Slope Stability Analysis

- Infinite Slopes
 - Constant slope of infinite extent
 - Mountain face
- Finite Slopes
 - Slopes with heights approaching critical values
 - Embankments, earth dams

Causes of Slope Failures

- Gravitational Force
- Seepage Pressures
- Undercutting by Rivers
- Sudden Drop of Water Levels
- Earthquakes

Factor of Safety

- Factor of Safety w.r.t. Strength
 - $-FS_s = \tau_f / \tau_m$
 - $-\tau_f = c' + \sigma' \tan \phi'$
 - $-\tau_{\rm m} = c_{\rm m}' + \sigma' \tan \phi_{\rm m}'$
- $FS_s = [c' + \sigma' \tan \phi'] / [c_m' + \sigma' \tan \phi_m']$

Factor of Safety

- Factor of safety w.r.t. Cohesion
 - $-FS_{c'} = c' / c_{m'}$
 - $c_{m}' = c' / FS_{c'}$
- Factor of Safety w.r.t. Friction
 - $-FS_{\phi'} = \tan \phi' / \tan \phi_m'$
 - $-\tan \phi_{m}' = \tan \phi' / FS_{\phi'}$
- For $FS_{c'} = FS_{\phi'} = FS_s$

Factor of Safety

- When FS_s = 1, the slope is in the state of impending failure
- Generally, FS_s ~ 1.25 to 1.5 is acceptable for design – up to 1.75 for earth dams

- $W = \gamma LH$
- Na = W cos $\beta = \gamma LH$ cos β
- Ta = W sin b = γ LH sin β
- $\sigma' = N_a / \text{area} = \gamma L H \cos \beta / (L / \cos \beta) = \gamma H \cos^2 \beta$
- $\tau = T_a / \text{area} = \gamma L H \sin \beta / (L / \cos \beta) = \gamma H \cos \beta \sin \beta$
- Nr = R cos β = W cos β
- Tr = R sin b = W sin β

- For equilibrium, Tr = Ta
- $\tau_{\rm m} = c'_{\rm m} + \sigma' \tan \phi'_{\rm m}$
- $\tau_m = c'_m + \gamma H \cos^2 \beta \tan \phi'_m$
- $\gamma H \sin \beta \cos \beta = c'_m + \gamma H \cos^2 \beta \tan \phi'_m$
- $c'_m/\gamma H = \cos^2\beta(\tan\beta \tan\phi'_m)$
- $FS_s = [c'/(\gamma H \cos^2 \beta \tan \beta)] + \tan \phi'/\tan \beta$

- $FS_s = [c'/(\gamma H \cos^2 \beta \tan \beta)] + \tan \phi'/\tan \beta$
- For granular soils, c'=0
 - $-FS_s = tan\phi'/tan\beta$
 - Independent of H and stable as long as $\beta < \phi'$
- For soils with cohesion and friction
 - Depth of plane with critical equilibrium corresponds to FS_s = 1 and H = H_c
 - $-H_c = c' / [\gamma \cos^2 \beta (\tan \beta \tan \phi')]$
 - $-F_c = H_c / H = F_H$

- Infinite slope with soil on rock
- H=8m, β=20°, γ=18.64kN/m³, c'=18kN/m², φ'=25°
- Find FS against sliding
- If $\beta = 30^{\circ}$, find H_c

 Pore pressure acts to reduce effective normal force

$$\begin{split} \gamma_{\text{sat}} H & \text{sin} \beta \text{cos} \beta = c'_{\text{m}} + \gamma' H \text{cos}^2 \beta \ \text{tan} \varphi'_{\text{m}} \\ & c'_{\text{m}} / \gamma_{\text{sat}} H = \text{cos}^2 \beta (\text{tan} \beta - (\gamma' / \gamma_{\text{sat}}) \text{tan} \varphi'_{\text{m}}) \end{split}$$

$$FS_s = [c'/\gamma_{sat}Hcos^2\beta tan\beta] + (\gamma'/\gamma_{sat})tan\phi'/tan\beta$$

- Infinite slope with soil on rock with seepage
- H=8m, β =20°, γ_{sat} =19.5kN/m³, c'=18kN/m², ϕ '=25°
- Find FS against sliding

Finite Slopes

- Culman Method Planar failure surface
 - Fairly good results for near vertical slopes only
- Swedish Method Circularly cylindrical sliding surface
 - Good for analysis of embankments and their foundations
- Method of Slices

Critical Circles (∮=0)

- FS_s = 1
- $c_m/\gamma H_c = m$ (Stability Number)
- m = fn {slope angle, depth to firm base)
- $\beta > 53^{\circ}$
 - All circles are toe circles
 - Center of circle found using
 - Fig 10.9 (Handout)

Critical Circles (*ϕ*=0)

- For β < 53°
- Critical circle may be a toe, slope or midpoint circle depending on depth to firm layer
- Depth = DH; x = nH
- Fig 10.8a, 10.10 (handout)
- Max m = 0.181 (Fig 10.8a-handout)

Example Analysis • $H_c = ?$ • $\beta = 75^\circ > 53^\circ$, so critical circle is toe circle

- $H_c = ?$
- $\beta = 75^{\circ} > 53^{\circ}$, so critical circle is toe circle
- From Fig 10.8b (handout)
- m=0.222

Example Analysis

- H_c = ?
- $\beta = 75^{\circ} > 53^{\circ}$, so critical circle is toe circle
- From Fig 10.8b (handout), m=0.222
- $m = c_u / \gamma H_c$
- $H_c = c_u / \gamma m = 31 \text{kN/m}^2 / [17.3 \text{kN/m}^3 \times 0.222]$
- $H_c = 8.07 \text{ m}$

- $FS_s = ?$ for H = 3 m
- $m = c_m / \gamma H$
- $c_m = m \gamma H$
- $c_m = 0.22*17.3*3 = 11.4 \text{ kN/m}^2$
- $FS_s = c_u/c_m = 31/11.4 = 2.7$

