greatly reduced (Figure 4.1).

Purlins: These are roof beams spanning between trusses.

Roof sheathing is connected with purlins, which is in turn

are connected to panel points of the truss, with no direct

connection between the roof and the truss top chord.

Uniformly distributed roof load is carried by the purlins

and is converted into point loads acting at panel points of

the truss.



Because of inclination of the load with the centroidal axes

of the section and application of load on top chord, these

beams are subjected to biaxial bending along with torsion.

Stringers: Longitudinal bridge beams spanning between

floor beams and placed parallel to roadway are called

stringers (Figure 4.2).

Floor Beams: Floor beams are main girders of the bridge

spanning between trusses or plate girders and running

perpendicular to the roadway of the bridge (Figure 4.2).

Girts: Horizontal wall beams used to resist horizontal

bending due to wind acting on the side of an industrial

building are referred to as girts.



Girts
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Figure 4.2.  Typical Cross-Section of a Steel Bridge.

Typical shear connectors for beams



Lintels: Lintels are members supporting a wall over

window or door openings.

Spandrels: In case of high-rise buildings, the masonry

walls are usually not able to withstand their self-weight

and the slab weight.

In such cases, beams are provided in exterior walls at

each floor level to support the wall load and perhaps

some roof load also.

These beams are termed as spandrels.



STRUCTURAL COMPONENTS OF BRIDGE



THE FLEXURE FORMULA

By denoting the elastic section modulus by S and the

applied bending moment by M, the bending stresses may

be calculated using the flexure formula as under:

Elastic bending stress,

S
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Using the above expression, the required section modulus

to resist a particular bending moment may be obtained as

follows:
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Here, Fa =  allowable bending stress



In a similar manner, plastic section modulus (Z) to provide

a particular ultimate moment capacity may be calculated

for a laterally supported and compact section beam by

using the formula:
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STABILITY OF BEAM SECTIONS

Local Stability

If width over thickness ratio of the

compression flange is greater than a

certain limit, flange can buckle locally.

The phenomenon is called Flange

Local Buckling (FLB) and is shown in

Figure 4.3.
Figure 4.3.  Flange Local 

Buckling



Buckling is 

diagonal 

perpendicular to 

the paper

(a)  Web Local Buckling
(b) Web Crippling Due to 

Concentrated Load

Figure 4.4.  

Web Instability

Similarly, if depth over thickness ratio is greater for the web,

it can locally buckle or cripple under compression.

This phenomenon is called as Web Local Buckling (WLB).

Web local buckling usually occurs in a diagonal position and

is produced by the diagonal compression existing in the web

due to shear.

On the other hand, Web Crippling occurs due to local

compression transferred by the flange to the connecting

portion of web.



LOCAL BUCKLING 

IN BEAM

Diagonal Web 

local Buckling

Flange Local 

Buckling



WEB CRIPPLING 



LATERAL STABILITY

Due to lateral buckling of the compression zone, the section

is twisted as a whole due to the fact that tension zone

remains stable and tries to retain its position.

This combined twisting and buckling of beam in a lateral

direction is called Lateral Torsional Buckling (LTB).

It depends upon the laterally unsupported length besides the

loading and the sectional dimensions.



Unbraced or unsupported length of beam (Lb)

It is defined as the length of beam within its two sections

whose compression flange is laterally supported or

braced against twist of the cross section by perpendicular

beams, slab or by some other means.

In other words, it is the distance between two points

braced against lateral displacement of the compression

flange denoted by Lb.

The sections braced to prevent twist of the member are

considered better for the bracing against the lateral

torsional buckling.



AISC-F2 deals with doubly symmetric compact I-shaped 

members and channels bent about their major axis.

These provisions are valid for sections having compact 

webs and compact flanges.  

The nominal flexural strength (Mn) is the lower value for 

limits states of yielding and lateral - torsional buckling.  

A member will be safe against lateral torsional buckling up 

to its full plastic moment capacity if the unbraced length of 

the beam (Lb) is not greater than Lp, 

i.e.,

Lb  Lp for no LTB

Lateral stability against LTB



where,

Lp = Limiting laterally unbraced length for full plastic bending

capacity (Mp = ZxFy) in uniform moment case (Cb = 1.0).

For I-shaped members including hybrid sections and channels

y
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E
rL 5076.1  (for A-36 Steel)

A section may develop yielding only at some points in case

of inelastic buckling, when the unbraced length is between

the two limiting lengths Lp and Lr, that is, when,

Lp < Lb  Lr

Where,

Lr = Limiting laterally unbraced length for inelastic 

torsional buckling, mm.



For doubly symmetric I-shaped members:
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rts  Radius of gyration of the compression flange plus

one-sixth of the web for doubly symmetric I-sections

Mr = Limiting buckling moment dividing elastic and

inelastic buckling for Cb = 1.0, (Cb will be defined later)
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For the above expression, b is the long dimension and t is

the short dimension of any rectangular element of the

section and summation is for all the elements of that section.

When  Lb >  Lr

Mn =  FcrSx ≤  Mp

Fcr =  compression flange critical buckling stress
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TYPES OF BEAM SECTIONS

Types According to Section Stability

Depending upon the stability, sectional shapes can be

classified as compact, non-compact and slender sections.

The details of this classification are explained in the

following paragraphs.

Compact section

A compact section is the one that is capable of developing

its full plastic moment capacity before any local buckling

occurs.

In order to qualify under this category, a member must

meet the following requirements (Table B4.1 of AISC

Specification):



1. Web is continuously connected with the flange.

2. Flange local stability criterion is satisfied.

3. Web local buckling criterion is satisfied.

4. Lateral torsional buckling is absent.

Flange local stability criterion

Flange is locally stable when the width over thickness ratio

(=b/t) for the flange is lesser than the limiting slenderness

parameter for compact element (p).

The parameter  for flange may be calculated as bf / 2tf or

bf /tf depending on the whether half of the flange

undergoes buckling or the full flange acts as one element

for buckling, respectively.

  p



p for compact section

1. Unstiffened flanges of I-shaped rolled beams, channels,

tees and built-up doubly and single symmetric I-sections.

p = 10.8 for A-36 steel
yp FE /38.0

2. Unstiffened legs of single angles.

yp FE /54.0 p = 15.3 for A-36 steel

3. Stiffened flanges of HSS shapes

yp FE /12.1 p =  31.8 for A-36 steel



Web local buckling criterion

Web is locally stable when the following condition is satisfied

  p where,    = h/tw

and assumed web depth for stability (h) is defined as under:

hw = twice the distance from the neutral axis to the inside

face of the compression flange less the fillet or corner

radius for rolled sections

p for compact section

1. For webs of doubly symmetric I-sections and channels:

yp FE /76.3

2. For webs of rectangular HSS ( = h / t):

p = 68.7 for A-36 steelyp FE /42.2

p =  107 for A-36 steel



Lateral torsional buckling

The member is laterally stable

If Lb  Lp when, Cb = 1.0.

Non-compact section

A non-compact section is the one, which can develop

yielding at least on one of its outer edges before showing

local instability.

The width-thickness ratio of one or more elements exceeds

p, but  for all elements do not exceed r. The values of r

are given in Table 4.1.

Slender section

This type of section cannot develop yielding at any point

within the cross-section before it shows local instability.

The width over thickness ratio of any element exceeds r.



Table 4.1.  r For Non-Compact Sections

Sr. 

No.
Type of Element Expression For r

r for A36 

steel

i) Unstiffened rolled flanges 28.4

ii)

Unstiffened flanges of doubly 

and singly symmetric built-up 

I-sections

to be 

calculated

iii) Flexure in legs of single angles 25.8

iv)
Stiffened webs purely in 

flexure
162
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In table 4.1

FL = 0.7Fy for minor axis bending, major axis bending 

of slender web of built-up I-shaped member and 

major axis bending of compact and non-compact 

webs of built-up I-sections with Sxt / Sxc ≥ 0.7.

= Fy (Sxt / Sxc)  ≥ 0.5 Fy for other cases.

Kc is between 0.35 and 0.76.
w

c
th

k
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4




Flexural Member Performance using Section Classification



TYPES OF BEAMS

Depending on various aspects, the beams may be 

categorized as under:

Position

i. Central beams.

ii. End beams.

End Conditions

i. Simple beams. The simple beams,

girders and trusses have an effective

length equal to the distance between

centres of gravity of the members

on which they rest.
ii. Cantilever beams

iii. Continuous beams

iv. Fixed ended beams

v. Propped cantilever beams



Fabrication

(a)  Rolled steel sections

W-sections are most economic and widely

used shapes as beams. However, beams may

also be of S or M shapes. Angle and channel

sections are used for smaller beams.

(b)  Cold formed beams

These are formed by bending high strength steel plates at 

room temperature, in the form of shapes shown in Figure 4.6, 

and are used for less loads and smaller spans.

Figure 4.5. Standard Notation 

for Sizing of I- Section Beams

Figure 4.6. Cold Formed Shapes



(c)  Built-up sections

When the largest rolled steel section does not satisfy the

requirements of loads or span exceeds approximately 12m,

built-up sections are used.

Rolled steel sections with cover plates are used for spans

up to approximately 14 m.

Typical built-up sections are shown in Figure 4.7.

(d)  Composite sections

When steel beams and some part of reinforced concrete

slab act together due to some type of shear connection

between the two, the resulting beam is said to have a

composite section, as shown in Figure 4.8.



a)  Top Flange of Beam Embedded 

in RC Slab.

b)  Top Flange of Beam Connected to 

RC Slab By Shear Connections

Figure 4.8. Different Types of Composite Beams



General Spans 

Table 4.2.  General Span Range for Beams

S. No. Type of Beam Span Range

a) Main beams  12 m

b) Secondary beams 4 – 6 m

c) Steel joists 2 – 4 m

Stiffeners

a) Stiffened beam: Stiffening plates are provided for

webs, flanges, or for stability as in built-up sections.

b) Unstiffened beam: Beams without any additional

stiffeners such as rolled steel sections alone are called

unstiffened beams.



Stability of Section

The beams may consist of compact, non-compact and slender

sections depending on the braced length and the loading.

The flexural capacity and economy of the beam greatly

depends on the stability of the section used.

Lateral Support

In case of a beam, lateral support is generally required to be

provided for the compression flange to prevent lateral

torsional buckling.

However, a full support preventing the rotation of the

section is considered preferable.

The lateral support can be of the following types:



(a)  Continuous lateral support

In this case, compression flange is braced laterally along 

its entire span.  

For example, as shown in Figure 4.9, if compression flange is

encased in concrete slab or is connected by sufficient shear

connectors with the slab, a continuous bracing is provided.

Chances of local instability of compression flange and overall

lateral instability are eliminated.

Figure 4.9. Types of Continuous Lateral Supports



(b)  Lateral support at intervals

This can be provided by cross beams, cross frames, ties, or

struts, framing in laterally.

The lateral system supporting the braces should itself be

adequately stiff and braced.

(a)  Plan View of a Building

(b) Connection of Secondary Beam 

(Brace) to the Main Beam

(c)  Unbraced Lengths for the Main Beam, AB

Figure 4.10. Lateral Supports 

at Intervals



While providing lateral support at intervals, it is necessary to

make sure that the supporting structure itself does not buckle

simultaneously.

Figure 4.11(a) represents a case in which all the main beams can

buckle as a whole with unbraced length equal to their full span

even if cross beams are present.

However, cross bracing is provided in Figure 4.11(b), which

makes the lateral bracing effective.

The system of cross bracing provided in one of the bays will act

as sufficient lateral support for the beams of several bays.



(a) Unbraced System (b) Braced System

Cross Bracing

Figure 4.11. Example of Cross Bracing



LATERAL BRACING FOR THE BEAM





FLEXURAL BEHAVIOR OF 

COMPACT BEAMS

When beams have adequate lateral stability of the

compression flange, the only stability limit state that

might limit moment strength is local buckling in

compression flange and/or web plate elements making up

the cross-section.

For an internally compact section, even these types of

instabilities do not occur and the section may reach the

limit state of yielding throughout the depth of the cross

section.

The stress distribution on a typical wide-flange shape

subjected to increasing bending moment is shown in

Figure 4.12.
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Very Small and 

Particularly Zero 

Dimensions

Figure 4.12. Flexural Stresses in a Beam

When the yield stress is reached at the extreme fibre, the

nominal moment strength Mn is referred to as the yield

moment My and is computed as

Mn = My = Sx Fy



When the condition of part (d) is reached, every fibre has

a strain equal to or greater than y = Fy / Es and is in the

plastic range.

The nominal moment strength Mn in this case is,

therefore, referred to as the plastic moment (Mp), which is

computed as follows:

 
A

xyyp ZFydAFM

Where Zx, equal to ydA, is first moment of all the area

about an axis that equally divides the area (equal area axis)

and is called plastic section modulus.

It is observed that the ratio Mp /My is a property of the

cross-sectional shape and is independent of the material

properties.



It tells how much the moment at a section can be increased

beyond first yield moment.

This ratio is referred to as the Shape Factor denoted by the

letter f.
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Once the plastic moment strength Mp has been reached, the

section can offer no additional resistance to rotation,

behaving as a fictitious hinge but with constant resistive

moment Mp, a condition known as a plastic hinge.

Plastic hinge acts just like a real hinge in producing

instability of the structure.

In general, any combination of three hinges, real or plastic,

in a span will result in an unstable condition known as a

collapse mechanism.
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Further, the nominal flexural strength, Mn, of a beam is the 

lowest value obtained for the following limit states:

a)  yielding,

b)  lateral-torsional buckling,

c)  flange local buckling, and

d)  web local buckling.

LTB BUCKLING MODIFICATION 

FACTOR (Cb)

According to AISC, Cb is the Lateral-Torsional Buckling

Modification Factor for non-uniform moment diagrams

when both ends of the unsupported segment are braced.

The factor Cb accounts for the moment gradient or the

shape of the bending moment diagram.



Effect of the maximum moment present throughout the

beam segment is much more severe and Cb = 1.0 for this

case. Greater values of Cb indicate more flexural strength.

If bending moment is lesser within the span than the ends,

Cb can be taken greater than one.

Similarly, in addition to above, if reverse curvature is

present, the situation becomes still less severe and value of

Cb may further be increased.

Cb =  1.0 for cantilevers or overhangs with unbraced 

free ends.

Value of Cb
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where M is the absolute value of a moment in the

unbraced beam segment defined as follows:

Mmax = the maximum absolute moment in the unbraced 

beam segment

MA        = absolute moment at the quarter point of the 

unbraced beam segment

MB = absolute moment at the centreline of the unbraced 

beam segment

MC = absolute moment at the three-quarter point of the 

unbraced beam segment



Unbraced Length And Cb For Cantilever Beams

If no lateral brace is provided in the cantilever length.

Lb = actual length and Cb = 1.0.  

If lateral brace is provided at free end.

Lb = actual length and Cb is calculated by the formula.

Note: 

While using the beam selection curves of Reference-1

(Page 193-279), Cb factor may be combined with Lb

and Lb /Cb value may be used as modified unbraced

values



FLEXURAL STRENGTH OF BEAMS 

For a safe beam, the applied moment (service moment Ma

in ASD and factored moment Mu in LRFD) must be lesser

than or equal to the design strength of the beam.

Mu  bMn b = 0.90 (LRFD)

Ma  Mn / b b = 1.67 (ASD)

where Mn = nominal flexural strength as determined by

the limit state of yielding, lateral torsional buckling, or

local buckling.

To graphically show the effect of a value of Cb greater than

one on the design flexural strength of a beam, the curve of

Figure 4.13 is multiplied with Cb = 1.0 and is reproduced

in Figure 4.14 as Curve-1.



The flexural capacity is increased by multiplying with

Cb (greater than one) and is presented as Curve-2.

However, the flexural capacity of any section cannot be 

greater than the full plastic moment capacity. Applying 

this condition, Curve-2 is changed into the applicable 

curve shown by solid line in the figure.  

A new value of limiting unbraced length denoted by Lm

is to be defined in place of Lp as follows:

Lm = limiting unbraced length for full plastic bending 

capacity when Cb>1.0 which is between the 

lengths Lp and Lr. 
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This length Lm may be calculated by using the following 

expression:

When Cb = 1.0, Lm =  Lp



Design moment capacity (Mn) is determined for various 

cases of unbraced lengths as follows:

Case I: Compact Sections, Cb  1.0, Lb  Lm

Mn = Mp = Zx Fy / 106 (kN – m)

Case II: Compact Sections, Cb  1.0, Lm < Lb  Lr
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Mn = Cb [Mp – BF(Lb – Lp)]  Mp (kN – m)

Case III: Compact Sections,   Cb  1.0, Lb >  Lr

For doubly symmetric I-shaped and channel section 

members:

Mn = CbFcrSx  Mp (kN-m)
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The variables rts and others are as defined earlier. The square

root term may conservative be taken equal to 1.0.

DESIGN SHEAR STRENGTH

In case of beams, the shear stress distribution creates

negligibly less stresses in the flanges and only web resists

most of the applied shear.

This fact is schematically shown in Figure 4.15.

Hence, the area resisting shear is equal to area of web as

under:

Aw = d  tw



Figure 4.15. Shear Stress Distribution in An I-Section Beam.

The stable web of a beam may reach its limit by web

yielding, in which yielding in shear takes place when the

applied shear stress () becomes equal to shear yield stress

(y).

For ductile materials, shear yield stress is approximately

equal to 60 percent of the tension yield stress (0.6 Fy).



The factor 0.6 is not a factor of safety but is a factor to

approximately change principal tensile stress into shear

stress at maximum shear stress plane or vice versa.

The design shear strength of webs is  Vn with  = 0.90

(LRFD) and the allowable shear strength is Vn / v with

v = 1.67 (ASD).

For webs of rolled I-shaped members:

Vn = 0.6FyAwCv

Web Yielding:

For

(= 63.4 for A36 steel) : Cv = 1.0

yw

w
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t

h
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Note:

1) Average applied shear stress,  fv = (LRFD)

2) Beam is safe in shear when  Vu  Vn (LRFD)

w

u

dt

V

DEFLECTIONS

Deflection check is a serviceability limit state check and

hence, it is applied using the service loads and not the

factored loads.

Further, for steel structures, this check is usually applied 

only using the service live load and the deflection due to 

dead loads are not considered.  



The reason for not including the dead load in the

calculation of deflections is that the structure is given a

negative camber during construction to balance the dead

load deflections.

There are several justifications for limiting service live

load deflections, some of which are as under:

1. The deflections produced should not be visible to the

people. It is important to remember that some

deflection always occur which can be measured by

instruments. Common people may consider a structure

that is completely safe from strength point of view

unsafe and dangerous if the deflections are larger.



2. The appearance of structures may be damaged by

excessive deflections such as the plaster may crack

and other surface finishes may be disturbed.

3. Excessive deflections in a member may damage

other members attached to it. For example,

deflections produced in a main beam may cause high

extra stresses in the secondary beams and roofing

resting on it.

4. In case the structure is supporting any type of

machinery, the deflection of one part may disturb the

alignment of the machinery shafts.

5. Sometimes, it may be required that different parts of

structure deflect by same amount when symmetric

loads are applied on them.



 In case of buildings, the maximum service live load

deflection is usually limited to L/360. This limit is

considered invisible not damaging the surface finishes.

 The deflections may be limited to L/1500 or L/2000

for structures supporting delicate machinery.

 In case of bridge, deflections due to live and impact

loads are restricted to L /800.

 During initial proportioning of steel beams, it is

customary to indirectly control deflections by limiting

the span-over-depth ratio (L/d ratio) for the members.

When these conditions are satisfied it is more likely

that the deflection check, to be performed later on, will

be satisfied eliminating the need for greater number of

trials to get a reasonable section.



Typical span-over-depth ratios used for various types of

members are as under:

1- For buildings, L/d ratio is usually limited to a

maximum of 5500 / Fy.

L /d  5500 / Fy

 dmin =  Fy L /5500 (L /22 for A36 steel)

2- For bridge components and other beams subjected 

to impact or vibratory loads,

L /d  20

3- For roof purlins,

L /d  6900 / Fy (27.5 for A36 steel, sometimes 

relaxed to a value equal to 30)



The actual expected deflections may be calculated using the

mechanics principles.

However, results given in Manuals and Handbooks may also

be used directly.

Some of the typical deflection formulas are reproduced here.

1- For uniformly loaded and simply supported beams

EI

LwL

384

5 4

max 

2- For uniformly loaded continuous beams

 )(1.0
48

5 2

bacmidspan MMM
EI

L


Where  Mc = magnitude of central moment

Ma, Mb = magnitude of end moments



3- For simply supported beams subjected to point load 

(refer to Figure 4.16), where a  L/ 2

 22

4
3

12
aL

EI

aP
midspan 

4- For overhanging part of beam subjected to UDL

 aL
EI

aw
34

24

3

max 

5- For the above case, with UDL also present within 

supports,

 332

max 34
24

aLLa
EI

aw




7- For cantilever beam subjected to point load P at 

distance a from the fix end

 
EI

aLaP

6

32

max




8- For cantilever beam subjected to a uniformly 

distributed load

EI

Lw

8

4

max 

6- For overhanging part of beam subjected to point load

 
EI

aLaP

3

2

max





