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The general structural theory presented in Sec. 3 can be used to analyze practically all types
of structural steel framing. For some frequently used complex framing, however, a specific
adaptation of the general theory often expedites the analysis. In some cases, for example,
formulas for reactions can be derived from the general theory. Then the general theory is no
longer needed for an analysis. In some other cases, where use of the general theory is
required, specific methods can be developed to simplify analysis.

This section presents some of the more important specific formulas and methods for
complex framing. Usually, several alternative methods are available, but space does not
permit their inclusion. The methods given in the following were chosen for their general
utility when analysis will not be carried out with a computer.

4.1 THREE-HINGED ARCHES

An arch is a beam curved in the plane of the loads to a radius that is very large relative to
the depth of section. Loads induce both bending and direct compressive stress. Reactions
have horizontal components, though all loads are vertical. Deflections, in general, have hor-
izontal as well as vertical components. At supports, the horizontal components of the reac-
tions must be resisted. For the purpose, tie rods, abutments, or buttresses may be used. With
a series of arches, however, the reactions of an interior arch may be used to counteract those
of adjoining arches.

A three-hinged arch is constructed by inserting a hinge at each support and at an internal
point, usually the crown, or high point (Fig. 4.1). This construction is statically determinate.
There are four unknowns—two horizontal and two vertical components of the reactions—
but four equations based on the laws of equilibrium are available.

*Revised Sec. 4, originally authored by Frederick S. Merritt, Consulting Engineer, West Palm Beach, Florida.
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FIGURE 4.1 Three-hinged arch. (a) Determination of line of action of re-
actions. (b) Determination of reactions.

1. The sum of the horizontal forces acting on the arch must be zero. This relates the
horizontal components of the reactions:

H � H � H (4.1)L R

2. The sum of the moments about the left support must be zero. For the arch in Fig. 4.1,
this determines the vertical component of the reaction at the right support:

V � Pk (4.2)R

where P � load at distance kL from left support
L � span

3. The sum of the moments about the right support must be zero. This gives the vertical
component of the reaction at the left support:

V � P(1 � k) (4.3)L

4. The bending moment at the crown hinge must be zero. (The sum of the moments
about the crown hinge also is zero but does not provide an independent equation for deter-
mination of the reactions.) For the right half of the arch in Fig. 4.1, Hh � VRb � 0, from
which

V b PkbRH � � (4.4)
h h

The influence line for H for this portion of the arch thus is a straight line, varying from zero
for a unit load over the support to a maximum of ab/Lh for a unit load at C.

Reactions of three-hinge arches also can be determined graphically by taking advantage
of the fact that the bending moment at the crown hinge is zero. This requires that the line
of action of reaction RR at the right support pass through C. This line intersects the line of
action of load P at X (Fig. 4.1). Because P and the two reactions are in equilibrium, the line
of action of reaction RL at the left support also must pass through X. As indicated in Fig.
4.1b, the magnitudes of the reactions can be found from a force triangle comprising P and
the lines of action of the reactions.

For additional concentrated loads, the results may be superimposed to obtain the final
horizontal and vertical reactions. Since the three hinged arch is determinate, the same four
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FIGURE 4.2 Two-hinged arch. Reactions of loaded arches (a) and (d ) may be found as the sum
of reactions in (b) and (c) with one support movable horizontally.

equations of equilibrium can be applied and the corresponding reactions determined for any
other loading condition. It should also be noted that what is important is not the shape of
the arch, but the location of the internal hinge in relation to the support hinges.

After the reactions have been determined, the stresses at any section of the arch can be
found by application of the equilibrium laws (Art. 4.4).

(T. Y. Lin and S.D. Stotesbury, Structural Concepts and Systems for Architects and En-
gineers, 2d Ed., Van Nostrand Reinhold Company, New York.)

4.2 TWO-HINGED ARCHES

A two-hinged arch has hinges only at the supports (Fig. 4.2a). Such an arch is statically
indeterminate. Determination of the horizontal and vertical components of each reaction
requires four equations, whereas the laws of equilibrium supply only three (Art. 4.1).

Another equation can be written from knowledge of the elastic behavior of the arch. One
procedure is to assume that one of the supports is on rollers. The arch then becomes statically
determinate. Reactions VL and VR and horizontal movement of the support �x can be com-
puted for this condition with the laws of equilibrium (Fig. 4.2b). Next, with the support still
on rollers, the horizontal force H required to return the movable support to its original
position can be calculated (Fig. 4.2c). Finally, the reactions of the two-hinged arch of Fig.
4.2a are obtained by adding the first set of reactions to the second (Fig. 4.2d ).

The structural theory of Sec. 3 can be used to derive a formula for the horizontal com-
ponent H of the reactions. For example, for the arch of Fig. 4.2a, �x is the horizontal
movement of the support due to loads on the arch. Application of virtual work gives

B BMy ds N dx
�x � � � � (4.5)

A AEI AE

where M � bending moment at any section due to loads on the arch
y � vertical ordinate of section measured from immovable hinge



4.4 SECTION FOUR

I � moment of inertia of arch cross section
A � cross-sectional area of arch at the section
E � modulus of elasticity

ds � differential length along arch axis
dx � differential length along the horizontal
N � normal thrust on the section due to loads

Unless the thrust is very large, the second term on the right of Eq. (4.5) can be ignored.
Let �x� be the horizontal movement of the support due to a unit horizontal force applied

to the hinge. Application of virtual work gives

B B2 2y ds cos � dx
�x� � �� � � (4.6)

A AEI AE

where � is the angle the tangent to axis at the section makes with horizontal. Neither this
equation nor Eq. (4.5) includes the effect of shear deformation and curvature. These usually
are negligible.

In most cases, integration is impracticable. The integrals generally must be evaluated by
approximate methods. The arch axis is divided into a convenient number of elements of
length �s, and the functions under the integral sign are evaluated for each element. The sum
of the results is approximately equal to the integral.

For the arch of Fig. 4.2,

�x � H �x� � 0 (4.7)

When a tie rod is used to take the thrust, the right-hand side of the equation is not zero but
the elongation of the rod HL/AsE, where L is the length of the rod and As its cross-sectional
area. The effect of an increase in temperature �t can be accounted for by adding to the left-
hand side of the equation c�tL, where L is the arch span and c the coefficient of expansion.

For the usual two-hinged arch, solution of Eq. (4.7) yields

B B

(My �s /EI) � N cos� �s /AE� �
�x A A

H � � � (4.8)B B�x� 2 2(y �s /EI) � (cos � �s /AE)� �
A A

After the reactions have been determined, the stresses at any section of the arch can be found
by application of the equilibrium laws (Art. 4.4).

Circular Two-Hinged Arch Example. A circular two-hinged arch of 175-ft radius with a
rise of 29 ft must support a 10-kip load at the crown. The modulus of elasticity E is constant,
as is I /A, which is taken as 40.0. The arch is divided into 12 equal segments, 6 on each
symmetrical half. The elements of Eq. (4.8) are given in Table 4.1 for each arch half.

Since the increment along the arch is as a constant, it will factor out of Eq. 4.8. In
addition, the modulus of elasticity will cancel when factored. Thus, with A and I as constants,
Eq. 4.8 may be simplified to

A AI
My � N cos �� �

AB B
H � (4.8a)

A AI2 2y � cos �� �
AB B

From Eq. (4.8) and with the values in Table 4.1 for one-half the arch, the horizontal
reaction may be determined. The flexural contribution yields
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TABLE 4.1 Example of Two-Hinged Arch Analysis

� radians My, kip-ft2 y 2, ft2 N cos � kips cos2 �

0.0487 12,665 829.0 0.24 1.00
0.1462 9,634 736.2 0.72 0.98
0.2436 6,469 568.0 1.17 0.94
0.3411 3,591 358.0 1.58 0.89
0.4385 1,381 154.8 1.92 0.82
0.5360 159 19.9 2.20 0.74

TOTAL 33,899 2,665.9 7.83 5.37

2.0(33899)
H � � 12.71 kips

2.0(2665.9)

Addition of the axial contribution yields

2.0[33899 � 40.0(7.83)]
H � � 11.66 kips

2.0[2665.9 � 40.0(5.37)]

It may be convenient to ignore the contribution of the thrust in the arch under actual loads.
If this is the case, H � 11.77 kips.

(F. Arbabi, Structural Analysis and Behavior, McGraw-Hill Inc. New York.)

4.3 FIXED ARCHES

FIGURE 4.3 Fixed arch may be analyzed as two
cantilevers.

In a fixed arch, translation and rotation are
prevented at the supports (Fig. 4.3). Such an
arch is statically indeterminate. With each re-
action comprising a horizontal and vertical
component and a moment (Art. 4.1), there
are a total of six reaction components to be
determined. Equilibrium laws provide only
three equations. Three more equations must
be obtained from a knowledge of the elastic
behavior of the arch.

One procedure is to consider the arch cut
at the crown. Each half of the arch then be-
comes a cantilever. Loads along each canti-
lever cause the free ends to deflect and ro-
tate. To permit the cantilevers to be joined at
the free ends to restore the original fixed

arch, forces must be applied at the free ends to equalize deflections and rotations. These
conditions provide three equations.

Solution of the equations, however, can be simplified considerably if the center of coor-
dinates is shifted to the elastic center of the arch and the coordinate axes are properly
oriented. If the unknown forces and moments V, H, and M are determined at the elastic
center (Fig. 4.3), each equation will contain only one unknown. When the unknowns at the
elastic center have been determined, the shears, thrusts, and moments at any points on the
arch can be found from the laws of equilibrium.
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Determination of the location of the elastic center of an arch is equivalent to finding the
center of gravity of an area. Instead of an increment of area dA, however, an increment of
length ds multiplied by a width 1/EI must be used, where E is the modulus of elasticity and
I the moment of inertia of the arch cross section.

In most cases, integration is impracticable. An approximate method is usually used, such
as the one described in Art. 4.2.

Assume the origin of coordinates to be temporarily at A, the left support of the arch. Let
x� be the horizontal distance from A to a point on the arch and y� the vertical distance from
A to the point. Then the coordinates of the elastic center are

B B

(x� �s /EI) (y� �s /EI)� �
A A

X � Y � (4.9)B B

(�s /EI) (�s /EI)� �
A A

If the arch is symmetrical about the crown, the elastic center lies on a normal to the
tangent at the crown. In this case, there is a savings in calculation by taking the origin of
the temporary coordinate system at the crown and measuring coordinates parallel to the
tangent and the normal. Furthermore, Y, the distance of the elastic center from the crown,
can be determined from Eq. (4.9) with y � measured from the crown and the summations
limited to the half arch between crown and either support. For a symmetrical arch also, the
final coordinates should be chosen parallel to the tangent and normal to the crown.

For an unsymmetrical arch, the final coordinate system generally will not be parallel to
the initial coordinate system. If the origin of the initial system is translated to the elastic
center, to provide new temporary coordinates x1 � x� � X and y1 � y� � Y, the final coor-
dinate axes should be chosen so that the x axis makes an angle �, measured clockwise, with
the x1 axis such that

B

2 (x y �s /EI)� 1 1
A

tan 2� � (4.10)B B
2 2(x �s /EI) � (y �s /EI)� �1 1

A A

The unknown forces H and V at the elastic center should be taken parallel, respectively, to
the final x and y axes.

The free end of each cantilever is assumed connected to the elastic center with a rigid
arm. Forces H, V, and M act against this arm, to equalize the deflections produced at the
elastic center by loads on each half of the arch. For a coordinate system with origin at the
elastic center and axes oriented to satisfy Eq. (4.10), application of virtual work to determine
deflections and rotations yields

B

(M �y �s /EI)�
A

H � B
2(y �s /EI)�

A

B

(M �x �s /EI)�
A

V � (4.11)B
2(x �s /EI)�

A
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FIGURE 4.4 Arch stresses at any point may be
determined from forces at the elastic center.

B

(M � �s /EI)�
A

M � B

(�s /EI)�
A

where M � is the average bending moment on each element of length �s due to loads. To
account for the effect of an increase in temperature t, add EctL to the numerator of H, where
c is the coefficient of expansion and L the distance between abutments. Equations (4.11)
may be similarly modified to include deformations due to secondary stresses.

With H, V, and M known, the reactions at the supports can be determined by application
of the equilibrium laws. In the same way, the stresses at any section of the arch can be
computed (Art. 4.4).

(S. Timoshenko and D. H. Young, Theory of Structures, McGraw-Hill, Inc., New York;
S. F. Borg and J. J. Gennaro, Advanced Structural Analysis, Van Nostrand Reinhold Com-
pany, New York; G. L. Rogers and M. L. Causey, Mechanics of Engineering Structures,
John Wiley & Sons, Inc., New York; J. Michalos, Theory of Structural Analysis and Design,
The Ronald Press Company, New York.)

4.4 STRESSES IN ARCH RIBS

When the reactions have been determined for an arch (Arts. 4.1 to 4.3), the principal forces
acting on any cross section can be found by applying the equilibrium laws. Suppose, for
example, the forces H, V, and M acting at the elastic center of a fixed arch have been
computed, and the moment Mx , shear Sx , and axial thrust Nx normal to a section at X (Fig.
4.4) are to be determined. H, V, and the load P may be resolved into components parallel
to the thrust and shear, as indicated in Fig. 4.4. Then, equating the sum of the forces in each
direction to zero gives

N � V sin � � H cos � � P sin(� � �)x x x x

(4.12)
S � V cos � � H sin � � P cos(� � �)x x x x

Equating moments about X to zero yields
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M � Vx � Hy � M � Pa cos � � Pb sin � (4.13)x

For structural steel members, the shearing force on a section usually is assumed to be
carried only by the web. In built-up members, the shear determines the size and spacing of
fasteners or welds between web and flanges. The full (gross) section of the arch rib generally
is assumed to resist the combination of axial thrust and moment.

4.5 PLATE DOMES

A dome is a three-dimensional structure generated by translation and rotation or only rotation
of an arch rib. Thus a dome may be part of a sphere, ellipsoid, paraboloid, or similar curved
surface.

Domes may be thin-shell or framed, or a combination. Thin-shell domes are constructed
of sheet metal or plate, braced where necessary for stability, and are capable of transmitting
loads in more than two directions to supports. The surface is substantially continuous from
crown to supports. Framed domes, in contrast, consist of interconnected structural members
lying on the dome surface or with points of intersection lying on the dome surface (Art.
4.6). In combination construction, covering material may be designed to participate with the
framework in resisting dome stresses.

Plate domes are highly efficient structurally when shaped, proportioned and supported to
transmit loads without bending or twisting. Such domes should satisfy the following con-
ditions:

The plate should not be so thin that deformations would be large compared with the
thickness. Shearing stresses normal to the surface should be negligible. Points on a normal
to the surface before it is deformed should lie on a straight line after deformation. And this
line should be normal to the deformed surface.

Stress analysis usually is based on the membrane theory, which neglects bending and
torsion. Despite the neglected stresses, the remaining stresses are in equilibrium, except
possibly at boundaries, supports, and discontinuities. At any interior point of a thin-shell
dome, the number of equilibrium conditions equals the number of unknowns. Thus, in the
membrane theory, a plate dome is statically determinate.

The membrane theory, however, does not hold for certain conditions: concentrated loads
normal to the surface and boundary arrangements not compatible with equilibrium or geo-
metric requirements. Equilibrium or geometric incompatibility induces bending and torsion
in the plate. These stresses are difficult to compute even for the simplest type of shell and
loading, yet they may be considerably larger than the membrane stresses. Consequently,
domes preferably should be designed to satisfy membrane theory as closely as possible.

Make necessary changes in dome thickness gradual. Avoid concentrated and abruptly
changing loads. Change curvature gradually. Keep discontinuities to a minimum. Provide
reactions that are tangent to the dome. Make certain that the reactions at boundaries are
equal in magnitude and direction to the shell forces there. Also, at boundaries, ensure, to
the extent possible, compatibility of shell deformations with deformations of adjoining mem-
bers, or at least keep restraints to a minimum. A common procedure is to use as a support
a husky ring girder and to thicken the shell gradually in the vicinity of this support. Similarly,
where a circular opening is provided at the crown, the opening usually is reinforced with a
ring girder, and the plate is made thicker than necessary for resisting membrane stresses.

Dome surfaces usually are generated by rotating a plane curve about a vertical axis, called
the shell axis. A plane through the axis cuts the surface in a meridian, whereas a plane
normal to the axis cuts the surface in a circle, called a parallel (Fig. 4.5a). For stress analysis,
a coordinate system for each point is chosen with the x axis tangent to the meridian, y axis
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FIGURE 4.5 Thin-shell dome. (a) Coordinate system for analysis. (b) Forces acting on a small
element.

tangent to the parallel, and z axis normal to the surface. The membrane forces at the point
are resolved into components in the directions of these axes (Fig. 4.5b).

Location of a given point P on the surface is determined by the angle � between the shell
axis and the normal through P and by the angle � between the radius through P of the
parallel on which P lies and a fixed reference direction. Let r� be the radius of curvature of
the meridian. Also, let r�, the length of the shell normal between P and the shell axis, be
the radius of curvature of the normal section at P. Then,

a
r � (4.14)� sin �

where a is the radius of the parallel through P.
Figure 4.5b shows a differential element of the dome surface at P. Normal and shear

forces are distributed along each edge. They are assumed to be constant over the thickness
of the plate. Thus, at P, the meridional unit force is N�, the unit hoop force N�, and the unit
shear force T. They act in the direction of the x or y axis at P. Corresponding unit stresses
at P are N� / t, N� / t, and T / t, where t is the plate thickness.

Assume that the loading on the element per unit of area is given by its X, Y, Z components
in the direction of the corresponding coordinate axis at P. Then, the equations of equilibrium
for a shell of revolution are

� �T
(N r sin �) � r � N r cos � � Xr r sin � � 0� � � � � � ��� ��

�N �� r � (Tr sin �) � Tr cos � � Yr r sin � � 0 (4.15)� � � � ��� ��

N r � N r � Zr r � 0� � � � � �

When the loads also are symmetrical about the shell axis, Eqs. (4.15) take a simpler form
and are easily solved, to yield
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R R 2N � � sin � � � sin � (4.16)� 2�a 2�r�

R 2N � sin � � Zr (4.17)� �2�r�

T � 0 (4.18)

where R is the resultant of total vertical load above parallel with radius a through point P
at which stresses are being computed.

For a spherical shell, r � r. If a vertical load p is uniformly distributed over the� r� �

horizontal projection of the shell, R � �a2p. Then the unit meridional thrust is

pr
N � � (4.19)� 2

Thus there is a constant meridional compression throughout the shell. The unit hoop force
is

pr
N � � cos 2� (4.20)� 2

The hoop forces are compressive in the upper half of the shell, vanish at � � 45	, and
become tensile in the lower half.

If, for a spherical dome, a vertical load w is uniform over the area of the shell, as might
be the case for the weight of the shell, then R � 2�r 2(1 � cos �)w. From Eqs. (4.16) and
(4.17), the unit meridional thrust is

wr
N � � (4.21)� 1 � cos �

In this case, the compression along the meridian increases with �. The unit hoop force is

1
N � wr � cos � (4.22)� �� 1 � cos �

The hoop forces are compressive in the upper part of the shell, reduce to zero at 51	50�, and
become tensile in the lower part.

A ring girder usually is provided along the lower boundary of a dome to resist the tensile
hoop forces. Under the membrane theory, however, shell and girder will have different
strains. Consequently, bending stresses will be imposed on the shell. Usual practice is to
thicken the shell to resist these stresses and provide a transition to the husky girder.

Similarly, when there is an opening around the crown of the dome, the upper edge may
be thickened or reinforced with a ring girder to resist the compressive hoop forces. The
meridional thrust may be computed from

cos � � cos � sin �0 0N � �wr � P (4.23)� 2 2sin � sin �

and the hoop forces from

cos � � cos � sin �0 0N � wr � cos � � P (4.24)� �� 2 2sin � sin �
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FIGURE 4.6 Arch ribs in a spherical dome with hinge at crown.

where 2�0 � angle of opening
P � vertical load per unit length of compression ring

4.6 RIBBED DOMES

As pointed out in Art. 4.5, domes may be thin-shell, framed, or a combination. One type of
framed dome consists basically of arch ribs with axes intersecting at a common point at the
crown and with skewbacks, or bases, uniformly spaced along a closed horizontal curve.
Often, to avoid the complexity of a joint with numerous intersecting ribs at the crown, the
arch ribs are terminated along a compression ring circumscribing the crown. This construc-
tion also has the advantage of making it easy to provide a circular opening at the crown
should this be desired. Stress analysis is substantially the same whether or not a compression
ring is used. In the following, the ribs will be assumed to extend to and be hinged at the
crown. The bases also will be assumed hinged. Thrust at the bases may be resisted by
abutments or a tension ring.

Despite these simplifying assumptions, such domes are statically indeterminate because
of the interaction of the ribs at the crown. Degree of indeterminacy also is affected by
deformations of tension and compression rings. In the following analysis, however, these
deformations will be considered negligible.

It usually is convenient to choose as unknowns the horizontal component H and vertical
component V of the reaction at the bases of each rib. In addition, an unknown force acts at
the crown of each rib. Determination of these forces requires solution of a system of equa-
tions based on equilibrium conditions and common displacement of all rib crowns. Resis-
tance of the ribs to torsion and bending about the vertical axis is considered negligible in
setting up these equations.

As an example of the procedure, equations will be developed for analysis of a spherical
dome under unsymmetrical loading. For simplicity, Fig. 4.6 shows only two ribs of such a
dome. Each rib has the shape of a circular arc. Rib 1C1� is subjected to a load with horizontal
component PH and vertical component PV. Coordinates of the load relative to point 1 are
(xP, yP). Rib 2C2� intersects rib 1C1� at the crown at an angle �r 
 � /2. A typical rib rCr �
intersects rib 1C1� at the crown at an angle �r 
 � /2. The dome contains n identical ribs.

A general coordinate system is chosen with origin at the center of the sphere which has
radius R. The base of the dome is assigned a radius r. Then, from the geometry of the sphere,

r
cos � � (4.25)1 R

For any point (x, y),
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FIGURE 4.7 Reactions for a three-hinged rib (a) for a vertical downward load and (b) for a
horizontal load at the crown.

x � R(cos � � cos �) (4.26)1

y � R(sin � � sin � ) (4.27)1

And the height of the crown is

h � R(1 � sin � ) (4.28)1

where �1 � angle radius vector to point 1 makes with horizontal
� � angle radius vector to point (x, y) makes with horizontal

Assume temporarily that arch 1C1� is disconnected at the crown from all the other ribs.
Apply a unit downward vertical load at the crown (Fig. 4.7a). This produces vertical reactions
V1 � V � 1⁄2 and horizontal reactions1�

H � �H � r /2h � cos � /2(1 � sin � )1 1� 1 1

Here and in the following discussion upward vertical loads and horizontal loads acting
to the right are considered positive. At the crown, downward vertical displacements and
horizontal displacements to the right will be considered positive.

For �1 
 � 
 � /2, the bending moment at any point (x, y) due to the unit vertical load
at the crown is

x ry r cos � sin � � sin �1m � � � 1 � � (4.29)� �V 2 2h 2 cos � 1 � sin �1 1

For � /2 
 � 
 �,

r cos � sin � � sin �1m � 1 � � (4.30)� �V 2 cos � 1 � sin �1 1

By application of virtual work, the downward vertical displacement dV of the crown produced
by the unit vertical load is obtained by dividing the rib into elements of length �s and
computing

1� 2m �sVd � (4.31)�V EI1

where E � modulus of elasticity of steel
I � moment of inertia of cross section about horizontal axis

The summation extends over the length of the rib.
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Next, apply at the crown a unit horizontal load acting to the right (Fig. 4.7b). This
produces vertical reactions V1 � � V � �h /2r � �(1 � sin �1) /2 cos �1 and H1 �1�

H � �1⁄2.1�

For �1 
 � 
 � /2, the bending moment at any point (x, y) due to the unit horizontal
load at the crown is

hx y h cos � sin � � sin �1m � � � � � 1 � (4.32)� �H 2r 2 2 cos � 1 � sin �1 1

For � /2 
 � 
 �,

h cos � sin � � sin �1m � � 1 � (4.33)� �H 2 coso � 1 � sin �1 1

By application of virtual work, the displacement dH of the crown to the right induced by the
unit horizontal load is obtained from the summation over the arch rib

1� 2m �sHd � (4.34)�H EI1

Now, apply an upward vertical load PV on rib 1C1� at (xp, yp), with the rib still discon-
nected from the other ribs. This produces the following reactions:

2r � x P cos �V PV � �P � � 1 � (4.35)� �1 V 2r 2 cos �1

P cos �V PV � � 1 � (4.36)� �1� 2 cos �1

r P cos � � cos �V 1 PH � �H � V � � (4.37)1 1� 1� h 2 1 � sin �1

where �P is the angle that the radius vector to the load point (xp , yp ) makes with the
horizontal 
� /2. By application of virtual work, the horizontal and vertical components of
the crown displacement induced by PV may be computed from

1� M m �sV H� � (4.38)�HV EI1

1� M m �sV V� � (4.39)�VV EI1

where MV is the bending moment produced at any point (x, y) by PV.
Finally, apply a horizontal load PH acting to the right on rib 1C1� at (xP, yP), with the rib

still disconnected from the other ribs. This produces the following reactions:

y P sin � � sin �H P 1V � �V � �P � � (4.40)1� 1 H 2r 2 cos �1

r P sin � � sin �H P 1H � �V � � (4.41)1� 1� h 2 1 � sin �1

P 2 � sin � � sin �H 1 PH � � (4.42)1 2 1 � sin �1

By application of virtual work, the horizontal and vertical components of the crown dis-
placement induced by PH may be computed from
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1� M m �sH H� � (4.43)�HH EI1

1� M m �sH V� � (4.44)�VH EI1

Displacement of the crown of rib 1C1�, however, is resisted by a force X exerted at the
crown by all the other ribs. Assume that X consists of an upward vertical force XV and a
horizontal force XH acting to the left in the plane of 1C1�. Equal but oppositely directed
forces act at the junction of the other ribs.

Then the actual vertical displacement at the crown of rib 1C1� is

� � � � � � X d (4.45)V VV VH V V

Now, if Vr is the downward vertical force exerted at the crown of any other rib r, then the
vertical displacement of that crown is

� � V d (4.46)V r V

Since the vertical displacements of the crowns of all ribs must be the same, the right-hand
side of Eqs. (4.45) and (4.46) can be equated. Thus,

� � � � X d � V d � V d (4.47)VV VH V V r V s V

where Vs is the vertical force exerted at the crown of another rib s. Hence

V � V (4.48)r s

And for equilibrium at the crown,

n

X � V � (n � 1)V (4.49)�V r r
r�2

Substituting in Eq. (4.47) and solving for Vr yields

� � �VV VHV � (4.50)r nd V

The actual horizontal displacement at the crown of rib 1C1� is

� � � � � � X d (4.51)H HV HH H H

Now, if Hr is the horizontal force acting to the left at the crown of any other rib r, not
perpendicular to rib 1C1�, then the horizontal displacement of that crown parallel to the
plane of rib 1C1� is

H dr H� � (4.52)H cos �r

Since for all ribs the horizontal crown displacements parallel to the plane of 1C1� must be
the same, the right-hand side of Eqs. (4.51) and (4.52) can be equated. Hence
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H d H dr H s H� � � � X d � � (4.53)HV HH H H cos � cos �r s

where Hs is the horizontal force exerted on the crown of any other rib s and �s is the angle
between rib s and rib 1C1�. Consequently,

cos �sH � H (4.54)s r cos �r

For equilibrium at the crown,

n n

X � H cos � � H cos � � H cos � (4.55)� �H s s r r s s
s�2 s�3

Substitution of Hs as given by Eq. (4.54) in this equation gives

n nH Hr r2 2X � H cos � � cos � � cos � (4.56)� �H r r s scos � cos �s�3 s�2r r

Substituting this result in Eq. (4.53) and solving for Hr yields

cos � � � �r H� H�H � (4.57)r n dH21 � cos �� s
s�2

Then, from Eq. (4.56),

n
2cos �� s � � �s�2 HV HHX � (4.58)H n dH21 � cos �� s

s�2

Since XV, XH, Vr , and Hr act at the crown of the ribs, the reactions they induce can be
determined by multiplication by the reactions for a unit load at the crown. For the unloaded
ribs, the reactions thus computed are the actual reactions. For the loaded rib, the reactions
should be superimposed on those computed for PV from Eqs. (4.35) to (4.37) and for PH

from Eqs. (4.40) to (4.42).
Superimposition can be used to determine the reactions when several loads are applied

simultaneously to one or more ribs.

Hemispherical Domes. For domes with ribs of constant moment of inertia and comprising
a complete hemisphere, formulas for the reactions can be derived. These formulas may be
useful in preliminary design of more complex domes.

If the radius of the hemisphere is R, the height h and radius r of the base of the dome
also equal R. The coordinates of any point on rib 1C1� then are

�
x � R(1 � cos �) y � R sin � 0 
 � 
 (4.59)

2

Assume temporarily that arch 1C1� is disconnected at the crown from all the other ribs.
Apply a unit downward vertical load at the crown. This produces reactions
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1 1V � V � ⁄2 H � �H � ⁄2 (4.60)1 1� 1 1�

The bending moment at any point is

R �
m � (1 � cos � � sin �) 0 
 � 
 (4.61a)V 2 2

R �
m � (1 � cos � � sin �) 
 � 
 � (4.61b)V 2 2

By application of virtual work, the downward vertical displacement dV of the crown is

2 3m ds R � 3Vd � � � � (4.62)� �V EI EI 2 2

Next, apply at the crown a unit horizontal load acting to the right. This produces reactions

1 1V � �V � � ⁄2 H � H � � ⁄2 (4.63)1 1� 1 1�

The bending moment at any point is

R �
m � (cos � � 1 � sin �) 0 
 � 
 (4.64a)H 2 2

R �
m � (cos � � 1 � sin �) 
 � 
 � (4.64b)H 2 2

By application of virtual work, the displacement of the crown dH to the right is

2 3m ds R � 3Hd � � � � (4.65)� �H EI EI 2 2

Now, apply an upward vertical load PV on rib 1C1� at (xP , yP ), with the rib still discon-
nected from the other ribs. This produces reactions

PVV � � (1 � cos � ) (4.66)1 P2

PVV � � (1 � cos � ) (4.67)1� P2

PVH � H � � (1 � cos � ) (4.68)1 1� P2

where 0 
 �P 
 � /2. By application of virtual work, the vertical component of the crown
displacement is

3M m ds P RV V V� � � � C (4.69)VV VVEI EI

1 2C � �� � 2 sin � � 3 cos � � sin � cos � � sin ��VV P P P P P P4

3� 3�2� 2 � cos � � 2 cos � � 5 � � cos � (4.70)�P P P P2 2
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For application to downward vertical loads, � CVV is plotted in Fig. 4.8. Similarly, the
horizontal component of the crown displacement is

3M m ds P RV H V� � � � C (4.71)HV HVEI EI

1 2C � �� � 2 sin � � 3 cos � � sin � cos � � sin ��HV P P P P P P4

� �2� 2� cos � � 2 cos � � 1 � � cos � (4.72)�P P P P2 2

For application to downward vertical loads, �CHV is plotted in Fig. 4.8.
Finally, apply a horizontal load PH acting to the right on rib 1C1� at (xP, yP), with the rib

still disconnected from the other ribs. This produces reactions

PHV � V � sin � (4.73)1 1� P2

1H � �P (1 � ⁄2 sin � ) (4.74)1 H P

PHH � � sin � (4.75)1� P2

By application of virtual work, the vertical component of the crown displacement is

3M m ds P RH V H� � � � C (4.76)VH VHEI EI

1 �
C � �� � 3 � 1 sin � � 2 cos �� � �VH P P P4 2

2� sin � cos � � sin � � 2� sin � � 2 (4.77)�P P P P P

Values of CVH are plotted in Fig. 4.8. The horizontal component of the displacement is

3M m ds P RH H H� � � � C (4.78)HH HHEI EI

1 �
C � � � � 3 sin � � 2 cos � � sin � cos �� � �HH P P P P P4 2

2� sin � � 2� sin � � 2 (4.79)�P P P

Values of CHH also are plotted in Fig. 4.8.
For a vertical load PV acting upward on rib 1C1�, the forces exerted on the crown of an

unloaded rib are, from Eqs. (4.50) and (4.57),
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FIGURE 4.8 Coefficients for computing reactions of dome ribs.

� 2P CVH V VHV � � (4.80)r nd n(� � 3)V

� 2P CHH V HHH � � cos � � � � cos � (4.81)r r rd � � 3H

n
2where � � 1 1 � cos ���� �s

s�2

The reactions on the crown of the loaded rib are, from Eqs. (4.49) and (4.58),

n � 1 2P CV VVX � (n � 1)V � (4.82)V r n � � 3

� 2P CHV V HVX � � � � (4.83)H d � � 3H

where � � � cos2 �s

n�
s�2

For a horizontal load PH acting to the right on rib 1C1�, the forces exerted on the crown
of an unloaded rib are, from Eqs. (4.50) and (4.57),

� 2P CVH H VHV � � (4.84)r nd n(� � 3)V

� 2P CHH H HHH � � cos � � � cos � (4.85)r r rd � � 3H

The reactions on the crown of the loaded rib are, from Eqs. (4.49) and (4.58),
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n � 1 2P CH VHX � (n � 1)V � (4.86)V r n � � 3

� 2P CHV H HHX � � � � (4.87)H d � � 3H

The reactions for each rib caused by the crown forces can be computed with Eqs. (4.60)
and (4.63). For the unloaded ribs, the actual reactions are the sums of the reactions caused
by Vr and Hr. For the loaded rib, the reactions due to the load must be added to the sum of
the reactions caused by XV and XH. The results are summarized in Table 4.2 for a unit vertical
load acting downward (PV � �1) and a unit horizontal load acting to the right (PH � 1).

4.7 RIBBED AND HOOPED DOMES

Article 4.5 noted that domes may be thin-shelled, framed, or a combination. It also showed
how thin-shelled domes can be analyzed. Article 4.6 showed how one type of framed dome,
ribbed domes, can be analyzed. This article shows how to analyze another type, ribbed and
hooped domes.

FIGURE 4.9 Ribbed and hooped dome.

This type also contains regularly spaced
arch ribs around a closed horizontal curve. It
also may have a tension ring around the base
and a compression ring around the common
crown. In addition, at regular intervals, the
arch ribs are intersected by structural mem-
bers comprising a ring, or hoop, around the
dome in a horizontal plane (Fig. 4.9).

The rings resist horizontal displacement
of the ribs at the points of intersection. If the
rings are made sufficiently stiff, they may be
considered points of support for the ribs hor-

izontally. Some engineers prefer to assume the ribs hinged at those points. Others assume
the ribs hinged only at tension and compression rings and continuous between those hoops.
In many cases, the curvature of rib segments between rings may be ignored.

Figure 4.10a shows a rib segment 1–2 assumed hinged at the rings at points 1 and 2. A
distributed downward load W induces bending moments between points 1 and 2 and shears
assumed to be W /2 at 1 and 2. The ring segment above, 2–3, applied a thrust at 2 of �W /
sin �2, where �W is the sum of the vertical loads on the rib from 2 to the crown and �2 is
the angle with the horizontal of the tangent to the rib at 2.

These forces are resisted by horizontal reactions at the rings and a tangential thrust,
provided by a rib segment below 1 or an abutment at 1. For equilibrium, the vertical com-
ponent of the thrust must equal W � �W. Hence the thrust equals (W � �W ) / sin �1, where
�1 is the angle with the horizontal of the tangent to the rib at 1.

Setting the sum of the moments about 1 equal to zero yields the horizontal reaction
supplied by the ring at 2:

WL LH HH � � �W � (�W) cot � (4.88)2 22L LV V

where LH � horizontal distance between 1 and 2
LV � vertical distance between 1 and 2

Setting the sum of the moments about 2 equal to zero yields the horizontal reaction supplied
by the ring at 1:
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TABLE 4.2 Reactions of Ribs of Hemispherical Ribbed Dome

n1
2� � � � � cos �� sn

s�221 � cos �� s
s�2

� � angle the radius vector to load from center of hemisphere makes with horizontalP

� � angle between loaded and unloaded rib 
� / 2r

Reactions of loaded rib
Unit downward vertical load

Reactions of unloaded rib
Unit downward vertical load

1 1 n � 1 C CVV HVV � � cos � � � �1 P2 2 n � � 3 � � 3

1 1 n � 1 C CVV HVV � � cos � � � �1� P2 2 n � � 3 � � 3

1 1 n � 1 C CVV HVH � � cos � � � �1 P2 2 n � � 3 � � 3

1 n � 1 C CVV HVH � � � cos � � � �1� P2 n � � 3 � � 3

C CVV HVV � � � cos �r rn(� � 3) � � 3

C CVV HVV � � � cos �r� rn(� � 3) � � 3

C CVV HVH � � � cos �r rn(� � 3) � � 3

C CVV HVH � � � � cos �r� rn(� � 3) � � 3

Unit horizontal load acting to right Unit horizontal load acting to right

1 n � 1 C CVH HHV � � sin � � � �1 P2 n � � 3 � � 3

1 n � 1 C CVH HHV � sin � � � �1� P2 n � � 3 � � 3

1 n � 1 C CVH HHH � �1 � sin � � � �1 P2 n � � 3 � � 3

1 n � 1 C CVH HHH � � sin � � � �1� P2 n � � 3 � � 3

C CVH HHV � � � cos �r rn(� � 3) � � 3

C CVH HHV � � � cos �r� rn(� � 3) � � 3

C CVH HHH � � � cos �r rn(� � 3) � � 3

C CVH HHH � � � � cos �r� rn(� � 3) � � 3

W L LH HH � � 2 cot � � � cot � �W (4.89)� � � �1 1 12 L LV V

For the direction assumed for H2, the ring at 2 will be in compression when the right-
hand side of Eq. (4.88) is positive. Similarly, for the direction assumed for H1, the ring at 1
will be in tension when the right-hand side of Eq. (4.89) is positive. Thus the type of stress
in the rings depends on the relative values of LH /LV and cot �1 or cot �2. Alternatively, it
depends on the difference in the slope of the thrust at 1 or 2 and the slope of the line from
1 to 2.

Generally, for maximum stress in the compression ring about the crown or tension ring
around the base, a ribbed and hooped dome should be completely loaded with full dead and
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FIGURE 4.10 Forces acting on a segment of a dome rib between hoops. (a) Ends of segment
assumed hinged. (b) Rib assumed continuous.

FIGURE 4.11 (a) Forces acting on a complete hoop of a dome.
(b) Forces acting on half of a hoop.

live loads. For an intermediate ring, maximum tension will be produced with live load
extending from the ring to the crown. Maximum compression will result when the live load
extends from the ring to the base.

When the rib is treated as continuous between crown and base, moments are introduced
at the ends of each rib segment (Fig. 4.l0b). These moments may be computed in the same
way as for a continuous beam on immovable supports, neglecting the curvature of rib be-
tween supports. The end moments affect the bending moments between points 1 and 2 and
the shears there, as indicated in Fig. 4. l0b. But the forces on the rings are the same as for
hinged rib segments.

The rings may be analyzed by elastic theory in much the same way as arches. Usually,
however, for loads on the ring segments between ribs, these segments are treated as simply
supported or fixed-end beams. The hoop tension or thrust T may be determined, as indicated
in Fig. 4.11 for a circular ring, by the requirements of equilibrium:
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Hn
T � (4.90)

2�

where H � radial force exerted on ring by each rib
n � number of load points

The procedures outlined neglect the effects of torsion and of friction in joints, which
could be substantial. In addition, deformations of such domes under overloads often tend to
redistribute those loads to less highly loaded members. Hence more complex analyses with-
out additional information on dome behavior generally are not warranted.

Many domes have been constructed as part of a hemisphere, such that the angle made
with the horizontal by the radius vector from the center of the sphere to the base of the
dome is about 60	. Thus the radius of the sphere is nearly equal to the diameter of the dome
base, and the rise-to-span ratio is about 1 � , or 0.13. Some engineers believe that high3	 ⁄2
structural economy results with such proportions.

(Z. S. Makowski, Analysis, Design, and Construction of Braced Domes, Granada Tech-
nical Books, London, England.)

4.8 SCHWEDLER DOMES

An interesting structural form, similar to the ribbed and hooped domes described in Section
4.7 is the Schwedler Dome. In this case, the dome is composed of two force members
arranged as the ribs and hoops along with a single diagonal in each of the resulting panels,
as shown in Fig. 4.12. Although the structural form looks complex, the structure is deter-
minate and exhibits some interesting characteristics.

The application of the equations of equilibrium available for three dimensional, pinned
structures will verify that the Schwedler Dome is a determinate structure. In addition, the
application of three special theorems will allow for a significant reduction in the amount of
computational effort required for the analysis. These theorems may be stated as:

1. If all members meeting at a joint with the exception of one, lie in a plane, the component
normal to the plane of the force in the bar is equal to the component normal to the plane
of any load applied to the joint,

2. If all the members framing into a joint, with the exception of one, are in the same plane
and there are no external forces at the joint, the force in the member out of the plane is
zero, and

3. If all but two members meeting at a joint have zero force, the two remaining members
are not collinear, and there is no externally applied force, the two members have zero
force.

A one panel high, square base Schwedler Dome is shown in Fig. 4.13. The base is
supported with vertical reactions at all four corners and in the plane of the base as shown.
The structure will be analyzed for a vertical load applied at A.

At joint B, the members BA, BE, and BF lie in a plane, but BC does not. Since there is
no load applied to joint B, the application of Theorem 2 indicates that member BC would
have zero force. Proceeding around the top of the structure to joints C and D respectively
will show that the force in member CD (at C ), and DA (at D) are both zero.

Now Theorem 3 may be applied at joints C and D since in both cases, there are only
two members remaining at each joint and there is no external load. This results in the force
in members CF, CG, DG, and DH being zero. The forces in the remaining members may
be determined by the application of the method of joints.
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FIGURE 4.12 Schwedler dome. (a) Elevation.
(b) Plan.

Note that the impact of the single concentrated force applied at joint A is restricted to a
few select members. If loads are applied to the other joints in the top plane, the structure
could easily be analyzed for each force independently with the results superimposed. Re-
gardless of the number of base sides in the dome or the number of panels of height, the
three theorems will apply and yield a significantly reduced number of members actually
carrying load. Thus, the effort required to fully analyze the Schwedler Dome is also reduced.

4.9 SIMPLE SUSPENSION CABLES

The objective of this and the following article is to present general procedures for analyzing
simple cable suspension systems. The numerous types of cable systems available make it
impractical to treat anything but the simplest types. Additional information may be found in
Sec. 15, which covers suspension bridges and cable-stayed structures.

Characteristics of Cables. A suspension cable is a linear structural member that adjusts
its shape to carry loads. The primary assumptions in the analysis of cable systems are that
the cables carry only tension and that the tension stresses are distributed uniformly over the
cross section. Thus no bending moments can be resisted by the cables.

For a cable subjected to gravity loads, the equilibrium positions of all points on the cable
may be completely defined, provided the positions of any three points on the cable are
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FIGURE 4.13 Example problem for
Schwedler dome. (a) Elevation. (b) Plan.

known. These points may be the locations of the cable supports and one other point, usually
the position of a concentrated load or the point of maximum sag. For gravity loads, the
shape of a cable follows the shape of the moment diagram that would result if the same
loads were applied to a simple beam. The maximum sag occurs at the point of maximum
moment and zero shear for the simple beam.

The tensile force in a cable is tangent to the cable curve and may be described by
horizontal and vertical components. When the cable is loaded only with gravity loads, the
horizontal component at every point along the cable remains constant. The maximum cable
force will occur where the maximum vertical component occurs, usually at one of the sup-
ports, while the minimum cable force will occur at the point of maximum sag.

Since the geometry of a cable changes with the application of load, the common ap-
proaches to structural analysis, which are based on small-deflection theories, will not be
valid, nor will superposition be valid for cable systems. In addition, the forces in a cable
will change as the cable elongates under load, as a result of which equations of equilibrium
are nonlinear. A common approximation is to use the linear portion of the exact equilibrium
equations as a first trial and to converge on the correct solution with successive approxi-
mations.

A cable must satisfy the second-order linear differential equation

Hy � � q (4.91)

where H � horizontal force in cable
y � rise of cable at distance x from low point (Fig. 4.14)
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FIGURE 4.14 Cable with supports at different levels.

y � � d 2y /dx2

q � gravity load per unit span

4.9.1 Catenary

Weight of a cable of constant cross section represents a vertical loading that is uniformly
distributed along the length of cable. Under such a loading, a cable takes the shape of a
catenary.

To determine the stresses in and deformations of a catenary, the origin of coordinates is
taken at the low point C, and distance s is measured along the cable from C (Fig. 4.14).
With qo as the load per unit length of cable, Eq. (4.91) becomes

q dso 2Hy � � � q 	1 � y � (4.92)odx

where y� � dy /dx. Solving for y� gives the slope at any point of the cable:
3sinh q x q x 1 q xo o oy� � � � � � � � (4.93)� �H H 3! H

A second integration then yields
32 4H q x q x q xo o oy � cosh � 1 � � � � � � (4.94)� � � �q H H 2! H 4!o

Equation (4.94) is the catenary equation. If only the first term of the series expansion is
used, the cable equation represents a parabola. Because the parabolic equation usually is
easier to handle, a catenary often is approximated by a parabola.

For a catenary, length of arc measured from the low point is
2H q x 1 qo o 3s � sinh � x � x � � � � (4.95)� �q H 3! Ho

Tension at any point is

2 2 2T � 	H � q s � H � q y (4.96)o o

The distance from the low point C to the left support L is
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H qo�1a � cosh ƒ � 1 (4.97)� �Lq Ho

where ƒL is the vertical distance from C to L. The distance from C to the right support R is

H qo�1b � cosh ƒ � 1 (4.98)� �Rq Ho

where ƒR is the vertical distance from C to R.
Given the sags of a catenary ƒL and ƒR under a distributed vertical load qo, the horizontal

component of cable tension H may be computed from

q l q ƒ q ƒo o L o R�1 �1� cosh � 1 � cosh � 1 (4.99)� � � �H H H

where l is the span, or horizontal distance, between supports L and R � a � b. This equation
usually is solved by trial. A first estimate of H for substitution in the right-hand side of the
equation may be obtained by approximating the catenary by a parabola. Vertical components
of the reactions at the supports can be computed from

H sinh q a H sinh q bo oR � R � (4.100)L RH H

See also Art. 14.6.

4.9.2 Parabola

Uniform vertical live loads and uniform vertical dead loads other than cable weight generally
may be treated as distributed uniformly over the horizontal projection of the cable. Under
such loadings, a cable takes the shape of a parabola.

To determine cable stresses and deformations, the origin of coordinates is taken at the
low point C (Fig. 4.14). With wo as the uniform load on the horizontal projection, Eq. (4.91)
becomes

Hy � � w (4.101)o

Integration gives the slope at any point of the cable:

w xoy� � (4.102)
H

A second integration then yields the parabolic equation

2w xoy � (4.103)
2H

The distance from the low point C to the left support L is

l Hh
a � � (4.104)

2 w lo

where l � span, or horizontal distance, between supports L and R � a � b
h � vertical distance between supports

The distance from the low point C to the right support R is
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l Hh
b � � (4.105)

2 w lo

When supports are not at the same level, the horizontal component of cable tension H
may be computed from

2 2w l h w lo oH � ƒ � � 	ƒ ƒ � (4.106)� �R L R2h 2 8ƒ

where ƒL � vertical distance from C to L
ƒR � vertical distance from C to R
ƒ � sag of cable measured vertically from chord LR midway between supports (at

x � Hh/wol)

As indicated in Fig. 4.14,

h
ƒ � ƒ � � y (4.107)L M2

where yM � Hh2 /2wol
2. The minus sign should be used in Eq. (4.106) when low point C is

between supports. If the vertex of the parabola is not between L and R, the plus sign should
be used.

The vertical components of the reactions at the supports can be computed from

w l Hh w l Hho oV � w a � � V � w b � � (4.108)L o R o2 l 2 l

Tension at any point is

2 2 2T � 	H � w xo

Length of parabolic arc RC is

2 2b w b H w 1 wo ob o 3L � 1 � � sinh � b � b � � � � (4.109)� � � �RC 
2 H 2w H 6 Ho

Length of parabolic arc LC is

2 2a w a H w a 1 wo o o 3L � 1 � � sinh � a � a � � � � (4.110)� � � �LC 
2 H 2w H 6 Ho

When supports are at the same level, ƒL � ƒR � ƒ, h � 0, and a � b � 1/2. The
horizontal component of cable tension H may be computed from

2w loH � (4.111)
8ƒ

The vertical components of the reactions at the supports are

w loV � V � (4.112)L R 2

Maximum tension occurs at the supports and equals
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2w l loT � T � 1 � (4.113)L R 2
2 16ƒ

Length of cable between supports is

2l w l H w lo oL � 1 � � sinh� �
2 2H w 2Ho

2 4 68 ƒ 32 ƒ 256 ƒ
� l 1 � � � � � � � (4.114)� �2 4 63 l 5 l 7 l

If additional uniformly distributed load is applied to a parabolic cable, the elastic elon-
gation is

2Hl 16 ƒ
�L � 1 � (4.115)� �2AE 3 l

where A � cross-sectional area of cable
E � modulus of elasticity of cable steel
H � horizontal component of tension in cable

The change in sag is approximately

15 l �L
�ƒ � (4.116)� �2 216 ƒ 5 � 24ƒ / l

If the change is small and the effect on H is negligible, this change may be computed from

2 2 215 Hl 1 � 16ƒ /3l
�ƒ � (4.117)� �2 216 AEƒ 5 � 24ƒ / l

For a rise in temperature t, the change in sag is about

2 215 l ct 8 ƒ
�ƒ � 1 � (4.118)� �2 2 216 ƒ(5 � 24ƒ / l ) 3 l

where c is the coefficient of thermal expansion.

4.9.3 Example—Simple Cable

A cable spans 300 ft and supports a uniformly distributed load of 0.2 kips per ft. The
unstressed equilibrium configuration is described by a parabola with a sag at the center of
the span of 20 ft. A � 1.47 in2 and E � 24,000 ksi. Successive application of Eqs. (4.111),
(4.115), and (4.116) results in the values shown in Table 4.3. It can be seen that the process
converges to a solution after five cycles.

(H. Max Irvine, Cable Structures, MIT Press, Cambridge, Mass.; Prem Krishna, Cable-
Suspended Roofs, McGraw-Hill, Inc., New York; J. B. Scalzi et al., Design Fundamentals
of Cable Roof Structures, U.S. Steel Corp., Pittsburgh, Pa.; J. Szabo and L. Kollar, Structural
Design of Cable-Suspended Roofs, Ellis Horwood Limited, Chichester, England.)
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TABLE 4.3 Example Cable Problem

Cycle Sag, ft

Horizontal
force,

kips, from
Eq.

(4.111)

Change in
length, ft,
from Eq.
(4.115)

Change in
sag, ft.

from Eq.
(4.116) New sag, ft

1 20.00 112.5 0.979 2.81 22.81
2 22.81 98.6 0.864 2.19 22.19
3 22.19 101.4 0.887 2.31 22.31
4 22.31 100.8 0.883 2.29 22.29
5 22.29 100.9 0.884 2.29 22.29

FIGURE 4.15 Planar cable systems. (a) Completely separated cables. (b) Cables intersecting at
midspan. (c) Crossing cables. (d ) Cables meeting at supports.

4.10 CABLE SUSPENSION SYSTEMS

Single cables, such as those analyzed in Art. 4.9, have a limited usefulness when it comes
to building applications. Since a cable is capable of resisting only tension, it is limited to
transferring forces only along its length. The vast majority of structures require a more
complex ability to transfer forces. Thus it is logical to combine cables and other load-carrying
elements into systems. Cables and beams or trusses are found in combination most often in
suspension bridges (see Sec. 15), while for buildings it is common to combine multiple
cables into cable systems, such as three-dimensional networks or two-dimensional cable
beams and trusses.

Like simple cables, cable systems behave nonlinearly. Thus accurate analysis is difficult,
tedious, and time-consuming. As a result, many designers use approximate methods or pre-
liminary designs that appear to have successfully withstood the test of time. Because of the
numerous types of systems and the complexity of analysis, only general procedures will be
outlined in this article, which deals with cable systems in which the loads are carried to
supports only by cables.

Networks consist of two or three sets of parallel cables intersecting at an angle. The
cables are fastened together at their intersections. Cable trusses consist of pairs of cables,
generally in a vertical plane. One cable of each pair is concave downward, the other concave
upward (Fig. 4.15). The two cables of a cable truss play different roles in carrying load. The
sagging cable, whether it is the upper cable (Fig. 4.15a or b), the lower cable (Fig. 14.15d ),
or in both positions (Fig. 4.15c), carries the gravity load, while the rising cable resists upward
load and provides damping. Both cables are initially tensioned, or prestressed, to a prede-
termined shape, usually parabolic. The prestress is made large enough that any compression
that may be induced in a cable by superimposed loads only reduces the tension in the cable;
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FIGURE 4.16 (a) Cable system with discrete spreaders replaced by an equivalent
diaphragm. (b) Forces acting on the top cable. (c) Forces acting on the bottom
cable.

thus compressive stresses cannot occur. The relative vertical position of the cables is main-
tained by vertical spreaders or by diagonals. Diagonals in the truss plane do not appear to
increase significantly the stiffness of a cable truss.

Figure 4.15 shows four different arrangements of cables with spreaders to form a cable
truss. The intersecting types (Fig. 4.15b and c) usually are stiffer than the others, for given
size cables and given sag and rise.

For supporting roofs, cable trusses often are placed radially at regular intervals. Around
the perimeter of the roof, the horizontal component of the tension usually is resisted by a
circular or elliptical compression ring. To avoid a joint with a jumble of cables at the center,
the cables usually are also connected to a tension ring circumscribing the center.

Cable trusses may be analyzed as discrete or continuous systems. For a discrete system,
the spreaders are treated as individual members and the cables are treated as individual
members between each spreader. For a continuous system, the spreaders are replaced by a
continuous diaphragm that ensures that the changes in sag and rise of cables remain equal
under changes in load.

To illustrate the procedure for a cable truss treated as a continuous system, the type shown
in Fig. 4.15d and again in Fig. 4.16 will be analyzed. The bottom cable will be the load-
carrying cable. Both cables are prestressed and are assumed to be parabolic. The horizontal
component Hiu of the initial tension in the upper cable is given. The resulting rise is ƒu , and
the weight of cables and spreaders is taken as wc. Span is l.

The horizontal component of the prestress in the bottom cable Hib can be determined by
equating the bending moment in the system at midspan to zero:

2 2ƒ w l (w � w )lu c c iH � H � � (4.119)ib iuƒ 8ƒ 8ƒb b b

where ƒb � sag of lower cable
wi � uniformly distributed load exerted by diaphragm on each cable when cables are

parabolic

Setting the bending moment at the high point of the upper cable equal to zero yields
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8H ƒiu uw � (4.120)i 2l

Thus the lower cable carries a uniform downward load wc � wi , while the upper cable is
subjected to a distributed upward force wi.

Suppose a load p uniformly distributed horizontally is now applied to the system (Fig.
4.16a). This load may be dead load or dead load plus live load. It will decrease the tension
in the upper cable by �Hu and the rise by �ƒ (Fig. 4.16b). Correspondingly, the tension in
the lower cable will increase by �Hb and the sag by �ƒ (Fig. 4.16c). The force exerted by
the diaphragm on each cable will decrease by �wi.

The changes in tension may be computed from Eq. (4.117). Also, application of this
equation to the bending-moment equations for the midpoints of each cable and simultaneous
solution of the resulting pair of equations yields the changes in sag and diaphragm force.
The change in sag may be estimated from

21 pl
�ƒ � (4.121)2 2 2H � H � (A ƒ � A ƒ )16E /3l 8iu ib u u b b

where Au � cross-sectional area of upper cable
Ab � cross-sectional area of lower cable

The decrease in uniformly distributed diaphragm force is given approximately by

2 2(H � 16A Eƒ /3l )piu u u�w � (4.122)i 2 2 2H � H � (A ƒ � A ƒ )16E /3liu ib u u b b

And the change in load on the lower cable is nearly

2 2(H � 16A Eƒ /3l )pib b bp � �w � (4.123)i 2 2 2H � H � (A ƒ � A ƒ )16E /3liu ib u u b b

In Eqs. (4.121) to (4.123), the initial tensions Hiu and Hib generally are relatively small
compared with the other terms and can be neglected. If then ƒu � ƒb, as is often the case,
Eq. (4.122) simplifies to

Au�w � p (4.124)i A � Au b

and Eq. (4.123) becomes

Abp � �w � p (4.125)i A � Au b

The horizontal component of tension in the upper cable for load p may be computed
from

w � �wi iH � H � �H � H (4.126)u iu u iuwi

The maximum vertical component of tension in the upper cable is
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FIGURE 4.17 Forces acting at joints of a cable system with spreaders.

(w � �w )li iV � (4.127)u 2

The horizontal component of tension in the lower cable may be computed from

w � w � p � �wc i iH � H � �H � H (4.128)b ib b ibw � wc i

The maximum vertical component of tension in the lower cable is

(w � w � p � �w )lc i iV � (4.129)b 2

In general, in analysis of cable systems, terms of second-order magnitude may be ne-
glected, but changes in geometry should not be ignored.

Treatment of a cable truss as a discrete system may be much the same as that for a cable
network considered a discrete system. For loads applied to the cables between joints, or
nodes, the cable segments between nodes are assumed parabolic. The equations given in Art.
4.9 may be used to determine the forces in the segments and the forces applied at the nodes.
Equilibrium equations then can be written for the forces at each joint.

These equations, however, generally are not sufficient for determination of the forces
acting in the cable system. These forces also depend on the deformed shape of the network.
They may be determined from equations for each joint that take into account both equilibrium
and displacement conditions.

For a cable truss (Fig. 4.16a) prestressed initially into parabolic shapes, the forces in the
cables and spreaders can be found from equilibrium conditions, as indicated in Fig. 4.17.
With the horizontal component of the initial tension in the upper cable Hiu given, the prestress
in the segment to the right of the high point of that cable (joint 1, Fig. 4.17a) is Tiu1 � Hiu/
cos � . The vertical component of this tension equals Wi1 � Wcu1, where Wi1 is the forceRu1

exerted by the spreader and Wcu1 is the load on joint 1 due to the weight of the upper cable.
(If the cable is symmetrical about the high point, the vertical component of tension in the
cable segment is (Wi1 � Wxu1) /2.] The direction cosine of the cable segment cos � isRu1

determined by the geometry of the upper cable after it is prestressed. Hence Wi1 can be
computed readily when Hiu is known.

With Wi1 determined, the initial tension in the lower cable at its low point (joint 1, Fig,
4.17c) can be found from equilibrium requirements in similar fashion and by setting the
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FIGURE 4.18 (a) Typical joint in a cable network. (b) Displacement of the cables in a
network caused by a load acting at a joint.

bending moment at the low point equal to zero. Similarly, the cable and spreader forces at
adjoining joints (joint 2, Fig. 4.17b and d ) can be determined.

Suppose now vertical loads are applied to the system. They can be resolved into concen-
trated vertical loads acting at the nodes, such as the load P at a typical joint Ob of the bottom
cable, shown in Fig. 4.18b. The equations of Art. 4.9 can be used for the purpose. The loads
will cause vertical displacements � of all the joints. The spreaders, however, ensure that the
vertical displacement of each upper-cable node equals that of the lower-cable node below.
A displacement equation can be formulated for each joint of the system. This equation can
be obtained by treating a cable truss as a special case of a cable network.

A cable network, as explained earlier, consists of interconnected cables. Let joint O in
Fig. 4.18a represent a typical joint in a cable network and 1, 2, 3. . . . adjoining joints.
Cable segments O1, O2, O3. . . . intersect at O. Joint O is selected as the origin of a three-
dimensional, coordinate system.

In general, a typical cable segment Or will have direction cosines cos �rx with respect to
the x axis, cos �ry with respect to the y axis, and cos �rz with respect to the z axis. A load
P at O can be resolved into components Px parallel to the x axis, Py parallel to the y axis,
and Pz parallel to the z axis. Similarly, the displacement of any joint r can be resolved into
components �rx, �ry , and �rz. For convenience, let

� � � � � � � � � � � � � � � (4.130)x rx 0x y ry 0y z rz 0z

For a cable-network joint, in general, then, where n cable segments interconnect, three
equations can be established:

n EAr cos � (� cos � � � cos � � � cos � ) � P � 0 (4.131a)� � �rz x rx y ry z rz zlr�1 r

n EAr cos � (� cos � � � cos � � � cos � ) � P � 0 (4.131b)� � �ry x rx y ry z rz ylr�1 r

n EAr cos � (� cos � � � cos � � � cos � ) � P � 0 (4.131c)� � �rx x rx y ry z rz xlr�1 r

where E � modulus of elasticity of steel cable
Ar � cross-sectional area of cable segment Or
lr � length of chord from O to r



4.34 SECTION FOUR

These equations are based on the assumption that deflections are small and that, for any
cable segment, initial tension Ti can be considered negligible compared with EA.

For a cable truss, n � 2 for a typical joint. If only vertical loading is applied, only Eq.
(4.131a) is needed. At typical joints Ou of the upper cable and Ob of the bottom cable (Fig.
4.18b), the vertical displacement is denoted by �o. The displacements of the joints Lu and
Lb on the left of Ou and Ob are indicated by �L. Those of the joints Ru and Rb on the right
of Ou and Ob are represented by �R. Then, for joint Ou, Eq. (4.131a) becomes

EA EALu Ru2 2cos � (� � � ) � cos � (� � � ) � W � �W � WLu L O Ru R O i i cul lLu Ru

(4.132)

where Wi � force exerted by spreader at Ou and Ob before application of P
�Wi � change in spreader force due to P
Wcu � load at Ou from weight of upper cable
ALu � cross-sectional area of upper-cable segment on the left of Ou

lLu � length of chord from Ou to Lu

ARu � cross-sectional area of upper-cable segment on the right of Ou

lRu � length of chord from Ou to Ru

For joint Ob, Eq. (4.131a) becomes, on replacement of subscript u by b,

EA EALb Rb2 2cos � (� � � ) � cos � (� � � ) � �P � W � �W � W (4.133)Lb L O Rb R O i i cbl lLb Rb

where Wcb is the load at Ob due to weight of lower cable and spreader.
Thus, for a cable truss with m joints in each cable, there are m unknown vertical dis-

placements � and m unknown changes in spreader force �Wi. Equations (4.132) and (4.133),
applied to upper and lower nodes, respectively, provide 2m equations. Simultaneous solution
of these equations yields the displacements and forces needed to complete the analysis.

The direction cosines in Eqs. (4.131) to (4.133), however, should be those for the dis-
placed cable segments. If the direction cosines of the original geometry of a cable network
are used in these equations, the computed deflections will be larger than the true deflections,
because cables become stiffer as sag increases. The computed displacements, however, may
be used to obtain revised direction cosines. The equations may then by solved again to yield
corrected displacements. The process can be repeated as many times as necessary for con-
vergence, as was shown for a single cable in Art 4.8.

For cable networks in general, convergence can often be speeded by computing the di-
rection cosines for the third cycle of solution with node displacements that are obtained by
averaging the displacements at each node computed in the first two cycles.

(H. Max Irvine, ‘‘Cable Structures’’, MIT Press, Cambridge, Mass.; Prem Krishna, Cable-
Suspended Roofs, McGraw-Hill, Inc., New York; J. B. Scalzi et al., Design Fundamentals
of Cable Roof Structures, U.S. Steel Corp., Pittsburgh, Pa.; J. Szabo and L. Kollar, Structural
Design of Cable-Suspended Roofs, Ellis Horwood Limited, Chichester, England.)

4.11 PLANE-GRID FRAMEWORKS

A plane grid comprises a system of two or more members occurring in a single plane,
interconnected at intersections, and carrying loads perpendicular to the plane. Grids com-
prised of beams, all occurring in a single plane, are referred to as single-layer grids. Grids
comprised of trusses and those with bending members located in two planes with members
maintaining a spacing between the planes are usually referred to as double-layer grids.
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FIGURE 4.19 Orthogonal grids. (a) Girders on short spacing. (b) Girders on
wide spacing with beams between them. (c) Girders set diagonally.

The connection between the grid members is such that all members framing into a par-
ticular joint will be forced to deflect the same amount. They are also connected so that
bending moment is transferred across the joint. Although it is possible that torsion may be
transferred into adjacent members, normally, torsion is not considered in grids comprised of
steel beams because of their low torsional stiffness.

Methods of analyzing single- and double-layer framing generally are similar. This article
therefore will illustrate the technique with the simpler plane framing and with girders instead
of plane trusses. Loading will be taken as vertical. Girders will be assumed continuous at
all nodes, except supports.

Girders may be arranged in numerous ways for plane-grid framing. Figure 4.19 shows
some ways of placing two sets of girders. The grid in Fig. 4.19a consists of orthogonal sets
laid perpendicular to boundary girders. Columns may be placed at the corners, along the
boundaries, or at interior nodes. In the following analysis, for illustrative purposes, columns
will be assumed only at the corners, and interior girders will be assumed simply supported
on the boundary girders. With wider spacing of interior girders, the arrangement shown in
Fig. 4.19b may be preferable. With beams in alternate bays spanning in perpendicular di-
rections, loads are uniformly distributed to the girders. Alternatively, the interior girders may
be set parallel to the main diagonals, as indicated in Fig. 4.19c. The method of analysis for
this case is much the same as for girders perpendicular to boundary members. The structure,
however, need not be rectangular or square, nor need the interior members be limited to two
sets of girders.

Many methods have been used successfully to obtain exact or nearly exact solutions for
grid framing, which may be highly indeterminate These include consistent deflections, finite
differences, moment distribution or slope deflection, flat plate analogy, and model analysis.
This article will be limited to illustrating the use of the method of consistent deflections.

In this method, each set of girders is temporarily separated from the other sets. Unknown
loads satisfying equilibrium conditions then are applied to each set. Equations are obtained
by expressing node deflections in terms of the loads and equating the deflection at each node
of one set to the deflection of the same node in another set. Simultaneous solution of the
equations yields the unknown loads on each set. With these now known, bending moments,
shears, and deflections of all the girders can be computed by conventional methods.

For a simply supported grid, the unknowns generally can be selected and the equations
formulated so that there is one unknown and one equation for each interior node. The number
of equations required, however, can be drastically reduced if the framing is made symmetrical
about perpendicular axes and the loading is symmetrical or antisymmetrical. For symmetrical
grids subjected to unsymmetrical loading, the amount of work involved in analysis often can
be decreased by resolving loads into symmetrical and antisymmetrical components. Figure
4.20 shows how this can be done for a single load unsymmetrically located on a grid. The
analysis requires the solution of four sets of simultaneous equations and addition of the
results, but there are fewer equations in each set than for unsymmetrical loading. The number
of unknowns may be further decreased when the proportion of a load at a node to be assigned
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FIGURE 4.20 Resolution of a load into symmetrical and antisymmetrical components.

FIGURE 4.21 Single concentrated load on a beam.
(a) Deflection curve. (b) Influence-coefficients curve
for deflection at xL from support.

to a girder at that node can be determined by
inspection or simple computation. For ex-
ample, for a square orthogonal grid, each
girder at the central node carries half the load
there when the grid loading is symmetrical
or antisymmetrical.

For analysis of simply supported grid
girders, influence coefficients for deflection
at any point induced by a unit load are use-
ful. They may be computed from the follow-
ing formulas.

The deflection at a distance xL from one
support of a girder produced by a concen-
trated load P at a distance kL from that sup-
port (Fig. 4.21) is given by

3PL 2 2� � x(1 � k)(2k � k � x ) 0 
 x 
 k
6EI

(4.134)

3PL 2 2� � k(1 � x)(2x � x � k ) k 
 x 
 1
6EI

(4.135)

where L � span of simply supported girder
E � modulus of elasticity of the steel
I � moment of inertia of girder cross section

The intersection of two sets of orthogonal girders produces a series of girders which may
conveniently be divided into a discrete number of segments. The analysis of these girders
will require the determination of deflections for each of these segments. The deflections that
result from the application of Eqs. 4.134 and 4.135 to a girder divided into equal segments
may be conveniently presented in table format as shown in Table 4.4 for girders divided into
up to ten equal segments. The deflections can be found from the coefficients C1 and C2 as
illustrated by the following example. Consider a beam of length L comprised of four equal
segments (N � 4). If a load P is applied at 2L /N or L /2, the deflection at 1L /N or L /4 is

3 3C2PL 11 PL
�

C1EI 768 EI

For deflections, the elastic curve is also the influence curve, when P � 1. Hence the
influence coefficient for any point of the girder may be written
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TABLE 4.4 Deflection Coefficients for Beam of Length L Comprised of N Segments*

N

Defln.
point,
L/N

Coefficient C2 for load position, L/N

1 2 3 4 5 6 7 8 9 C1

2 1 1 48

3 1
2

8
7

7
8

486

4 1
2
3

9
11
7

11
16
11

7
11
9

768

5 1
2
3
4

32
45
40
23

45
72
68
40

40
68
72
45

23
40
45
32

3750

6 1
2
3
4
5

25
38
39
31
17

38
64
69
56
31

39
69
81
69
39

31
56
69
64
38

17
31
39
38
25

3888

7 1
2
3
4
5
6

72
115
128
117
88
47

115
200
232
216
164
88

128
232
288
279
216
117

117
216
279
288
232
128

88
164
216
232
200
115

47
88

117
128
115
72

14,406

8 1
2
3
4
5
6
7

49
81
95
94
81
59
31

81
144
175
176
153
112
59

95
175
225
234
207
153
81

94
176
234
256
234
276
94

81
153
207
234
225
175
95

59
112
153
176
175
144
81

31
59
81
94
95
81
49

12,288

9 1
2
3
4
5
6
7
8

128
217
264
275
256
213
152
79

217
392
492
520
488
408
292
152

264
492
648
705
672
567
408
213

275
520
705
800
784
672
488
256

256
488
672
784
800
705
520
275

213
408
567
672
705
648
492
264

152
292
408
488
520
492
392
217

79
152
213
256
275
264
217
128

39,366

10 1
2
3
4
5
6
7
8
9

81
140
175
189
185
166
135
95
49

140
256
329
360
355
320
261
184
95

175
329
441
495
495
450
369
261
135

189
360
495
576
590
544
450
320
166

185
355
495
590
625
590
495
355
185

166
320
450
544
590
576
495
360
189

135
261
369
450
495
495
441
329
175

95
184
261
320
355
360
329
256
140

49
95

135
166
185
189
175
140
81

30,000

* Deflection �
3C2PL

C1EI
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FIGURE 4.22 Two equal downward-acting loads
symmetrically placed on a beam. (a) Deflection curve.
(b) Influence-coefficients curve.

FIGURE 4.23 Equal upward and downward con-
centrated loads symmetrically placed on a beam. (a)
Deflection curve. (b) Influence-coefficients curve.

3L
�� � [x, k] (4.136)

EI

where

x 2 2(1 � k)(2k � k � x ) 0 
 x 
 k
6[x, k] � (4.137)k 2 2� (1 � x)(2x � x � k ) k 
 x 
 1
6

The deflection at a distance xL from one support of the girder produced by concentrated
loads P t distances kL and (1 � k)L from that support Fig. 4.20) is given by

3PL
� � (x, k) (4.138)

EI

where

x 2 2(3k � 3k � x ) 0 
 x 
 k
6(x, k) �

(4.139)
k 12 2� (3x � 3x � k ) k 
 x 

6 2

The deflection at a distance xL from one support of the girder produced by concentrated
loads P at distance kL from the support and an upward concentrated load P at a distance
(1 � k)L from the support (antisymmetrical loading, Fig. 4.23) is given by

3PL
� � {x, k} (4.140)

EI

where

x 2 2(1 � 2k)(k � k � x ) 0 
 x 
 k
6[x, k] � (4.141)k 12 2� (1 � 2x)(x � x � k ) k 
 x 

6 2

For convenience in analysis, the loading carried by the grid framing is converted into
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FIGURE 4.24 Square bay with orthogonal grid. (a) Loads distributed to joints. (b) Loads on
midspan girder. (c) Loads on quarter-point girder. (d ) Loads on boundary girder.

concentrated loads at the nodes. Suppose for example that a grid consists of two sets of
parallel girders as in Fig. 4.19, and the load at interior node r is Pr . Then it is convenient
to assume that one girder at the node is subjected to an unknown force Xr there, and the
other girder therefore carries a force Pr � Xr at the node. With one set of girders detached
from the other set, the deflections produced by these forces can be determined with the aid
of Eqs. (4.134) to (4.141).

A simple example will be used to illustrate the application of the method of consistent
deflections. Assume an orthogonal grid within a square boundary (Fig. 4.24a). There are
n � 4 equal spaces of width h between girders. Columns are located at the corners A, B, C,
and D. All girders have a span nh � 4h and are simply supported at their terminals, though
continuous at interior nodes. To simplify the example. all girders are assumed to have equal
and constant moment of inertia I. Interior nodes carry a concentrated load P. Exterior nodes,
except corners, are subjected to a load P /2.

Because of symmetry, only five different nodes need be considered. These are numbered
from 1 to 5 in Fig. 4.24a, for identification. By inspection, loads P at nodes 1 and 3 can be
distributed equally to the girders spanning in the x and y directions. Thus, when the two sets
of parallel girders are considered separated, girder 4-4 in the x direction carries a load of
P /2 at midspan (Fig. 4.24b). Similarly, girder 5-5 in the y direction carries loads of P /2 at
the quarter points (Fig. 4.24c).

Let X2 be the load acting on girder 4-4 (x direction) at node 2 (Fig. 4.24b). Then P �
X2 acts on girder 5-5 (y direction) at midspan (Fig. 4.24c). The reactions R of girders 4-4
and 5-5 are loads on the boundary girders (Fig. 4.24d ).

Because of symmetry, X2 is the only unknown in this example. Only one equation is
needed to determine it.

To obtain this equation. equate the vertical displacement of girder 4-4 (x direction) at
node 2 to the vertical displacement of girder 5-5 (y direction) at node 2. The displacement
of girder 4-4 equals its deflection plus the deflection of node 4 on BC. Similarly, the dis-
placement of girder 5-5 equals its deflection plus the deflection of node 5 on AB or its
equivalent BC.

When use is made of Eqs. (4.136) and (4.138), the deflection of girder 4-4 (x direction)
at node 2 equals
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3 3n h 1 1 P 1 1
� � , � , X � � (4.142a)�� � � � 
2 2 4EI 4 2 2 4 4

where �4 is the deflection of BC at node 4. By Eq. (4.137), [1⁄4, 1⁄2] � (1⁄48)(11⁄16). By Eq.
(4.139), (1⁄4, 1⁄4) � 1⁄48. Hence

3 3n h 11
� � P � X � � (4.142b)� �2 2 448EI 32

For the loading shown in Fig. 4.24d,

3 3n h 1 1 3P 1 1 3P x2� � , � X � , � (4.143a)�� �� � � �� �
4 2EI 2 2 4 2 4 2 2

By Eq. (4.137), [1⁄2, 1⁄2] � 1⁄48. By Eq. (4.139), (1⁄2, 1⁄4) � (1⁄48)(11⁄8). Hence Eq. (4.143a)
becomes

3 3n h 45 5
� � P � X (4.143b)� �4 248EI 16 16

Similarly, the deflection of girder 5-5 (y direction) at node 2 equals

3 3 3 3n h 1 1 1 1 P n h 27
� � , (P � X ) � , � � � P � X � ��� � � � 
 � �2 2 5 2 5EI 2 2 2 4 2 48EI 16

(4.144)

For the loading shown in Fig. 4.24d,

3 3n h 1 1 3P 1 1 3P X2� � , � X � , ��� �� � � �� �
5 2EI 4 2 4 4 4 2 2
3 3n h 129 3

� P � X (4.145)� �248EI 64 16

The needed equation for determining X2 is obtained by equating the right-hand side of
Eqs. (4.142b) and (4.144) and substituting �4 and �5 given by Eqs. (4.143b) and (4.145).
The result, after division of both sides of the equation by n3h3 /48EI. is

11 45 5 27 129 3⁄32P � X � ⁄16P � ⁄16X � ⁄16P � X � ⁄64P � ⁄16X (4.146)2 2 2 2

Solution of the equation yields

35P 101P
X � � 0.257P and P � X � � 0.743P2 2136 136

With these forces known, the bending moments, shears, and deflections of the girders can
be computed by conventional methods.

To examine a more general case of symmetrical framing, consider the orthogonal grid
with rectangular boundaries in Fig. 4.25a. In the x direction, there are n spaces of width h.
In the y direction, there are m spaces of width k. Only members symmetrically placed in the
grid are the same size. Interior nodes carry a concentrated load P. Exterior nodes, except
corners, carry P /2. Columns are located at the corners. For identification, nodes are num-
bered in one quadrant. Since the loading, as well as the framing, is symmetrical, correspond-
ing nodes in the other quadrants may be given corresponding numbers.

At any interior node r, let Xr be the load carried by the girder spanning in the x direction.
Then P � Xr is the load at that node applied to the girder spanning in the y direction. For
this example, therefore, there are six unknowns Xr , because r ranges from 1 to 6. Six equa-
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FIGURE 4.25 Rectangular bay with orthogonal girder grid. (a) Loads distributed to joints. (b)
Loads on longer midspan girder. (c) Loads on shorter boundary girder AD. (d ) Loads on shorter
midspan girder. (e) Loads on longer boundary girder AB.

tions are needed for determination of Xr. They may be obtained by the method of consistent
deflections. At each interior node, the vertical displacement of the x-direction girder is
equated to the vertical displacement of the y-direction girder, as in the case of the square
grid.

To indicate the procedure for obtaining these equations, the equation for node 1 in Fig.
4.25a will be developed. When use is made of Eqs. (4.136) and (4.138), the deflection of
girder 7-7 at node 1 (Fig. 4.25b) equals

3 3n h 1 1 1 1 1 1
� � , X � , X � , X � � (4.147)�� � � � � � 
1 1 2 3 7EI 2 2 2 3 2 67

where I7 � moment of inertia of girder 7-7
�7 � deflection of girder AD at node 7

Girder AD carries the reactions of the interior girders spanning in the x direction (Fig. 4.25c):

3 3m k 1 1 P X 1 1 P X1 4� � , � � X � X � , � � X � X�� � � � � �� �
7 2 3 5 6EI 2 2 2 2 2 4 2 2AD

(4.148)

where IAD is the moment of inertia of girder AD. Similarly, the deflection of girder 9-9 at
node 1 (Fig. 4.25d ) equals

3 3m k 2 1 1 1
� � , (P � X ) � , (P � X ) � � (4.149)�� � � � 
1 1 4 9EI 2 2 2 49

where I9 � moment of inertia of girder 9-9
�9 � deflection of girder AB at node 9
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FIGURE 4.26 Folded plate roofs. (a) Solid plates. (b) Trussed plates.

Girder AB carries the reactions of the interior girders spanning in the y direction (Fig. 4.25e):
3 3n h 1 1 P P � X1� � , � � P � X�� � � �9 4EI 2 2 2 2AB

1 1 P P � X2� , � � P � X� � � �52 3 2 2

1 1 P P � X3� , � � P � X (4.150)� � � �
62 6 2 2

where IAB is the moment of inertia of girder AB. The equation for vertical displacement at
node 1 is obtained by equating the right-hand side of Eqs. (4.147) and (4.149) and substi-
tuting �7 and �9 given by Eqs. (4.148) and (4.150).

After similar equations have been developed for the other five interior nodes, the six
equations are solved simultaneously for the unknown forces Xr . When these have been
determined, moments, shears, and deflections for the girders can be computed by conven-
tional methods.

(A. W. Hendry and L. G. Jaeger, Analysis of Grid Frameworks and Related Structures,
Prentice-Hall, Inc., Englewood Cliffs, N.J.; Z. S. Makowski, Steel Space Structures, Michael
Joseph, London.)

4.12 FOLDED PLATES

Planar structural members inclined to each other and connected along their longitudinal edges
comprise a folded-plate structure (Fig. 4.26). If the distance between supports in the lon-
gitudinal direction is considerably larger than that in the transverse direction, the structure
acts much like a beam in the longitudinal direction. In general, however, conventional beam
theory does not accurately predict the stresses and deflections of folded plates.

A folded-plate structure may be considered as a series of girders or trusses leaning against
each other. At the outer sides, however, the plates have no other members to lean against.
Hence the edges at boundaries and at other discontinuities should be reinforced with strong
members to absorb the bending stresses there. At the supports also, strong members are
needed to transmit stresses from the plates into the supports. The structure may be simply
supported, or continuous, or may cantilever beyond the supports.

Another characteristic of folded plates that must be taken into account is the tendency of
the inclined plates to spread. As with arches, provision must be made to resist this displace-
ment. For the purpose, diaphragms or ties may be placed at supports and intermediate points.
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FIGURE 4.27 Forces on folded plates. (a) Transverse section. (b) Forces at joints 1 and 2. (c)
Plate 2 acting as girder. (d ) Shears on plate 2.

The plates may be constructed in different ways. For example, each plate may be a
stiffened steel sheet or hollow roof decking (Fig. 4.26a). Or it may be a plate girder with
solid web. Or it may be a truss with sheet or roof decking to distribute loads transversely
to the chords (Fig. 4.26b).

A folded-plate structure has a two-way action in transmitting loads to its supports. In the
transverse direction, the plates act as slabs spanning between plates on either side. Each
plate then serves as a girder in carrying the load received from the slabs longitudinally to
the supports.

The method of analysis to be presented assumes the following: The material is elastic,
isotropic, and homogeneous. Plates are simply supported but continuously connected to ad-
joining plates at fold lines. The longitudinal distribution of all loads on all plates is the same.
The plates carry loads transversely only by bending normal to their planes and longitudinally
only by bending within their planes. Longitudinal stresses vary linearly over the depth of
each plate. Buckling is prevented by adjoining plates. Supporting members such as dia-
phragms, frames, and beams are infinitely stiff in their own planes and completely flexible
normal to their planes. Plates have no torsional stiffness normal to their own planes. Dis-
placements due to forces other than bending moments are negligible.

With these assumptions, the stresses in a steel folded-plate structure can be determined
by developing and solving a set of simultaneous linear equations based on equilibrium con-
ditions and compatibility at fold lines. The following method of analysis, however, eliminates
the need for such equations.

Figure 4.27a shows a transverse section through part of a folded-plate structure. An
interior element, plate 2, transmits the vertical loading on it to joints 1 and 2. Usual procedure
is to design a 1-ft-wide strip of plate 2 at midspan to resist the transverse bending moment.
(For continuous plates and cantilevers, a 1-ft-wide strip at supports also would be treated in
the same way as the midspan strip.) If the load is w2 kips per ft2 on plate 2, the maximum
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bending moment in the transverse strip is w2h2a2 /8, where h2 is the depth (feet) of the plate
and a2 is the horizontal projection of h2.

The 1-ft-wide transverse strip also must be capable of resisting the maximum shear w2h2 /2
at joints 1 and 2. In addition, vertical reactions equal to the shear must be provided at the
fold lines. Similarly, plate 1 applies a vertical reaction W1 kips per ft at joint 1, and plate 3,
a vertical reaction w3h3 /2 at joint 2. Thus the total vertical force from the 1-ft-wide strip at
joint 2 is

1R � ⁄2(w h � w h ) (4.151)2 2 2 3 3

Similar transverse strips also load the fold line. It may be considered subject to a uni-
formly distributed load R2 kips per ft. The inclined plates 2 and 3 then carry this load in the
longitudinal direction to the supports (Fig. 4.27c). Thus each plate is subjected to bending
in its inclined plane.

The load to be carried by plate 2 in its plane is determined by resolving R1 at joint 1 and
R2 at joint 2 into components parallel to the plates at each fold line (Fig. 4.27b). In the
general case, the load (positive downward) of the nth plate is

R Rn n�1P � � (4.152)n k cos � k cos �n n n�1 n

where Rn � vertical load, kips per ft, on joint at top of plate n
Rn�1 � vertical load, kips per ft, on joint at bottom of plate n

�n � angle, deg, plate n makes with the horizontal
kn � tan �n � tan �n�1

This formula, however, cannot be used directly for plate 2 in Fig. 4.27(a) because plate 1
is vertical. Hence the vertical load at joint 1 is carried only by plate 1. So plate 2 must carry

R2P � (4.153)2 k cos �2 2

To avoid the use of simultaneous equations for determining the bending stresses in plate
2 in the longitudinal direction, assume temporarily that the plate is disconnected from plates
1 and 3. In this case, maximum bending moment, at midspan, is

2P L2M � (4.154)2 8

where L is the longitudinal span (ft). Maximum bending stresses then may be determined
by the beam formula ƒ � �M/S, where S is the section modulus. The positive sign indicates
compression, and the negative sign tension.

For solid-web members, S � I /c, where I is the moment of inertia of the plate cross
section and c is the distance from the neutral axis to the top or bottom of the plate. For
trusses, the section modulus (in3) with respect to the top and bottom, respectively, is given
by

S � A h S � A h (4.155)t t b b

where At � cross-sectional area of top chord, in2

Ab � cross-sectional area of bottom chord, in2

h � depth of truss, in

In the general case of a folded-plate structure, the stress in plate n at joint n, computed
on the assumption of a free edge, will not be equal to the stress in plate n � 1 at joint n,
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similarly computed. Yet, if the two plates are connected along the fold line n, the stresses
at the joint should be equal. To restore continuity, shears are applied to the longitudinal
edges of the plates (Fig. 4.27d ). The unbalanced stresses at each joint then may be adjusted
by converging approximations, similar to moment distribution.

If the plates at a joint were of constant section throughout, the unbalanced stress could
be distributed in proportion to the reciprocal of their areas. For a symmetrical girder, the
unbalance should be distributed in proportion to the factor

21 h
F � � 1 (4.156)� �2A 2r

where A � cross-sectional area, in2, of girder
h � depth, in, of girder
r � radius of gyration, in, of girder cross section

And for an unsymmetrical truss, the unbalanced stress at the top should be distributed in
proportion to the factor

1 1
F � � (4.157)t A A � At b t

The unbalance at the bottom should be distributed in proportion to

1 1
F � � (4.158)b A A � Ab b t

A carry-over factor of �1⁄2 may be used for distribution to the adjoining edge of each
plate. Thus the part of the unbalance assigned to one edge of a plate at a joint should be
multiplied by �1⁄2, and the product should be added to the stress at the other edge.

After the bending stresses have been adjusted by distribution, if the shears are needed,
they may be computed from

ƒ � ƒn�1 nT � T � A (4.159)n n�1 n2

for true plates, and for trusses, from

T � T � ƒ A � ƒ A (4.160)n n�1 n�1 b n t

where Tn � shear, kips, at joint n
ƒn � bending stress, ksi, at joint n
An � cross-sectional area, in2, of plate n

Usually, at a boundary edge, joint 0, the shear is zero. With this known, the shear at joint
1 can be computed from the preceding equations. Similarly, the shear can be found at
successive joints. For a simply supported, uniformly loaded, folded plate, the shear stress ƒv
(ksi) at any point on an edge n is approximately

T 1 xmaxƒ � � (4.161)� �v 18Lt 2 L

where x � distance, ft, from a support
t � web thickness of plate, in

L � longitudinal span, ft, of plate

As an illustration of the method, stresses will be computed for the folded-plate structure
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FIGURE 4.28 (a) Folded-plate roof. (b) Plate reactions for transverse span. (c) Loads at joints
of typical interior transverse section. (d ) Forces at joint 4. (e) Forces at joint 3. ( f ) Plate 4 acting
as girder. (g) Loads at joints of outer transverse section. (h) Plate 2 acting as girder.

in Fig. 28a. It may be considered to consist of four inverted-V girders, each simply supported
with a span of 120 ft. The plates are inclined at an angle of 45	 with the horizontal. With a
rise of 10 ft and horizontal projection a � 10 ft, each plate has a depth h � 14.14 ft. The
structure is subjected to a uniform load w � 0.0353 ksf over its surface. The inclined plates
will be designed as trusses. The boundaries, however, will be reinforced with a vertical
member, plate 1. The structure is symmetrical about joint 5.

As indicated in Fig. 28a, 1-ft-wide strip is selected transversely across the structure at
midspan. This strip is designed to transmit the uniform load w to the folds. It requires a
vertical reaction of 0.0353 � 14.14/2 � 0.25 kip per ft along each joint (Fig. 28b). Because
of symmetry, a typical joint then is subjected to a uniform load of 2 � 0.25 � 0.5 kip per
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ft (Fig. 28c). At joint 1, the top of the vertical plate, however, the uniform load is 0.25 plus
a load of 0.20 on plate 1, or 0.45 kip per ft (Fig. 28g).

The analysis may be broken into two parts, to take advantage of simplification permitted
by symmetry. First. the stresses may be determined for a typical interior inverted-V girder.
Then. the stresses may be computed for the boundary girders, including plate 1.

The typical interior girder consists of plates 4 and 5, with load of 0.5 kip per ft at joints
3, 4, and 5 (Fig. 28c). This load may be resolved into loads in the plane of the plates, as
indicated in Fig. 28d and e. Thus a typical plate, say plate 4, is subjected to a uniform load
of 0.707 kip per ft (Fig. 28ƒ). Hence the maximum bending moment in this truss is

20.707(120)
M � � 1273 ft-kips

8

Assume now that each chord is an angle 8 � 8 � 9⁄16 in, with an area of 8.68 in2. Then the
chords, as part of plate 4, have a maximum bending stress of

1273
ƒ � � � �10.36 ksi

8.68 � 14.14

Since the plate is typical, adjoining plates also impose an equal stress on the same chords.
Hence the total stress in a typical chord is �10.36 � 2 � �20.72 ksi, the stress being
compressive along ridges and tensile along valleys.

To prevent the plates composing the inverted-V girder from spreading, a tie is needed at
each support. This tie is subjected to a tensile force

120P � R cos � � 0.707( ⁄2)0.707 � 30 kips

The boundary inverted-V girder consists of plates 1, 2, and 3, with a vertical load of 0.5
kip per ft at joints 2 and 3 and 0.45 kip per ft on joint 1. Assume that plate 1 is a W36 �
135. The following properties of this shape are needed: A � 39.7 in2. h � 35.55 in. Aƒ �
9.44 in2, r � 14 in, S � 439 in3. Assume also that the top flange of plate 1 serves as the
bottom chord of plate 2. Thus this chord has an area of 9.44 in2.

With plate 1 vertical, the load on joint 1 is carried only by plate 1. Hence, as indicated
by the resolution of forces in Fig. 28d, plate 2 carries a load in its plane of 0.353 kip per ft
(Fig. 28h). The maximum bending moment due to this load is

20.353(120)
M � � 637 ft-kips

8

Assume now that the plates are disconnected along their edges. Then the maximum bend-
ing stress in the top chord of plate 2, including the stress imposed by bending of plate 3, is

637
ƒ � � 10.36 � 5.18 � 10.36 � 15.54 ksit 8.68 � 14.14

and the maximum stress in the bottom chord is

�637
ƒ � � �4.77 ksib 9.44 � 14.14

For the load of 0.45 kip per ft, plate 1 has a maximum bending moment of

20.45(120) 12
M � � 9730 in-kips

8

The maximum stresses due to this load are
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M 9730
ƒ � � � � �22.16 ksi

S 439

Because the top flange of the girder has a compressive stress of 22.16 ksi, whereas acting
as the bottom chord of the truss, the flange has a tensile stress of 4.77 ksi, the stresses at
joint 1 must be adjusted. The unbalance is 22.16 � 4.77 � 26.93 ksi;

The distribution factor at joint 1 for plate 2 can be computed from Eq. (4.158):

1 1
F � � � 0.16112 9.44 9.44 � 8.68

The distribution factor for plate 1 can be obtained from Eq. (4.156):

21 (35.5)
F � � 1 � 0.1062� �1 239.7 2(14)

Hence the adjustment in the stress in the girder top flange is

�26.93 � 0.1062
� �10.70 ksi

0.1062 � 0.1611

The adjusted stress in that flange then is 22.16 � 10.70 � 11.46 ksi. The carryover to
the bottom flange is (�1⁄2)(�10.70) � 5.35 ksi. And the adjusted bottom flange stress is
�22.16 � 5.35 � �16.87 ksi.

Plate 2 receives an adjustment of 26.93 � 10.70 � 16.23 ksi. As a check, its adjusted
stress is �4.77 � 16.23 � 11.46 ksi, the same as that in the top flange of plate 1. The carry-
over to the top chord is (�1⁄2)16.23 � �8.12. The unbalanced stress now present at joint 2
may be distributed in a similar manner, the distributed stresses may be carried over to joints
1 and 3, and the unbalance at those joints may be further distributed. The adjustments beyond
joint 2, however, will be small.

(V. S. Kelkar and R. T. Sewell, Fundamentals of the Analysis and Design of Shell Struc-
tures, Prentice-Hall, Englewood Cliffs, N.J.)

4.13 ORTHOTROPIC PLATES

Plate equations are applicable to steel plate used as a deck. Between reinforcements and
supports, a constant-thickness deck, loaded within the elastic range, acts as an isotropic
elastic plate. But when a deck is attached to reinforcing ribs or is continuous over relatively
closely spaced supports its properties change in those directions. The plate becomes anis-
tropic. And if the ribs and floorbeams are perpendicular to each other, the plate is orthog-
onal-anistropic, or orthotropic for short.

An orthotropic-plate deck, such as the type used in bridges. resembles a plane-grid frame-
work (Art. 4.11). But because the plate is part of the grid. an orthotropic-plate structure is
even more complicated to analyze. In a bridge, the steel deck plate, protected against traffic
and weathering by a wearing surface, serves as the top flange of transverse floorbeams and
longitudinal girders and is reinforced longitudinally by ribs (Fig. 4.29). The combination of
deck with beams and girders permits design of bridges with attractive long, shallow spans.

Ribs, usually of constant dimensions and closely spaced, are generally continuous at
floorbeams. The transverse beams, however, may be simply supported at girders. The beams
may be uniformly spaced at distances ranging from about 4 to 20 ft. Rib spacing ranges
from 12 to 24 in.

Ribs may be either open (Fig. 4.30a) or closed (Fig. 4.30b). Open ribs are easier to
fabricate and field splice. The underside of the deck is readily accessible for inspection and
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FIGURE 4.29 Orthotropic plate.

FIGURE 4.30 Types of ribs for orthotropic plates.

maintenance. Closed ribs, however, offer greater resistance to torsion. Load distribution con-
sequently is more favorable. Also, less steel and less welding are required than for open-rib
decks.

Because of the difference in torsional rigidity and load distribution with open and closed
ribs, different equations are used for analyzing the two types of decks. But the general
procedure is the same for both.

Stresses in an orthotropic plate are assumed to result from bending of four types of
members:

Member I comprises the plate supported by the ribs (Fig. 4.31a). Loads between the ribs
cause the plate to bend.

Member II consists of plate and longitudinal ribs. The ribs span between and are con-
tinuous at floorbeams (Fig. 4.31b). Orthotropic analysis furnishes distribution of loads to ribs
and stresses in the member.

Member III consists of the reinforced plate and the transverse floorbeams spanning be-
tween girders (Fig. 4.31c). Orthotropic analysis gives stresses in beams and plate.
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FIGURE 4.31 Four members treated in analysis of orthotropic plates.

Member IV comprises girders and plate (Fig. 4.31d ). Stresses are computed by conven-
tional methods. Hence determination of girder and plate stresses for this member will not
be discussed in this article.

The plate theoretically should be designed for the maximum principal stresses that result
from superposition of all bending stresses. In practice, however, this is not done because of
the low probability of the maximum stress and the great reserve strength of the deck as a
membrane (second-order stresses) and in the inelastic range.

Special attention, however, should be given to stability against buckling. Also, loading
should take into account conditions that may exist at intermediate erection stages.

Despite many simplifying assumptions, orthotropic-plate theories that are available and
reasonably in accord with experiments and observations of existing structures require long,
tedious computations. (Some or all of the work, however, may be done with computers to
speed up the analysis.) The following method, known as the Pelikan-Esslinger method, has
been used in design of several orthotropic plate bridges. Though complicated, it still is only
an approximate method. Consequently, several variations of it also have been used.

In one variation, members II and III are analyzed in two stages. For the first stage, the
floorbeams are assumed as rigid supports for the continuous ribs. Dead- and live-load shears,
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reactions, and bending moments in ribs and floorbeams then are computed for this condition.
For the second stage, the changes in live-load shears, reactions, and bending moments are
determined with the assumption that the floorbeams provide elastic support.

Analysis of Member I. Plate thickness generally is determined by a thickness criterion. If
the allowable live-load deflection for the span between ribs is limited to 1⁄300th of the rib
spacing, and if the maximum deflection is assumed as one-sixth of the calculated deflection
of a simply supported, uniformly loaded plate, the thickness (in) should be at least

3
t � 0.065a	p (4.162)

where a � spacing, in, of ribs
p � load, ksi

The calculated thickness may be increased, perhaps 1⁄16 in, to allow for possible metal loss
due to corrosion.

The ultimate bearing capacity of plates used in bridge decks may be checked with a
formula proposed by K. Kloeppel:

6.1ƒ tu
p � 	
 (4.163)u ua

where pu � loading, ksi, at ultimate strength

u � elongation of the steel, in per in, under stress ƒu

ƒu � ultimate tensile strength, ksi, of the steel
t � plate thickness, in

Open-Rib Deck-Member II, First Stage. Resistance of the orthotropic plate between the
girders to bending in the transverse, or x, direction and torsion is relatively small when open
ribs are used compared with flexural resistance in the y direction (Fig. 4.32a). A good
approximation of the deflection w (in) at any point (x, y) may therefore be obtained by
assuming the flexural rigidity in the x direction and torsional rigidity to be zero. In this case,
w may be determined from

4� w
D � p(x, y) (4.164)y 4�y

where Dy � flexural rigidity of orthotropic plate in longitudinal, or y, direction, in-kips
p(x, y) � load expressed as function of coordinates x and y, ksi

For determination of flexural rigidity of the deck, the rigidity of ribs is assumed to be
continuously distributed throughout the deck. Hence the flexural rigidity in the y direction
is

EIrD � (4.165)y a

where E � modulus of elasticity of steel, ksi
Ir � moment of inertia of one rib and effective portion of plate, in4

a � rib spacing, in

Equation (4.164) is analogous to the deflection equation for a beam. Thus strips of the
plate extending in the y direction may be analyzed with beam formulas with acceptable
accuracy.
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FIGURE 4.32 (a) For orthotropic-plate analysis, the x axis
lies along a floorbeam, the y axis along a girder. (b) A rib
deflects like a continuous beam. (c) Length of positive region
of rib bending-moment diagram determines effective rib span
se.

In the first stage of the analysis, bending moments are determined for one rib and the
effective portion of the plate as a continuous beam on rigid supports. (In this and other
phases of the analysis, influence lines or coefficients are useful. See, for example, Table 4.5
and Fig. 4.33.) Distribution of live load to the rib is based on the assumption that the ribs
act as rigid supports for the plate. For a distributed load with width B in, centered over the
rib, the load carried by the rib is given in Table 4.6 for B/a ranging from 0 to 3. For B/a
from 3 to 4, the table gives the load taken by one rib when the load is centered between
two ribs. The value tabulated in this range is slightly larger than that for the load centered
over a rib. Uniform dead load may be distributed equally to all the ribs.

The effective width of plate as the top flange of the rib is a function of the rib span and
end restraints. In a loaded rib, the end moments cause two inflection points to form. In
computation of the effective width, therefore, the effective span se (in) of the rib should be
taken as the distance between those points, or length of positive-moment region of the
bending-moment diagram (Fig. 4.32c). A good approximation is

s � 0.7s (4.166)e

where s is the floorbeam spacing (in).
The ratio of effective plate width a0 (in) to rib spacing a (in) is given in Table 4.6 for a

range of values of B/a and a/se. Multiplication of a0 /a by a gives the width of the top
flange of the T-shaped rib (Fig. 4.34).
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TABLE 4.5 Influence Coefficients for
Continuous Beam on Rigid Supports
Constant moment of inertia and equal
spans

y /s

Midspan
moments

at C
mC /s

End
moments

at 0
m0 / s

Reactions
at 0
r0

0 0 0 1.000
0.1 0.0215 �0.0417 0.979
0.2 0.0493 �0.0683 0.922
0.3 0.0835 �0.0819 0.835
0.4 0.1239 �0.0849 0.725

0.5 0.1707 �0.0793 0.601
0.6 0.1239 �0.0673 0.468
0.7 0.0835 �0.0512 0.334
0.8 0.0493 �0.0331 0.207
0.9 0.0215 �0.0153 0.093

1.0 0 0 0
1.2 �0.0250 0.0183 �0.110
1.4 �0.0311 0.0228 �0.137
1.6 �0.0247 0.0180 �0.108
1.8 �0.0122 0.0089 �0.053

2.0 0 0 0
2.2 0.0067 �0.0049 0.029
2.4 0.0083 �0.0061 0.037
2.6 0.0066 �0.0048 0.029
2.8 0.0032 �0.0023 0.014

3.0 0 0 0

FIGURE 4.33 Continuous beam with constant moment of inertia and equal
spans on rigid supports. (a) Coordinate y for load location for midspan mo-
ment at C. (b) Coordinate y for reaction and end moment at O.
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TABLE 4.6 Analysis Ratios for Open Ribs

Ratio of
load width

to rib
spacing

B /a

Ratio of
load on
one rib
to total

load
R0 /P

Ratio of effective plate width to rib spacing ao /a for the following ratios
of rib spacing to effective rib span a /se

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0 1.000 2.20 2.03 1.62 1.24 0.964
0.5 0.959 2.16 1.98 1.61 1.24 0.970 0.777
1.0 0.854 2.03 1.88 1.56 1.24 0.956 0.776
1.5 0.714 1.83 1.73 1.47 1.19 0.938 0.776
2.0 0.567 1.60 1.52 1.34 1.12 0.922 0.760 0.641
2.5 0.440 1.34 1.30 1.18 1.04 0.877 0.749 0.636 0.550
3.0 0.354 1.15 1.13 0.950 0.936 0.827 0.722 0.626 0.543
3.5 0.296 0.963 0.951 0.902 0.832 0.762 0.675 0.604 0.535
4.0 0.253 0.853 0.843 0.812 0.760 0.699 0.637 0.577 0.527

FIGURE 4.34 Effective width of open rib.

Open-Rib Deck-Member III, First Stage. For the condition of floorbeams acting as rigid
supports for the rib, dead-load and live-load moments for a beam are computed with the
assumption that the girders provide rigid support. The effective width so (in) of the plate
acting as the top flange of the T-shaped floorbeam is a function of the span and end restraints.
For a simply supported beam, in the computation of effective plate width, the effective span
le (in) may be taken approximately as

l � l (4.167)e

where l is the floorbeam span (in).
For determination of floorbeam shears, reactions, and moments, so may be taken as the

floorbeam spacing. For stress computations, the ratio of effective plate width so to effective
beam spacing sƒ (in) may be obtained from Table 4.7. When all beams are equally loaded

s � s (4.168)ƒ

The effect of using this relationship for calculating stresses in unequally loaded floorbeams
generally is small. Multiplication of so /sƒ given by Table 4.7 by s yields, for practical pur-
poses, the width of the top flange of the T-shaped floorbeam.

Open-Rib Deck-Member II, Second Stage. In the second stage, the floorbeams act as
elastic supports for the ribs under live loads. Deflection of the beams, in proportion to the
load they are subjected to, relieves end moments in the ribs but increases midspan moments.

Evaluation of these changes in moments may be made easier by replacing the actual live
loads with equivalent sinusoidal loads. This permits use of a single mathematical equation
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TABLE 4.7 Effective Width of Plate

ae /se ao /ae ae /se ao /ae ae /se ao /ae ae /se ao /ae

ee /se eo /ee ee /se eo /ee ee /se eo /ee ee /se eo /ee

sƒ / le so /sƒ sƒ / le so /sƒ sƒ / le so /sƒ sƒ / le so /sƒ

0 1.10 0.20 1.01 0.40 0.809 0.60 0.622
0.05 1.09 0.25 0.961 0.45 0.757 0.65 0.590
0.10 1.08 0.30 0.921 0.50 0.722 0.70 0.540
0.15 1.05 0.35 0.870 0.55 0.671 0.75 0.512

for the deflection curve over the entire floorbeam span. For this purpose, the equivalent
loading may be expressed as a Fourier series. Thus, for the coordinate system shown in Fig.
4.32a, a wheel load P kips distributed over a deck width B (in) may be represented by the
Fourier series

� n�x
Q � Q sin (4.169)�nx n ln�1

where n � integer
x � distance, in, from support
l � span, in, or distance, in, over which equivalent load is distributed

For symmetrical loading, only odd numbers need be used for n. For practical purposes, Qn

may be taken as

n�x2P P
Q � sin (4.170)n l l

where xP is the distance (in) of P from the girder.
Thus, for two equal loads P centered over xP and c in apart,

n�x4P n�cP
Q � sin cos (4.171)n l l 2l

For m pairs of such loads centered, respectively, over x1, x2, . . . , xm,

m4P n�c n�xrQ � cos sin (4.172)�n l 2l lr�1

For a load W distributed over a lane width B (in) and centered over xW,

4W n�x n�BWQ � sin sin (4.173)n n� l 2l

And for a load W distributed over the whole span,

4W
Q � (4.174)n n� l

Bending moments and reactions for the ribs on elastic supports may be conveniently
evaluated with influence coefficients. Table 4.8 lists such coefficients for midspan moment,
end moment, and reaction of a rib for a unit load over any support (Fig. 4.35).
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TABLE 4.8 Influence Coefficients for Continuous Beam on Elastic Supports

Constant moment of inertia and equal spans

Flexibility
coefficient

�

Midspan moments mC / s, for
unit load at support:

0 1 2

End moments m0 /s, for unit load
at support:

0 1 2 3

Reactions r0, for unit load
at support:

0 1 2

0.05 0.027 �0.026 �0.002 0.100 �0.045 �0.006 0.001 0.758 0.146 �0.034
0.10 0.045 �0.037 �0.010 0.142 �0.053 �0.021 0.001 0.611 0.226 �0.010
0.50 0.115 �0.049 �0.049 0.260 �0.031 �0.066 �0.032 0.418 0.256 0.069
1.00 0.161 �0.040 �0.069 0.323 �0.001 �0.079 �0.059 0.353 0.245 0.098
1.50 0.193 �0.029 �0.079 0.363 0.023 �0.082 �0.076 0.319 0.236 0.111
2.00 0.219 �0.019 �0.083 0.395 0.043 �0.181 �0.087 0.297 0.228 0.118
4.00 0.291 0.019 �0.087 0.479 0.104 �0.066 �0.108 0.250 0.206 0.127
6.00 0.341 0.049 �0.081 0.534 0.147 �0.048 �0.115 0.226 0.192 0.128
8.00 0.379 0.076 �0.073 0.577 0.182 �0.031 �0.115 0.210 0.182 0.128

10.00 0.411 0.098 �0.064 0.612 0.211 �0.015 �0.113 0.199 0.175 0.127

FIGURE 4.35 Continuous beam with constant moment of inertia and
equal spans on elastic supports. Load over support for (a) midspan mo-
ment at C, and (b) reaction and support moment at O.

The influence coefficients are given as a function of the flexibility coefficient of the
floorbeam:

4l Ir� � (4.175)4 3� s aIƒ

where Ir � moment of inertia, in, of rib, including effective width of plate
Iƒ � moment of inertia, in, of floorbeam, including effective width of plate
s � rib span, in
a � rib spacing, in

For calculation of change in moment in the rib, use of only the first term of the series
for the equivalent load Q1x yields sufficiently accurate results in calculating the change in
moments due to elasticity of the floorbeams. The increase in moment at midspan of a rib
may be computed from

r mm Cm�M � Q sa (4.176)�C 1x s
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where rm � influence coefficient for reaction of rib at support m when floorbeam provides
rigid support

mCm � influence coefficient for midspan moment at C for load at support m when
floorbeams provide elastic support

The summation in Eq. (4.176) is with respect to subscript m; that is, the effects of reactions
at all floorbeams are to be added. The decrease in end moment in the rib may be similarly
computed.

The effective width ao of the rib in this stage may be taken as 1.10a.

Open-Rib Deck-Member III, Second Stage. Deflection of a floorbeam reduces the reac-
tions of the ribs there. As a result, bending moments also are decreased. The more flexible
the floorbeams, the longer the portion of deck over which the loads are distributed and the
greater the decrease in beam moment.

The decrease may be computed from
2l

�M � Q r � r r (4.177)�� � � �ƒ 1x 0 m 0m�

where r0 � influence coefficient for reaction of rib at support 0 (floorbeam for which mo-
ment reduction is being computed) when beam provides rigid support

rm � influence coefficient for reaction of rib at support m when floorbeam provides
rigid support

r0m � influence coefficient for reaction of rib at support 0 for load over support m
when floorbeams provide elastic support

The summation of Eq. (4.177) is with respect to m; that is, the effects of reactions at all
floorbeams are to be added.

For computation of shears, reactions, and moments, the effective width of plate as the
top flange of the floorbeam may be taken as the beam spacing s. For calculation of stresses,
the effective width so may be obtained from Table 4.7 with sƒ � s.

Open-Rib Deck-Member IV. The girders are analyzed by conventional methods. The ef-
fective width of plate as the top flange on one side of each girder may be taken as half the
distance between girders on that side.

Closed-Rib Deck-Member II, First Stage. Resistance of closed ribs to torsion generally is
large enough that it is advisable not to ignore torsion. Flexural rigidity in the transverse, or
x, direction (Fig. 4.32a) may be considered negligible compared with torsional rigidity and
flexural rigidity in the y direction. A good approximation of the deflection w (in) may
therefore be obtained by assuming the flexural rigidity in the x direction to be zero. In that
case, w may be determined from

4 4� w �w
D � 2H � p(x, y) (4.178)y 4 2 2�y �x �y

where D �y flexural rigidity of the orthotropic plate in longitudinal, or y, direction, in-kips
H � torsional rigidity of orthotropic plate, in-kips

p(x, y) � load expressed as function of coordinates x and y, ksi

In the computation of Dy and H, the contribution of the plate to these parameters must
be included. For the purpose, the effective width of plate acting as the top flange of a rib is
obtained as the sum of two components. One is related to the width a (in) of the rib at the
plate. The second is related to the distance e (in) between ribs (Fig. 4.36). These components
may be computed with the aid of Table 4.7. For use with this table, the effective rib span
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FIGURE 4.36 Effective width of a closed rib.

se (in) may be found from Eq. (4.166). For determination of shears, reactions, and moments,
it is sufficiently accurate to take ae � a and ee � e. (The error in using the resulting section
for stress computations usually also will be small.) Then, in terms of the values given by
Table 4.7, the effective plate width for a closed rib is

a eo oa� � e� � a � e (4.179)o o e ea ee e

The flexural rigidity in the longitudinal direction usually is taken as the average for the
orthotropic plate. Thus

EIrD � (4.180)y a� e

where E � modulus of elasticity of steel, ksi
Ir � moment of inertia, in4, of rib, including effective plate width

Because of the flexibility of the orthotropic plate in the transverse direction, the full cross
section is not completely effective in resisting torsion. Hence the formula for computing H
includes a reduction factor v:

1 vGK
H � (4.181)

2 a � e

where G � shearing modulus of elasticity of steel � 11,200 ksi
K � torsional factor, a function of the cross section

In general, for hollow closed ribs, the torsional factor may be determined from

24ArK � (4.182)
p / t � a / te r p

where Ar � mean of area enclosed by inner and outer boundaries of rib, in2

pe � perimeter of rib, exclusive of top flange, in
tr � rib thickness, in
tp � plate thickness, in

For a trapezoidal rib, for example,

2 2(a � b) h
K � (4.183)

(b � 2h�) / t � a / tr p
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where b � width, in, of rib base
h � depth, in, of rib

h� � length, in, of rib side

The reduction factor v may be determined analytically. The resulting formulas however,
are lengthy, and their applicability to a specific construction is questionable. For a major
structure, it is advisable to verify the torsional rigidity, and perhaps also the flexural rigidities,
by model tests. For a trapezoidal rib, the reduction factor may be closely approximated by

2 3 221 GK a � e e � b b
� 1 � � � (4.184)� � �� � � � �2v EI 12(a � e) s a a � b ap e

where Ip � moment of inertia, in per in, of plate alone � tp
3 /10.92

se � effective rib span for torsion, in � 0.81s
s � rib span, in

As for open ribs, analysis of an orthotropic plate with closed ribs is facilitated by use of
influence coefficients. For computation of these coefficients, Eq. (4.178) reduces to the ho-
mogeneous equation

4 4� w �w
D � 2H � 0 (4.185)y 4 2 2�y �x �y

The solution can be given as an infinite series consisting of terms of the form

n�x
w � (C sinh � y � C cosh � y � C � y � C ) sin (4.186)n 1n n 2n n 3n n 4n l

where n � integer ranging from 1 to � (odd numbers for symmetrical loads)
l � floorbeam span, in
x � distance, in, from girder

Cm � integration constant, determined by boundary conditions

n� 2H
� � (4.187)n 
l Dy

is called the plate parameter.	H /Dy

Because of the sinusoidal form of the deflection surface [Eq. (4.186)] in the x direction,
it is convenient to represent loading by an equivalent expressed in a Fourier series [Eqs.
(4.169) to (4.174)]. Convergence of the series may be improved, however, by distributing
the loading over a width smaller than l but larger than that of the actual loading.

Influence coefficients for the ribs may be computed with the use of a carry-over factor
�n for a sinusoidal moment applied at a rigid support. If a moment M is applied at one
support of a continuous closed rib, the moment induced at the other end is �M. The carry-
over factor for a closed rib is given by

2� � 	k � 1 � k (4.188)n n n

where kn � (�ns coth �ns � 1) /�n

�n � 1 � �ns / sinh �ns

Thus there is a carry-over factor for each value of n.
Next needed for the computation of influence coefficients are shears, reactions, support

moments, and interior moments in a rib span as a sinusoidal load with unit amplitude moves
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over that span. Since an influence curve also is a deflection curve for the member, these
values can be obtained from Eq. (4.186). Consider a longitudinal section through the de-
flection surface at x � l /2n.

Then the influence coefficient for the moment at the support from which y is measured
may be computed from

y� s � � cosh � sn n nm � � sinh � y � cosh � y � (� � 1) � 1� �0n n n n2� (1 � � ) sinh � s sn n n

(4.189)

The coefficient should be determined for each value of n. (If the loading is symmetrical,
only odd values of n are needed.) To obtain the influence coefficient when the load is in the
next span, m0n should be multiplied by �n. And when the load is in either of the following
two spans, m0n should be multiplied by �n

2 and �n
3, respectively.

The influence coefficient for the bending moment at midspan may be calculated from

sinh � y � sn nm � �Cn 2� cosh (� s /2) 2�(1 � � ) cosh (� s /2)n n n n

� s sn� tanh sinh � y � cosh � y � 1 y 
 (4.190)� �n n2 2

With the influence coefficients known, the bending moment in the rib at x � l /2n can be
obtained from

� �

M � (a � e) Q m or M � (a � e) Q m (4.191)� �0 nx 0n C nx Cn
n�1 n�1

for each equivalent load Qnx. As before, a is the width (in) of the rib at the plate and e is
the distance (in) between adjoining ribs (Fig. 4.36).

Closed-Rib Deck-Member III, First Stage. In this stage, the rib reactions on the floorbeams
are computed on the assumption that the beams provide rigid support. The reactions may be
calculated with the influence coefficients in Table 4.5. The effective width of plate acting as
top flange of the floorbeam may be obtained from Table 4.7 with sƒ equal to the floorbeam
spacing and, for a simply supported beam, le � l.

Closed-Rib Deck-Members II and III, Second Stage. The analysis for the case of floor-
beams providing elastic support is much the same for a closed-rib deck as for open ribs.
Table 4.8 can supply the needed influence coefficients. The flexibility coefficient, however,
should be computed from

4l Ir� � (4.192)4 3� s (a � e)Iƒ

Similarly, the change in midspan moment in a rib can be found from Eq. (4.176) with a �
e substituted for a. And the change in floorbeam moment can be obtained from Eq. (4.177).
The effective width of plate used for first-stage calculations generally can be used for the
second stage with small error.

Closed-Rib Deck-Member IV. The girders are analyzed by conventional methods. The ef-
fective width of plate as the top flange on one side of each girder may be taken as half the
distance between girders on that side.
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(Design Manual for Orthotropic Steel Plate Deck Bridges, American Institute of Steel
Construction, Chicago, Ill.; M. S. Troitsky, Orthotropie Bridges Theory and Design, The
James F Lincoln Arc Welding Foundation, P.O. Box 3035, Cleveland, Ohio 44117; 5. P.
Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill, Inc.,
New York.)
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