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Analysis and Design 
of Beams for Bending

5

The beams supporting the multiple overhead cranes system shown in
this picture are subjected to transverse loads causing the beams to
bend. The normal stresses resulting from such loadings will be
determined in this chapter.

C H A P T E R
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308 Analysis and Design of Beams for Bending

The transverse loading of a beam may consist of concentrated loads
expressed in newtons, pounds, or their multiples, kilonewtons

and kips (Fig. 5.2a), of a distributed load w, expressed in N/m, kN/m, lb/ft,
or kips/ft (Fig. 5.2b), or of a combination of both. When the load w per
unit length has a constant value over part of the beam (as between A and
B in Fig. 5.2b), the load is said to be uniformly distributed over that part
of the beam.

Beams are classified according to the way in which they are supported.
Several types of beams frequently used are shown in Fig. 5.3. The distance
L shown in the various parts of the figure is called the span. Note that the
reactions at the supports of the beams in parts a, b, and c of the figure in-
volve a total of only three unknowns and, therefore, can be determined by
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5.1. INTRODUCTION

This chapter and most of the next one will be devoted to the analysis
and the design of beams, i.e., structural members supporting loads ap-
plied at various points along the member. Beams are usually long,
straight prismatic members, as shown in the photo on the previous page.
Steel and aluminum beams play an important part in both structural and
mechanical engineering. Timber beams are widely used in home con-
struction (Fig. 5.1). In most cases, the loads are perpendicular to the
axis of the beam. Such a transverse loading causes only bending and
shear in the beam. When the loads are not at a right angle to the beam,
they also produce axial forces in the beam.
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the methods of statics. Such beams are said to be statically determinate and
will be discussed in this chapter and the next. On the other hand, the re-
actions at the supports of the beams in parts d, e, and f of Fig. 5.3 involve
more than three unknowns and cannot be determined by the methods of
statics alone. The properties of the beams with regard to their resistance to
deformations must be taken into consideration. Such beams are said to be
statically indeterminate and their analysis will be postponed until Chap. 9,
where deformations of beams will be discussed.

Sometimes two or more beams are connected by hinges to form a sin-
gle continuous structure. Two examples of beams hinged at a point H are
shown in Fig. 5.4. It will be noted that the reactions at the supports involve
four unknowns and cannot be determined from the free-body diagram of
the two-beam system. They can be determined, however, by considering
the free-body diagram of each beam separately; six unknowns are involved
(including two force components at the hinge), and six equations are avail-
able.

It was shown in Sec. 4.1 that if we pass a section through a point C
of a cantilever beam supporting a concentrated load P at its end (Fig. 4.6),
the internal forces in the section are found to consist of a shear force 
equal and opposite to the load P and a bending couple M of moment equal
to the moment of P about C. A similar situation prevails for other types of
supports and loadings. Consider, for example, a simply supported beam AB
carrying two concentrated loads and a uniformly distributed load (Fig.
5.5a). To determine the internal forces in a section through point C we first
draw the free-body diagram of the entire beam to obtain the reactions at
the supports (Fig. 5.5b). Passing a section through C, we then draw the
free-body diagram of AC (Fig. 5.5c), from which we determine the shear
force V and the bending couple M.

The bending couple M creates normal stresses in the cross section,
while the shear force V creates shearing stresses in that section. In most
cases the dominant criterion in the design of a beam for strength is the
maximum value of the normal stress in the beam. The determination of the
normal stresses in a beam will be the subject of this chapter, while shear-
ing stresses will be discussed in Chap. 6.

Since the distribution of the normal stresses in a given section depends
only upon the value of the bending moment M in that section and the geo-
metry of the section,† the elastic flexure formulas derived in Sec. 4.4 can
be used to determine the maximum stress, as well as the stress at any given
point, in the section. We write‡

(5.1, 5.2)

where I is the moment of inertia of the cross section with respect to a
centroidal axis perpendicular to the plane of the couple, y is the dis-
tance from the neutral surface, and c is the maximum value of that dis-
tance (Fig. 4.13). We also recall from Sec. 4.4 that, introducing the elas-

sm �
0M 0 c

I
  sx � �

My

I

P¿
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†It is assumed that the distribution of the normal stresses in a given cross section is not
affected by the deformations caused by the shearing stresses. This assumption will be veri-
fied in Sec. 6.5.

‡We recall from Sec. 4.2 that M can be positive or negative, depending upon whether the
concavity of the beam at the point considered faces upward or downward. Thus, in the case
considered here of a transverse loading, the sign of M can vary along the beam. since, on the
other hand, is a positive quantity, the absolute value of M is used in Eq. (5.1).sm
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310 Analysis and Design of Beams for Bending tic section modulus of the beam, the maximum value of the
normal stress in the section can be expressed as

(5.3)

The fact that is inversely proportional to S underlines the impor-
tance of selecting beams with a large section modulus. Section moduli
of various rolled-steel shapes are given in Appendix C, while the sec-
tion modulus of a rectangular shape can be expressed, as shown in Sec.
4.4, as

(5.4)

where b and h are, respectively, the width and the depth of the cross
section.

Equation (5.3) also shows that, for a beam of uniform cross section,
is proportional to Thus, the maximum value of the normal stress

in the beam occurs in the section where is largest. It follows that one
of the most important parts of the design of a beam for a given loading
condition is the determination of the location and magnitude of the largest
bending moment.

This task is made easier if a bending-moment diagram is drawn, i.e.,
if the value of the bending moment M is determined at various points of
the beam and plotted against the distance x measured from one end of the
beam. It is further facilitated if a shear diagram is drawn at the same time
by plotting the shear V against x.

The sign convention to be used to record the values of the shear and
bending moment will be discussed in Sec. 5.2. The values of V and M will
then be obtained at various points of the beam by drawing free-body dia-
grams of successive portions of the beam. In Sec. 5.3 relations among load,
shear, and bending moment will be derived and used to obtain the shear
and bending-moment diagrams. This approach facilitates the determination
of the largest absolute value of the bending moment and, thus, the deter-
mination of the maximum normal stress in the beam.

In Sec. 5.4 you will learn to design a beam for bending, i.e., so that
the maximum normal stress in the beam will not exceed its allowable value.
As indicated earlier, this is the dominant criterion in the design of a beam.

Another method for the determination of the maximum values of the
shear and bending moment, based on expressing V and M in terms of sin-
gularity functions, will be discussed in Sec. 5.5. This approach lends itself
well to the use of computers and will be expanded in Chap. 9 to facilitate
the determination of the slope and deflection of beams.

Finally, the design of nonprismatic beams, i.e., beams with a variable
cross section, will be discussed in Sec. 5.6. By selecting the shape and size
of the variable cross section so that its elastic section modulus 
varies along the length of the beam in the same way as it is possible
to design beams for which the maximum normal stress in each section is
equal to the allowable stress of the material. Such beams are said to be of
constant strength.

0M 0 ,
S � I�c

0M 0
0M 0 :sm

S � 1
6 bh2

sm

sm �
0M 0

S

smS � I�c
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5.2. SHEAR AND BENDING-MOMENT DIAGRAMS

As indicated in Sec. 5.1, the determination of the maximum absolute
values of the shear and of the bending moment in a beam are greatly
facilitated if V and M are plotted against the distance x measured from
one end of the beam. Besides, as you will see in Chap. 9, the knowl-
edge of M as a function of x is essential to the determination of the de-
flection of a beam.

In the examples and sample problems of this section, the shear and
bending-moment diagrams will be obtained by determining the values
of V and M at selected points of the beam. These values will be found
in the usual way, i.e., by passing a section through the point where they
are to be determined (Fig. 5.6a) and considering the equilibrium of the
portion of beam located on either side of the section (Fig. 5.6b). Since
the shear forces V and have opposite senses, recording the shear at
point C with an up or down arrow would be meaningless, unless we in-
dicated at the same time which of the free bodies AC and CB we are
considering. For this reason, the shear V will be recorded with a sign:
a plus sign if the shearing forces are directed as shown in Fig. 5.6b,
and a minus sign otherwise. A similar convention will apply for the
bending moment It will be considered as positive if the bending
couples are directed as shown in that figure, and negative otherwise.†
Summarizing the sign conventions we have presented, we state:

The shear V and the bending moment M at a given point of a beam
are said to be positive when the internal forces and couples acting on
each portion of the beam are directed as shown in Fig. 5.7a.

These conventions can be more easily remembered if we note that

1. The shear at any given point of a beam is positive when the
external forces (loads and reactions) acting on the beam tend
to shear off the beam at that point as indicated in Fig. 5.7b.

2. The bending moment at any given point of a beam is positive
when the external forces acting on the beam tend to bend the
beam at that point as indicated in Fig. 5.7c.

It is also of help to note that the situation described in Fig. 5.7, in
which the values of the shear and of the bending moment are positive,
is precisely the situation that occurs in the left half of a simply sup-
ported beam carrying a single concentrated load at its midpoint. This
particular case is fully discussed in the next example.

M.

V¿
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EXAMPLE 5.01

Draw the shear and bending-moment diagrams for a simply
supported beam AB of span L subjected to a single concen-
trated load P at it midpoint C (Fig. 5.8).

We first determine the reactions at the supports from the
free-body diagram of the entire beam (Fig. 5.9a); we find that
the magnitude of each reaction is equal to 

Next we cut the beam at a point D between A and C and
draw the free-body diagrams of AD and DB (Fig. 5.9b). As-
suming that shear and bending moment are positive, we direct
the internal forces V and and the internal couples M and

as indicated in Fig. 5.7a. Considering the free body AD
and writing that the sum of the vertical components and the
sum of the moments about D of the forces acting on the free
body are zero, we find and Both the
shear and the bending moment are therefore positive; this may
be checked by observing that the reaction at A tends to shear
off and to bend the beam at D as indicated in Figs. 5.7b and c.
We now plot V and M between A and C (Figs. 5.9d and e); the
shear has a constant value while the bending mo-
ment increases linearly from at to 
at 

Cutting, now, the beam at a point E between C and B and
considering the free body EB (Fig. 5.9c), we write that the sum
of the vertical components and the sum of the moments about
E of the forces acting on the free body are zero. We obtain

and The shear is therefore neg-
ative and the bending moment positive; this can be checked
by observing that the reaction at B bends the beam at E as in-
dicated in Fig. 5.7c but tends to shear it off in a manner op-
posite to that shown in Fig. 5.7b. We can complete, now, the
shear and bending-moment diagrams of Figs. 5.9d and e; the
shear has a constant value between C and B, while
the bending moment decreases linearly from at

to at x � L.M � 0x � L�2
M � PL�4

V � �P�2

M � P 1L � x 2�2.V � �P�2

x � L�2.
M � PL�4x � 0M � 0

V � P�2,

M � �Px�2.V � �P�2
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We note from the foregoing example that, when a beam is subjected
only to concentrated loads, the shear is constant between loads and the
bending moment varies linearly between loads. In such situations, there-
fore, the shear and bending-moment diagrams can easily be drawn, once
the values of V and M have been obtained at sections selected just to
the left and just to the right of the points where the loads and reactions
are applied (see Sample Prob. 5.1).

5.2. Shear and Bending-Moment Diagrams 313

EXAMPLE 5.02

Draw the shear and bending-moment diagrams for a cantilever
beam AB of span L supporting a uniformly distributed load 
(Fig. 5.10).

We cut the beam at a point C between A and B and draw
the free-body diagram of AC (Fig. 5.11a), directing V and M
as indicated in Fig. 5.7a. Denoting by x the distance from A
to C and replacing the distributed load over AC by its result-
ant wx applied at the midpoint of AC, we write

We note that the shear diagram is represented by an oblique
straight line (Fig. 5.11b) and the bending-moment diagram by
a parabola (Fig. 5.11c). The maximum values of V and M both
occur at B, where we have

VB � �wL  MB � �1
2 wL2

�g©MC � 0 :   wx ax

2
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1
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 wx2
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314

SAMPLE PROBLEM 5.1

For the timber beam and loading shown, draw the shear and bending-moment
diagrams and determine the maximum normal stress due to bending.

SOLUTION

Reactions. Considering the entire beam as a free body, we find

Shear and Bending-Moment Diagrams. We first determine the inter-
nal forces just to the right of the 20-kN load at A. Considering the stub of beam
to the left of section 1 as a free body and assuming V and M to be positive 
(according to the standard convention), we write

We next consider as a free body the portion of beam to the left of section 2
and write

The shear and bending moment at sections 3, 4, 5, and 6 are determined
in a similar way from the free-body diagrams shown. We obtain

For several of the latter sections, the results may be more easily obtained by
considering as a free body the portion of the beam to the right of the section.
For example, for the portion of the beam to the right of section 4, we have

We can now plot the six points shown on the shear and bending-moment
diagrams. As indicated earlier in this section, the shear is of constant value be-
tween concentrated loads, and the bending moment varies linearly; we obtain
therefore the shear and bending-moment diagrams shown.

Maximum Normal Stress. It occurs at B, where is largest. We use
Eq. (5.4) to determine the section modulus of the beam:

Substituting this value and into Eq. (5.3):

Maximum normal stress in the beam � 60.0 MPa �

sm �
0MB 0

S
�
150 � 103 N � m 2

833.33 � 10�6 � 60.00 � 106 Pa

0M 0 � 0MB 0 � 50 � 103 N � m

S � 1
6 bh2 � 1

6 10.080 m2 10.250 m22 � 833.33 � 10�6  m3

0M 0

 �g©M4 � 0 :    �M4 � 114 kN2 12 m2 � 0   M4 � �28 kN � m
 �c©Fy � 0 :    V4 � 40 kN � 14 kN � 0   V4 � �26 kN

 V6 � �14 kN   M6 � 0
 V5 � �14 kN   M5 � �28 kN � m
 V4 � �26 kN   M4 � �28 kN � m
 V3 � �26 kN   M3 � �50 kN � m

 �g©M2 � 0 :  120 kN2 12.5 m2 � M2 � 0   M2 � �50 kN � m
 �c©Fy � 0 :    �20 kN � V2 � 0   V2 � �20 kN

 �g©M1 � 0 :    120 kN2 10 m2 � M1 � 0   M1 � 0
 �c©Fy � 0 :    �20 kN � V1 � 0   V1 � �20 kN

RB � 40  kN c  RD � 14  kN c

B

2.5 m 3 m 2 m

250 mm

80 mm

C
DA

20 kN 40 kN

B

1 3 52 64

2.5 m 3 m 2 m

C

D
A

20 kN

20 kN

2.5 m 3 m 2 m

40 kN

14 kN
46 kN

M1

V1

20 kN
M2

V2

20 kN

46 kN

M3

V3

20 kN

46 kN

M4

V4

20 kN 40 kN

46 kN

M5

V5

V

M

x

x

20 kN 40 kN

46 kN

14 kN

�14 kN�20 kN

�26 kN

�28 kN · m

�50 kN · m

40 kN

M6

M'4
V'4

V6
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SOLUTION

Equivalent Loading of Beam. The 10-kip load is replaced by an equiv-
alent force-couple system at D. The reaction at B is determined by consider-
ing the beam as a free body.

a. Shear and Bending-Moment Diagrams

From A to C. We determine the internal forces at a distance x from point
A by considering the portion of beam to the left of section 1. That part of the
distributed load acting on the free body is replaced by its resultant, and we
write

Since the free-body diagram shown can be used for all values of x smaller than
8 ft, the expressions obtained for V and M are valid in the region 

From C to D. Considering the portion of beam to the left of section 2
and again replacing the distributed load by its resultant, we obtain

These expressions are valid in the region 

From D to B. Using the position of beam to the left of section 3, we ob-
tain for the region 

The shear and bending-moment diagrams for the entire beam can now be plot-
ted. We note that the couple of moment applied at point D intro-
duces a discontinuity into the bending-moment diagram.

b. Maximum Normal Stress to the Left and Right of Point D. From
Appendix C we find that for the rolled-steel shape,
about the X-X axis.

To the left of D: We have Substi-
tuting for and S into Eq. (5.3), we write

To the right of D: We have Sub-
stituting for and S into Eq. (5.3), we write

sm � 14.10 ksi �sm �
0M 0
S

�
1776 kip � in.

126 in3 � 14.10 ksi

0M 0  0M 0 � 148 kip � ft � 1776 kip � in.

sm � 16.00 ksi �sm �
0M 0
S

�
2016 kip � in.

126 in3 � 16.00 ksi

0M 0  0M 0 � 168 kip � ft � 2016 kip � in.

S � 126 in3W10 � 112

20 kip � ft

V � �34 kips  M � 226 � 34 x  kip � ft

11 ft 6 x 6 16 ft

8 ft 6 x 6 11 ft.

 �g©M2 � 0 :    241x � 42 � M � 0   M � 96 � 24 x  kip � ft
 �c©Fy � 0 :    �24 � V � 0   V � �24 kips

0 6 x 6 8 ft.

 �g©M1 � 0 :    3 x112 x2 � M � 0   M � �1.5 x2 kip � ft
 �c©Fy � 0 :    �3 x � V � 0   V � �3 x kips

SAMPLE PROBLEM 5.2
The structure shown consists of a rolled-steel beam AB and of
two short members welded together and to the beam. (a) Draw the shear and
bending-moment diagrams for the beam and the given loading. (b) Determine
the maximum normal stress in sections just to the left and just to the right of
point D.

W10 � 1128 ft
3 ft

10 kips

3 kips/ft

A C D

E
B

3 ft2 ft

20 kip · ft
3 kips/ft

24 kips

318 kip · ft

10 kips 34 kips

A 1 2 3C D B

x

x

x

V

M

x

3x

x

x

M

V

M

V

2

x � 4

24 kips

� 24 kips

� 148 kip · ft

� 96 kip · ft

� 168 kip · ft

� 318 kip · ft

20 kip · ft

10
kips

8 ft 11 ft 16 ft

M

V

x � 4

x � 11

� 34 kips
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5.1 through 5.6 Draw the shear and bending-moment diagrams for the
beam and loading shown.

PROBLEMS

B

P

CA

L

ba

B

w

A

L
Fig. P5.2 and P5.8

Fig. P5.4 and P5.10

Fig. P5.5 and P5.11 Fig. P5.6 and P5.12

Fig. P5.1 and P5.7

Fig. P5.3 and P5.9
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B
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a a

C

L

w
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5.7 through 5.12 Determine the equations of the shear and bending-
moment curves for the beam and loading shown. (Place the origin at point A.)
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Problems 3175.13 and 5.14 Draw the shear and bending-moment diagrams for the
beam and loading shown, and determine the maximum absolute value (a) of
the shear, (b) of the bending moment.

BA
C D E

1.5 kN 1.2 kN 1.8 kN

100 75
Dimensions in mm

100 125

BA C D E

200 N 200 N 200 N500 N

300 300225 225

Dimensions in mm

5.15 and 5.16 Draw the shear and bending-moment diagrams for the
beam and loading shown, and determine the maximum absolute value (a) of
the shear, (b) of the bending moment.

BA
C

3 kips/ft 30 kips

3 ft6 ft

B
A

C D

4 ft 4 ft 4 ft

2 kips/ft 15 kips

5.17 and 5.18 Draw the shear and bending-moment diagrams for the
beam and loading shown, and determine the maximum absolute value (a) of
the shear, (b) of the bending moment.

BA
C D E

300 200 200 300
Dimensions in mm

3 kN 3 kN

450 N · m

400 lb 1600 lb 400 lb

12 in. 12 in. 12 in. 12 in.

8 in

8 in
C

A
D E F

G

B

Fig. P5.13

Fig. P5.15

Fig. P5.17 Fig. P5.18

Fig. P5.14

Fig. P5.16
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5.19 and 5.20 Assuming the upward reaction of the ground to be uni-
formly distributed, draw the shear and bending-moment diagrams for the beam
AB and determine the maximum value (a) of the shear, (b) of the bending 
moment.

318 Analysis and Design of Beams for Bending

B
C D E

10 kN/m 10 kN/m
36 kN

A

0.9 m 0.9 m 0.9 m 0.9 m

BA
C D

3 kips3 kips

4.5 ft
1.5 ft1.5 ft

5.21 For the beam and loading shown, determine the maximum normal
stress on a transverse section at C.

B
A

C

10 kN
3 kN/m

1.5 m 1.5 m 2.2 m

100 mm

200 mm

750 lb

BA
C D

150 lb/ft

750 lb

3 in.

12 in.

4 ft 4 ft 4 ft

5.22 For the beam and loading shown, determine the maximum normal
stress on a transverse section at the center of the beam.

5.23 For the beam and loading shown, determine the maximum normal
stress on section a-a.

BA
a b

a b

30 kN 50 kN 50 kN 30 kN

2 m

5 @ 0.8 m � 4 m

W250 � 67 BA
C

30 kips 30 kips
6 kips/ft

D E

2.5 ft.

2.5 ft.2.5 ft.
7.5 ft.

W18 � 76

5.24 For the beam and loading shown, determine the maximum normal
stress due to bending on a transverse section at C.

Fig. P5.20Fig. P5.19

Fig. P5.21
Fig. P5.22

Fig. P5.24Fig. P5.23
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5.25 and 5.26 For the beam and loading shown, determine the maxi-
mum normal stress on a transverse section at C.

5.27 Draw the shear and bending-moment diagrams for the beam and
loading shown and determine the maximum normal stress due to bending.

5.28 and 5.29 Draw the shear and bending-moment diagrams for the
beam and loading shown and determine the maximum normal stress due to
bending.

Problems 319

5.30 Knowing that draw the shear and bending-moment
diagrams for beam AB and determine the maximum normal stress due to bending.

W � 3 kips,

BA
C D E F G

25
kN

25
kN

10
kN

10
kN

10
kN

6 @ 0.375 m � 2.25 m

S200 � 27.4

Fig. P5.25 Fig. P5.26

Fig. P5.27

Fig. P5.29Fig. P5.28

Fig. P5.30

BA
C

8 kN

1.5 m 2.1 m

W310 � 60

3 kN/m

BA
C

2 kN

600 mm 400 mm

S100 � 11.5

4 kN/m

B
C D E  

A

2 kips2 kips

W12 � 16

W

3 ft 3 ft 3 ft 3 ft

BA
C D

1.6 m 1.6 m
2.4 m

W360 � 64

40 kN20 kN

BA
C D E

25 kips 25 kips 25 kips

2 ft1 ft 2 ft
6 ft

S12 � 35
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5.31 and 5.32 Draw the shear and bending-moment diagrams for the
beam and loading shown and determine the maximum normal stress due to
bending.

320 Analysis and Design of Beams for Bending

BA
C D

30 kN 50 kN

24 kN · m12 kN · m

1.2 m 1.2 m 1.2 m

W310 � 38.7

9 kN/m
30 kN · m

BA
C D

2 m 2 m 2 m

W200 � 22.5

5.33 Determine (a) the distance a for which the maximum absolute value
of the bending moment in the beam is as small as possible, (b) the correspon-
ding maximum normal stress due to bending. (Hint: Draw the bending-
moment diagram and then equate the absolute values of the largest positive
and negative bending moments obtained.)

BA

a

C D

20 kN 40 kN

W360 � 64

2.4 m
1.6 m

BA

a

C D

500 kN 500 kN 12 mm

18 mm

500 mm500 mm

5.34 For the beam and loading shown, determine (a) the distance a for
which the maximum absolute value of the bending moment in the beam is as
small as possible, (b) the corresponding maximum normal stress due to bend-
ing. (See hint of Prob. 5.33.)

B
C D E  

A

2 kips2 kips

W12 � 16

W

3 ft 3 ft 3 ft 3 ft

5.35 Determine (a) the magnitude of the counterweight W for which the
maximum absolute value of the bending moment in the beam is as small as
possible, (b) the corresponding maximum normal stress due to bending. (See
hint of Prob. 5.33.)

Fig. P5.32

Fig. P5.34Fig. P5.33

Fig. P5.35

Fig. P5.31
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5.36 For the beam and loading shown, determine (a) the distance a for
which the maximum absolute value of the bending moment in the beam is as
small as possible, (b) the corresponding maximum normal stress due to bend-
ing. (See hint of Prob. 5.33).

5.40 A solid steel rod of diameter d is supported as shown. Knowing
that for steel determine the smallest diameter d that can be
used if the normal stress due to bending is not to exceed 4 ksi.

g � 490 lb/ft3,

Fig. P5.36

Fig. P5.37

Fig. P5.38

Problems 321

BA

a 1.5 ft 1.2 ft 0.9 ft

C D E

1.2 kips
1.2 kips0.8 kips

S3 � 5.7

5.37 and 5.38 Draw the shear and bending-moment diagrams for the
beam and loading shown and determine the maximum normal stress due to
bending.

HA

7 @ 200 mm � 1400 mm

Hinge

30 mm

20 mm

CB D E F G

300 N 300 N 300 N40 N

5.39 A solid steel bar has a square cross section of side b and is sup-
ported as shown. Knowing that for steel determine the di-
mension b of the bar for which the maximum normal stress due to bending is
(a) 10 MPa, (b) 50 MPa.

r � 7860 kg/m3,

B

b

b
A DC

1.2 m 1.2 m 1.2 m

Hinge

8 ft

2 ft

5 ft 5 ft

CB
A E

D

4.8 kips/ft 32 kips

W12 � 40

B

d

A

L � 10 ft

Fig. P5.39 Fig. P5.40
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322 Analysis and Design of Beams for Bending 5.3. RELATIONS AMONG LOAD, SHEAR,
AND BENDING MOMENT

When a beam carries more than two or three concentrated loads, or
when it carries distributed loads, the method outlined in Sec. 5.2 for
plotting shear and bending moment can prove quite cumbersome. The
construction of the shear diagram and, especially, of the bending-
moment diagram will be greatly facilitated if certain relations existing
among load, shear, and bending moment are taken into consideration.

Let us consider a simply supported beam AB carrying a distributed
load w per unit length (Fig. 5.12a), and let C and be two points of
the beam at a distance from each other. The shear and bending mo-
ment at C will be denoted by V and M, respectively, and will be as-
sumed positive; the shear and bending moment at will be denoted
by and 

We now detach the portion of beam and draw its free-body di-
agram (Fig. 5.12b). The forces exerted on the free body include a load
of magnitude w and internal forces and couples at C and Since
shear and bending moment have been assumed positive, the forces and
couples will be directed as shown in the figure.

Relations between Load and Shear. Writing that the sum of the ver-
tical components of the forces acting on the free body is zero, we
have

Dividing both members of the equation by and then letting ap-
proach zero, we obtain

(5.5)

Equation (5.5) indicates that, for a beam loaded as shown in Fig. 5.12a,
the slope of the shear curve is negative; the numerical value of
the slope at any point is equal to the load per unit length at that point.

Integrating (5.5) between points C and D, we write

(5.6)

Note that this result could also have been obtained by considering the
equilibrium of the portion of beam CD, since the area under the load
curve represents the total load applied between C and D.

It should be observed that Eq. (5.5) is not valid at a point where a
concentrated load is applied; the shear curve is discontinuous at such a
point, as seen in Sec. 5.2. Similarly, Eqs. (5.6) and cease to be
valid when concentrated loads are applied between C and D, since they
do not take into account the sudden change in shear caused by a con-
centrated load. Equations (5.6) and therefore, should be applied
only between successive concentrated loads.

15.6¿ 2,

15.6¿ 2

15.6¿ 2VD � VC � �1area under load curve between C and D2

VD � VC � ��
xD

xC

w dx

d V�dx

dV

dx
� �w

¢x¢x

¢V � �w ¢x
V � 1V � ¢V2 � w ¢x � 0�c©Fy � 0 :

CC¿

C¿.¢x

CC¿
M � ¢M.V � ¢V

C¿

¢x
C¿

BA
C

w

D

�x

C'

x

(a)

�x

�x

w �x

w

C C'

(b)

1
2

V

M M � �M

V � �V

Fig. P5.12
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5.3. Relations among Load, Shear, 323
and Bending Moment

Relations between Shear and Bending Moment. Returning to the
free-body diagram of Fig. 5.12b, and writing now that the sum of the
moments about is zero, we have

Dividing both members of the equation by and then letting ap-
proach zero, we obtain

(5.7)

Equation (5.7) indicates that the slope of the bending-moment
curve is equal to the value of the shear. This is true at any point where
the shear has a well-defined value, i.e., at any point where no concen-
trated load is applied. Equation (5.7) also shows that at points
where M is maximum. This property facilitates the determination of the
points where the beam is likely to fail under bending.

Integrating (5.7) between points C and D, we write

(5.8)

Note that the area under the shear curve should be considered positive
where the shear is positive and negative where the shear is negative.
Equations (5.8) and are valid even when concentrated loads are
applied between C and D, as long as the shear curve has been correctly
drawn. The equations cease to be valid, however, if a couple is applied
at a point between C and D, since they do not take into account the
sudden change in bending moment caused by a couple (see Sample
Prob. 5.6).

15.8¿ 2

15.8¿ 2MD � MC � area under shear curve between C and D

MD � MC � �
xD

xC

V dx

V � 0

dM�dx

dM

dx
� V

¢x¢x

¢M � V ¢x �
1

2
 w 1¢x22

1M � ¢M2 � M � V ¢x � w ¢x 
¢x

2
� 0�g�MC¿ � 0 :

C¿

EXAMPLE 5.03

Draw the shear and bending-moment diagrams for the simply
supported beam shown in Fig. 5.13 and determine the maxi-
mum value of the bending moment.

From the free-body diagram of the entire beam, we de-
termine the magnitude of the reactions at the supports.

Next, we draw the shear diagram. Close to the end A of the
beam, the shear is equal to that is, to as we can check
by considering as a free body a very small portion of the beam.

1
2wL,RA,

RA � RB � 1
2wL

B

w

A

L

B

w

A

RB� wL1
2RA� wL1

2

Fig. 5.13
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In most engineering applications, one needs to know the value of
the bending moment only at a few specific points. Once the shear dia-
gram has been drawn, and after M has been determined at one of the
ends of the beam, the value of the bending moment can then be ob-
tained at any given point by computing the area under the shear curve
and using Eq. For instance, since for the beam of Ex-
ample 5.03, the maximum value of the bending moment for that beam
can be obtained simply by measuring the area of the shaded triangle in
the shear diagram of Fig. 5.14a. We have

We note that, in this example, the load curve is a horizontal straight
line, the shear curve an oblique straight line, and the bending-moment
curve a parabola. If the load curve had been an oblique straight line
(first degree), the shear curve would have been a parabola (second de-
gree) and the bending-moment curve a cubic (third degree). The shear
and bending-moment curves will always be, respectively, one and two
degrees higher than the load curve. With this in mind, we should be
able to sketch the shear and bending-moment diagrams without actu-
ally determining the functions V(x) and M(x), once a few values of the
shear and bending moment have been computed. The sketches obtained
will be more accurate if we make use of the fact that, at any point where
the curves are continuous, the slope of the shear curve is equal to 
and the slope of the bending-moment curve is equal to V.

�w

Mmax �
1

2
 
L

2
 
wL

2
�

wL2

8

MA � 015.8¿ 2.

Using Eq. (5.6), we then determine the shear V at any distance
x from A; we write

The shear curve is thus an oblique straight line which crosses
the x axis at (Fig. 5.14a). Considering, now, the bend-
ing moment, we first observe that The value M of the
bending moment at any distance x from A may then be ob-
tained from Eq. (5.8); we have

The bending-moment curve is a parabola. The maximum value
of the bending moment occurs when since V (and
thus ) is zero for that value of x. Substituting 
in the last equation, we obtain (Fig. 5.14b).Mmax � wL2�8

x � L�2dM�dx
x � L�2,

M � �
x

0

w112L � x2  dx � 1
2w1L x � x22

M � MA � �
x

0

V dx

MA � 0.
x � L�2

V � VA � wx � 1
2 wL � wx � w112L � x2

V � VA � ��
x

0

w dx � �wx

Fig. 5.14

� wL1
2

wL1
2

wL21
8

L L1
2

L1
2

x

V

M (a)

(b)

L

x
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SAMPLE PROBLEM 5.3
Draw the shear and bending-moment diagrams for the beam and loading shown.

SOLUTION

Reactions. Considering the entire beam as a free body, we write

We also note that at both A and E the bending moment is zero; thus two points
(indicated by dots) are obtained on the bending-moment diagram.

Shear Diagram. Since we find that between concentrated
loads and reactions the slope of the shear diagram is zero (i.e., the shear is con-
stant). The shear at any point is determined by dividing the beam into two parts
and considering either part as a free body. For example, using the portion of
beam to the left of section 1, we obtain the shear between B and C:

We also find that the shear is kips just to the right of D and zero at end E.
Since the slope is constant between D and E, the shear diagram
between these two points is a straight line.

Bending-Moment Diagram. We recall that the area under the shear
curve between two points is equal to the change in bending moment between
the same two points. For convenience, the area of each portion of the shear di-
agram is computed and is indicated in parentheses on the diagram. Since the
bending moment at the left end is known to be zero, we write

Since is known to be zero, a check of the computations is obtained.
Between the concentrated loads and reactions the shear is constant; thus,

the slope is constant and the bending-moment diagram is drawn by con-
necting the known points with straight lines. Between D and E where the shear
diagram is an oblique straight line, the bending-moment diagram is a parabola.

From the V and M diagrams we note that and 
108 kip � ft.

Mmax �Vmax � 18 kips

dM�dx

ME

 ME � MD � �48   ME � 0
  MD � � 48 kip � ft MD � MC � �140
MC � � 92 kip � ft MC � MB � �16

 MB � MA � �108   MB � �108 kip � ft

MA

dV�dx � �w
�12

V � �2 kips�18 kips � 20 kips � V � 0�c  �Fy � 0:

dV�dx � �w,

 A x � 0Ax � 0S� �Fx � 0:
 A  y � 18 kips cAy � �18 kips

Ay � 20 kips � 12 kips � 26 kips � 12 kips � 0�c �Fy � 0:
 D � 26 kips cD � �26 kips

D124 ft2� 120 kips2 16 ft2 � 112 kips2 114 ft2 � 112 kips2 128 ft2 � 0
�g �MA � 0:

EA
B C

6 ft

20 kips 12 kips 1.5 kips/ft

8 ft 8 ft10 ft

D

E

E

A

A

Ax

Ay

B C

6 ft

4 ft

20 kips 12 kips

20 kips

20 kips

12 kips

26 kips18 kips

18 kips

V (kips)

M (kip · ft)

x

x

�18
(�108)

�108

�92

�48

(�48)

(�140)

�12

(�16)

�2

�14

15 kips/ft

12 kips

8 ft 8 ft10 ft

D

B 1 C D

D

M

V
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SAMPLE PROBLEM 5.4
The rolled-steel beam AC is simply supported and carries the uni-
formly distributed load shown. Draw the shear and bending-moment diagrams
for the beam and determine the location and magnitude of the maximum nor-
mal stress due to bending.

W360 � 79
C

B
A

20 kN/m

6 m 3 m

C

C

B

w

A

V

D B

b

a

A

20 kN/m

80 kN

80 kN

(�160)

(�120)

40 kN

�40 kN(�40)

6 m

x � 4m
160 kN · m

120 kN · m

x

M

A

x

x

SOLUTION

Reactions. Considering the entire beam as a free body, we find

Shear Diagram. The shear just to the right of A is Since
the change in shear between two points is equal to minus the area under the
load curve between the same two points, we obtain by writing

The slope being constant between A and B, the shear diagram
between these two points is represented by a straight line. Between B and C,
the area under the load curve is zero; therefore,

and the shear is constant between B and C.

Bending-Moment Diagram. We note that the bending moment at each
end of the beam is zero. In order to determine the maximum bending moment,
we locate the section D of the beam where We write

and, solving for x:

The maximum bending moment occurs at point D, where we have
The areas of the various portions of the shear diagram are

computed and are given (in parentheses) on the diagram. Since the area of the
shear diagram between two points is equal to the change in bending moment
between the same two points, we write

The bending-moment diagram consists of an arc of parabola followed by a seg-
ment of straight line; the slope of the parabola at A is equal to the value of V
at that point.

Maximum Normal Stress. It occurs at D, where is largest. From
Appendix C we find that for a rolled-steel shape,
about a horizontal axis. Substituting this value and 

into Eq. (5.3), we write

Maximum normal stress in the beam � 125.0 MPa �

sm �
0MD 0

S
�

160 � 103 N � m

1280 � 10�6 m3 � 125.0 � 106 Pa

0MD 0 � 160 � 103 N � m
|M| �

S � 1280 mm3W360 � 79
0M 0

MC � MB � � 120 kN � m   MC � 0
MB � MD � �  40 kN � m   MB �  �120 kN � m

MD � MA � � 160 kN � m   MD �  �160 kN � m

dM�dx � V � 0.

x � 4 m �

 0 � 80 kN � � 120 kN/m 2  x
 VD � VA � �wx

V � 0.

VC � VB � 0  VC � VB � �40 kN

dV�dx � �w

 VB � �120 � VA � �120 � 80 � �40 kN
 VB � VA � � 120 kN/m 2 16 m 2 � �120 kN

VB

VA � �80 kN.

RC � 40 kN  cRA � 80 kN  c
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SAMPLE PROBLEM 5.5
Sketch the shear and bending-moment diagrams for the cantilever beam shown.

SOLUTION

Shear Diagram. At the free end of the beam, we find Between
A and B, the area under the load curve is we find by writing

Between B and C, the beam is not loaded; thus At A, we have 
and, according to Eq. (5.5), the slope of the shear curve is while
at B the slope is Between A and B, the loading decreases linearly,
and the shear diagram is parabolic. Between B and C, and the shear
diagram is a horizontal line.

Bending-Moment Diagram. The bending moment at the free end
of the beam is zero. We compute the area under the shear curve and write

The sketch of the bending-moment diagram is completed by recalling that
We find that between A and B the diagram is represented by a

cubic curve with zero slope at A, and between B and C by a straight line.
dM�dx � V.

 MC � �1
6 w0 

a13L � a2
 MC � MB � �1

2 w0 
a1L � a2

 MB � MA � �1
3 w0 

a2  MB � �1
3 w0 

a2

MA

w � 0,
dV�dx � 0.

dV�dx � �w0,
w � w0VC � VB.

VB � VA � �1
2 w0 

a  VB � �1
2 w0 

a

VB
1
2 w0 

a;
VA � 0.

CB

w0

A

V

M

a

L

 � w0a21
3  � w0a(L � a)1

2

 � w0a1
2

 � w0a21
3

 � w0a(3L � a)1
6

 � w0a

x

x

1
2

SAMPLE PROBLEM 5.6
The simple beam AC is loaded by a couple of moment T applied at point B.
Draw the shear and bending-moment diagrams of the beam.

SOLUTION

The entire beam is taken as a free body, and we obtain

The shear at any section is constant and equal to Since a couple is ap-
plied at B, the bending-moment diagram is discontinuous at B; it is represented
by two oblique straight lines and decreases suddenly at B by an amount equal
to T.

T�L.

RA �
T

L
 c  RC �

T

L
 T

C
B

A

V

M

�T(1 � )

L

x

x

T
a

T
L

a
L

T a
L
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PROBLEMS

5.41 Using the method of Sec. 5.3, solve Prob. 5.1.

5.42 Using the method of Sec. 5.3, solve Prob. 5.2.

5.43 Using the method of Sec. 5.3, solve Prob. 5.3.

5.44 Using the method of Sec. 5.3, solve Prob. 5.4.

5.45 Using the method of Sec. 5.3, solve Prob. 5.5.

5.46 Using the method of Sec. 5.3, solve Prob. 5.6.

5.47 Using the method of Sec. 5.3, solve Prob. 5.13.

5.48 Using the method of Sec. 5.3, solve Prob. 5.14.

5.49 Using the method of Sec. 5.3, solve Prob. 5.15.

5.50 Using the method of Sec. 5.3, solve Prob. 5.16.

5.51 and 5.52 Draw the shear and bending-moment diagrams for the
beam and loading shown, and determine the maximum absolute value (a) of
the shear, (b) of the bending moment.

5.53 Using the method of Sec. 5.3, solve Prob. 5.21.

5.54 Using the method of Sec. 5.3, solve Prob. 5.22.

5.55 Using the method of Sec. 5.3, solve Prob. 5.23.

5.56 Using the method of Sec. 5.3, solve Prob. 5.24.

328

B

FE

A
DC

240 mm 240 mm 240 mm

60 mm60 mm

120 N 120 N

300 N 300 N

CA D

E
F

B

200 mm

75 mm

200 mm 200 mm
Fig. P5.52Fig. P5.51
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Problems 3295.57 and 5.58 Determine (a) the equations of the shear and bending-
moment curves for the given beam and loading, (b) the maximum absolute
value of the bending moment in the beam.

B
x

w

w � w0   l –( (

A

L

x
L

B
x

w w � w0 sin

A

L

� x
L

5.59 Determine (a) the equations of the shear and bending-moment
curves for the given beam and loading, (b) the maximum absolute value of the
bending moment in the beam.

B
x

w
w � w0 (      )1/2

A

L

x/L

x

w

w0

– kw0

L

5.60 For the beam and loading shown, determine the equations of the
shear and bending-moment curves and the maximum absolute value of the
bending moment in the beam, knowing that (a) (b) 

5.61 and 5.62 Draw the shear and bending-moment diagrams for the
beam and loading shown and determine the maximum normal stress due to
bending.

k � 0.5.k � 1,

C
A B

0.9 m
3 m

12 kN/m
9 kN

W200 � 19.3

A B

16 kN/m

1 m1.5 m

S150 � 18.6

Fig. P5.61 Fig. P5.62

Fig. P5.57 Fig. P5.58

Fig. P5.59 Fig. P5.60
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5.63 and 5.64 Draw the shear and bending-moment diagrams for the
beam and loading shown and determine the maximum normal stress due to
bending.

330 Analysis and Design of Beams for Bending

5.65 and 5.66 Draw the shear and bending-moment diagrams for the
beam and loading shown and determine the maximum normal stress due to
bending.

C D
A B

6 ft 6 ft
2 ft

2 kips/ft
6 kips

W8 � 31

5.67 and 5.68 Draw the shear and bending-moment diagrams for the
beam and loading shown and determine the maximum normal stress due to
bending.

B

CA

8 in.
20 in.

3 in.

800 lb/in.

2    in.1
2

1    in.1
4

A
B

4 kN/m

2 kN

C

600 mm
400 mm

S100 � 11.5

C
A B 10 in.

8 ft 4 ft
3 in.

3 kips/ft
12 kip · ft

Fig. P5.63

C
A B

3 ft
12 ft 8 in.

7 in.1.2 kips/ft

2.4 kips

Fig. P5.65

BDC

250 kN 150 kN

A

2 m 2 m 2 m

W410 � 114

Fig. P5.67

Fig. P5.64

Fig. P5.66

Fig. P5.68
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*5.73 Beam AB supports a uniformly distributed load of and
two concentrated loads P and Q. It has been experimentally determined that
the normal stress due to bending on the bottom edge of the lower flange of the

rolled-steel beam is 100 MPa at D and 70 MPa at E. (a) Draw
the shear and bending-moment diagrams for the beam. (b) Determine the max-
imum normal stress due to bending that occurs in the beam.

W200 � 52

8 kN/m

Problems 3315.69 Beam AB, of length L and square cross section of side a, is sup-
ported by a pivot at C and loaded as shown. (a) Check that the beam is in equi-
librium. (b) Show that the maximum normal stress due to bending occurs at C
and is equal to w0L2/ 11.5a23.

Fig. P5.69 Fig. P5.70

Fig. P5.72

5.70 Knowing that rod AB is in equilibrium under the loading shown,
draw the shear and bending-moment diagrams and determine the maximum
normal stress due to bending.

*5.71 Beam AB supports a uniformly distributed load of and
two concentrated loads P and Q. It has been experimentally determined that
the normal stress due to bending on the bottom edge of the beam is 
at A and at C. Draw the shear and bending-moment diagrams for
the beam and determine the magnitudes of the loads P and Q.

*5.72 Beam AB supports a uniformly distributed load of and
two concentrated loads P and Q. It has been experimentally determined that
the normal stress due to bending on the bottom edge of the lower flange of the

rolled-steel beam is at D and at E. (a) Draw
the shear and bending-moment diagrams for the beam. (b) Determine the max-
imum normal stress due to bending that occurs in the beam.

�0.776 ksi�2.07 ksiW10 � 22

1000 lb/ft

�29.9 MPa
�56.9 MPa

2 kN/m

B

a

aA

2 L
3

C

w0

L
3

2 ft

5 ft
3 ft

4 ft

D E
A

F
B

C

1000 lb/ft
W10 � 22

P Q

BA

1.2 ft 1.2 ft

C

w0 � 50 lb/ft

T

w0

3
4 in.

Fig. P5.71

C D BA

2 kN/m

P

0.1 m 0.1 m 0.125 m

36 mm

18 mm
Q

Fig. P5.73

B

8 kN/m

A

P Q

C D FE
W200 � 52

0.3 m 0.3 m

0.45 m 0.45 m
2.4 m
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332 Analysis and Design of Beams for Bending *5.74 Beam AB supports two concentrated loads P and Q. It has been
experimentally determined that the normal stress due to bending on the bot-
tom edge of the beam is at C and at E. (a) Draw the
shear and bending-moment diagrams for the beam. (b) Determine the maxi-
mum normal stress due to bending that occurs in the beam.

�22 MPa�15 MPa

5.4. DESIGN OF PRISMATIC BEAMS FOR BENDING

As indicated in Sec. 5.1, the design of a beam is usually controlled by
the maximum absolute value of the bending moment that will
occur in the beam. The largest normal stress in the beam is found
at the surface of the beam in the critical section where occurs
and can be obtained by substituting for in Eq. (5.1) or Eq.

† We write

A safe design requires that where is the allowable stress
for the material used.  Substituting for in and solving for
S yields the minimum allowable value of the section modulus for the
beam being designed:

(5.9)

The design of common types of beams, such as timber beams of
rectangular cross section and rolled-steel beams of various cross-sec-
tional shapes, will be considered in this section. A proper procedure
should lead to the most economical design. This means that, among
beams of the same type and the same material, and other things being
equal, the beam with the smallest weight per unit length—and, thus,
the smallest cross-sectional area—should be selected, since this beam
will be the least expensive.

Smin �
0M 0max

sall

15.3¿ 2smsall

sallsm � sall 
,

15.1¿, 5.3¿ 2sm �
0M 0max c

I
  sm �

0M 0max

S

15.32.
0M 00M 0max

0M 0max

sm

0M 0max

EC
A B

FD
60 mm

0.3 m 0.4 m

0.5 m 0.5 m
0.2 m

24 mm

P Q

Fig. P5.74

†For beams that are not symmetrical with respect to their neutral surface, the largest of the
distances from the neutral surface to the surfaces of the beam should be used for c in Eq.
(5.1) and in the computation of the section modulus S � I/c.
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The design procedure will include the following steps†:

1. First determine the value of for the material selected from
a table of properties of materials or from design specifications.
You can also compute this value by dividing the ultimate
strength of the material by an appropriate factor of safety
(Sec. 1.13).  Assuming for the time being that the value of 
is the same in tension and in compression, proceed as follows.

2. Draw the shear and bending-moment diagrams corresponding
to the specified loading conditions, and determine the maxi-
mum absolute value of the bending moment in the beam.

3. Determine from Eq. (5.9) the minimum allowable value of
the section modulus of the beam.

4. For a timber beam, the depth h of the beam, its width b, or the
ratio characterizing the shape of its cross section will prob-
ably have been specified. The unknown dimensions may then
be selected by recalling from Eq. (4.19) of Sec. 4.4 that b and
h must satisfy the relation 

5. For a rolled-steel beam, consult the appropriate table in Ap-
pendix C. Of the available beam sections, consider only those
with a section modulus and select from this group the
section with the smallest weight per unit length. This is the
most economical of the sections for which Note that
this is not necessarily the section with the smallest value of S
(see Example 5.04). In some cases, the selection of a section
may be limited by other considerations, such as the allowable
depth of the cross section, or the allowable deflection of the
beam (cf. Chap. 9).

The foregoing discussion was limited to materials for which is
the same in tension and in compression. If is different in tension
and in compression, you should make sure to select the beam section
in such a way that for both tensile and compressive stresses.
If the cross section is not symmetric about its neutral axis, the largest
tensile and the largest compressive stresses will not necessarily occur
in the section where is maximum. One may occur where M is max-
imum and the other where M is minimum. Thus, step 2 should include
the determination of both and and step 3 should be modi-
fied to take into account both tensile and compressive stresses.

Finally, keep in mind that the design procedure described in this
section takes into account only the normal stresses occurring on the sur-
face of the beam. Short beams, especially those made of timber, may
fail in shear under a transverse loading. The determination of shearing
stresses in beams will be discussed in Chap. 6. Also, in the case of
rolled-steel beams, normal stresses larger than those considered here
may occur at the junction of the web with the flanges. This will be dis-
cussed in Chap. 8.

Mmin,Mmax

0M 0

sm � sall

sall

sall

S � Smin.

S � Smin

1
6 bh2 � S � Smin.

h�b

Smin

0M 0max

sall

sU

sall

5.4. Design of Prismatic Beams for Bending 333

†We assume that all beams considered in this chapter are adequately braced to prevent lat-
eral buckling, and that bearing plates are provided under concentrated loads applied to rolled-
steel beams to prevent local buckling (crippling) of the web.

bee59355_ch05_331-340  4/5/01  2:50 PM  Page 333



*Load and Resistance Factor Design. This alternative method of de-
sign was briefly described in Sec. 1.13 and applied to members under
axial loading. It can readily be applied to the design of beams in bend-
ing. Replacing in Eq. (1.26) the loads and respectively, by
the bending moments and we write

(5.10)

The coefficients and are referred to as the load factors and the
coefficient as the resistance factor. The moments and are the
bending moments due, respectively, to the dead and the live loads, while

is equal to the product of the ultimate strength of the material
and the section modulus S of the beam: MU � SsU.

sUMU

MLMDf
gLgD

gD 
MD � gLML � fMU

MU,MD, ML,
PU,PD, PL,

EXAMPLE 5.04

Select a wide-flange beam to support the 15-kip load as shown
in Fig. 5.15. The allowable normal stress for the steel used is
24 ksi.

4. Referring to the table of Properties of Rolled-Steel
Shapes in Appendix C, we note that the shapes are
arranged in groups of the same depth and that in each
group they are listed in order of decreasing weight.
We choose in each group the lightest beam having a
section modulus at least as large as and
record the results in the following table.

Shape S, in

81.6
88.9
64.7
62.7
64.7
60.0

The most economical is the shape since it weighs
only even though it has a larger section modulus than
two of the other shapes. We also note that the total weight of
the beam will be This weight is
small compared to the 15,000-1b load and can be neglected in
our analysis.

18 ft2 � 140 lb 2 � 320 lb.

40 lb/ft,
W16 � 40

W10 � 54
W12 � 50
W14 � 43
W16 � 40
W18 � 50
W21 � 44

3

SminS � I�c

15 kips
8 ft

A B

Fig. 5.15

334

1. The allowable normal stress is given:

2. The shear is constant and equal to 15 kips. The bend-
ing moment is maximum at B. We have

3. The minimum allowable section modulus is

Smin �
0M 0max

sall

�
1440 kip � in.

24 ksi
� 60.0 in3

0M 0 max � 115 kips2 18 ft2 � 120 kip � ft � 1440 kip � in.

sall � 24 ksi.
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335

B
A

V

A

Ax
Ay

B

C

8 ft 4 ft

3.2 kips
4.5 kips

(�18)

(�18)

4.50
kips

�3.85 kips

�0.65
kips

CB x

B
A C h

8 ft 4 ft

3.5 in.400 lb/ft 4.5 kips SAMPLE PROBLEM 5.7
A 12-ft-long overhanging timber beam AC with an 8-ft span AB is
to be designed to support the distributed and concentrated loads
shown. Knowing that timber of 4-in. nominal width (3.5-in. actual
width) with a 1.75-ksi allowable stress is to be used, determine the
minimum required depth h of the beam.

SOLUTION

Reactions. Considering the entire beam as a free body, we write

Shear Diagram. The shear just to the right of A is 
Since the change in shear between A and B is equal to minus the area under
the load curve between these two points, we obtain by writing

The reaction at B produces a sudden increase of 8.35 kips in V, resulting in a
value of the shear equal to 4.50 kips to the right of B. Since no load is applied
between B and C, the shear remains constant between these two points.

Determination of We first observe that the bending moment is
equal to zero at both ends of the beam: Between A and B the
bending moment decreases by an amount equal to the area under the shear
curve, and between B and C it increases by a corresponding amount. Thus, the
maximum absolute value of the bending moment is 

Minimum Allowable Section Modulus. Substituting into Eq. (5.9) the
given value of and the value of that we have found, we write

Minimum Required Depth of Beam. Recalling the formula developed
in part 4 of the design procedure described in Sec. 5.4 and substituting the val-
ues of b and we have

The minimum required depth of the beam is h � 14.55 in. �

1
6 bh2 � Smin  1

6 13.5 in.2h2 � 123.43 in3  h � 14.546 in.

Smin 
,

Smin �
0M 0 max

sall
�
118 kip � ft2 112 in./ft2

1.75 ksi
� 123.43 in3

0M 0 maxsall

0M 0 max � 18.00 kip � ft.

MA � MC � 0.
0M 0max 

.

 VB � VA � 3.20 kips � �0.65 kips � 3.20 kips � �3.85 kips.
 VB � VA � � 1400 lb/ft2 18 ft2 � �3200 lb � �3.20 kips

VB

VA � Ay � �0.65 kips.

 A � 0.65 kips T Ay � �0.65 kips
�c �Fy � 0: Ay � 8.35 kips � 3.2 kips � 4.5 kips � 0

 Ax � 0�S�Fx � 0:

 B � 8.35 kips c B � 8.35 kips
�g �MA � 0: B 18 ft2 � 13.2 kips2 14 ft2 � 14.5 kips2 112 ft2 � 0
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SAMPLE PROBLEM 5.8
A 5-m-long, simply supported steel beam AD is to carry the distributed and con-
centrated loads shown. Knowing that the allowable normal stress for the grade
of steel to be used is 160 MPa, select the wide-flange shape that should be used.

SOLUTION

Reactions. Considering the entire beam as a free body, we write

Shear Diagram. The shear just to the right of A is 
Since the change in shear between A and B is equal to minus the area under
the load curve between these two points, we have

The shear remains constant between B and C, where it drops to and
keeps this value between C and D. We locate the section E of the beam where

by writing

Solving for x we find 

Determination of The bending moment is maximum at E,
where Since M is zero at the support A, its maximum value at E is
equal to the area under the shear curve between A and E. We have, therefore,

Minimum Allowable Section Modulus. Substituting into Eq. (5.9) the
given value of and the value of that we have found, we write

Selection of Wide-Flange Shape. From Appendix C we compile a list
of shapes that have a section modulus larger than and are also the light-
est shape in a given depth group.

Shape S,

637
474
549
535
448

We select the lightest shape available, namely W360 � 32.9 �

W200 � 46.1
W250 � 44.8
W310 � 38.7
W360 � 32.9
W410 � 38.8

mm3

Smin

Smin �
0M 0max

sall
�

67.6 kN � m

160 MPa
� 422.5 � 10�6 m3 � 422.5 � 103 mm3

0M 0 maxsall

0M 0 max � ME � 67.6 kN � m

V � 0.
0M 0max 

.

x � 2.60 m.

 0 � 52.0 kN � � 120 kN/m 2  x
 VE � VA � �wx

V � 0

�58 kN,

VB � 52.0 kN � 60 kN � �8 kN

�52.0 kN.VA � Ay �

A � 52.0 kN cAy � 52.0 kN
�c �Fy � 0: Ay � 58.0 kN � 60 kN � 50 kN � 0

 Ax � 0�S�Fx � 0:
D � 58.0 kN cD � 58.0 kN

�g �MA � 0: D15 m 2 � 160 kN 2 11.5 m 2 � 150 kN 2 14 m 2 � 0

B

A

C D

3 m
1 m 1 m

20 kN
50 kN

CB D

1.5 m

52 kN

x � 2.6 m

�58 kN

�8 kN

(67.6)

1.5 m
1 m 1 m

50 kN

D

A

V

A
E B C D

x

Ax
Ay

60 kN

336
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5.75 and 5.76 For the beam and loading shown, design the cross sec-
tion of the beam, knowing that the grade of timber used has an allowable nor-
mal stress of 12 MPa.

337

PROBLEMS

1.8 kN 3.6 kN

CB
A D h

0.8 m 0.8 m 0.8 m

40 mm

5.77 and 5.78 For the beam and loading shown, design the cross sec-
tion of the beam, knowing that the grade of timber used has an allowable nor-
mal stress of 1.75 ksi.

1.2 kips/ft

6 ft
a

a
B

A

5.79 and 5.80 For the beam and loading shown, design the cross sec-
tion of the beam, knowing that the grade of timber used has an allowable nor-
mal stress of 12 MPa.

10 kN/m

A B h

5 m

120 mm

Fig. P5.76

A
B 2b

b

5 ft

200 lb/ft

Fig. P5.78

C
A

B
D h

0.6 m 0.6 m
3 m

100 mm6 kN/m
2.5 kN2.5 kN

Fig. P5.80

Fig. P5.75

Fig. P5.77

A
B

150 mm

b3 kN/m

C

2.4 m 1.2 m

Fig. P5.79
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5.81 and 5.82 Knowing that the allowable normal stress for the steel
used is 160 MPa, select the most economical metric wide-flange beam to sup-
port the loading shown.

338 Analysis and Design of Beams for Bending

5.83 and 5.84 Knowing that the allowable normal stress for the steel
used is 24 ksi, select the most economical wide-flange beam to support the
loading shown.

C
DA

B

0.8 m 0.8 m
2.4 m

50 kN/m

Fig. P5.82

5.85 and 5.86 Knowing that the allowable normal stress for the steel
used is 160 MPa, select the most economical metric S-shape beam to support
the loading shown.

0.5 kip/ft

1.5 kips/ft

18 ft

A
B

Fig. P5.84

5.87 and 5.88 Knowing that the allowable normal stress for the steel
used is 24 ksi, select the most economical S-shape beam to support the load-
ing shown.

100 kN/m

80 kN

A C
B

0.8 m 1.6 m

Fig. P5.86

48 kips 48 kips 48 kips

A
D

E
CB

6 ft
2 ft2 ft2 ft

Fig. P5.88

C D
EA

B

0.6 m
0.6 m

0.6 m
1.8 m

90 kN
90 kN90 kN

Fig. P5.81

2.75 kips/ft

24 kips

B
A C

9 ft 15 ft

Fig. P5.83

40 kN/m

75 kN

A D
CB

0.9 m
3.6 m

1.8 m

Fig. P5.85

3 kips/ft

18 kips

A
DCB

6 ft 6 ft
3 ft

Fig. P5.87
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5.89 Two metric rolled-steel channels are to be welded along their edges
and used to support the loading shown. Knowing that the allowable normal
stress for the steel used is 150 MPa, determine the most economical channels
that can be used.

Problems 339

5.90 Two metric rolled-steel channels are to be welded back to back and
used to support the loading shown. Knowing that the allowable normal stress
for the steel used is 190 MPa, determine the most economical channels that
can be used.

5.91 Two rolled-steel angles are bolted together to support the
loading shown. Knowing that the allowable normal stress for the steel used is
24 ksi, determine the minimum angle thickness that can be used.

L4 � 3

5.92 A steel pipe of 4-in. diameter is to support the loading shown.
Knowing that the stock of pipes available has thicknesses varying from in.
to 1 in. in increments, and that the allowable normal stress for the steel
used is 24 ksi, determine the minimum wall thickness t that can be used.

5.93 Assuming the upward reaction of the ground to be uniformly distrib-
uted and knowing that the allowable normal stress for the steel used is 170 MPa,
select the most economical metric wide-flange beam to support the loading
shown.

1
8  - in.

1
4

5.94 Assuming the upward reaction of the ground to be uniformly dis-
tributed and knowing that the allowable normal stress for the steel used is 24 ksi,
select the most economical S-shape beam to support the loading shown.

E
B

A
C D

20 kN 20 kN 20 kN

4 @ 0.675 m � 2.7 m

B

40 kN/m

75 kN

A
C

D

3.6 m
0.9 m

1.8 m

B

300 lb/ft
2000 lb

A C

3 ft3 ft

6 in.

4 in.
C

A
B

4 ft
4 in.

t

500 lb 500 lb

4 ft

B C

Total load � 2 MN

A DD

0.75 m 0.75 m
1 m

B C

240 kips 240 kips

A DD

4 ft4 ft 4 ft

Fig. P5.89
Fig. P5.90

Fig. P5.91 Fig. P5.92

Fig. P5.93 Fig. P5.94
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340 Analysis and Design of Beams for Bending 5.95 and 5.96 Determine the largest permissible value of P for the
beam and loading shown, knowing that the allowable normal stress is 
in tension and in compression.�140 MPa

�80 MPa

5.97 Determine the largest permissible uniformly distributed load w for
the beam shown, knowing that the allowable normal stress is in ten-
sion and in compression.�19.5 ksi

�12 ksi

5.98 Solve Prob. 5.97, assuming that the cross section of the beam is
reversed, with the flange of the beam resting on the supports at B and C.

5.99 Beams AB, BC, and CD have the cross section shown and are pin-
connected at B and C. Knowing that the allowable normal stress is 
in tension and in compression, determine (a) the largest permissi-
ble value of w if beam BC is not to be overstressed, (b) the corresponding max-
imum distance a for which the cantilever beams AB and CD are not overstressed.

�150 MPa
�110 MPa

5.100 Beams AB, BC, and CD have the cross section shown and are pin-
connected at B and C. Knowing that the allowable normal stress is 
in tension and in compression, determine (a) the largest permissi-
ble value of P if beam BC is not to be overstressed, (b) the corresponding max-
imum distance a for which the cantilever beams AB and CD are not overstressed.

�150 MPa
�110 MPa

B C
A D

0.2 m
0.4 m

0.2 m
96 mm

48 mm
12 mm

12 mmP P

B

C
A D

0.25 m 0.15 m
0.5 m 12 mm

12 mm
48 mm

96 mmP P

B C

w

D

a 7.2 m

12.5 mm

12.5 mm

150 mm

200 mm

A

a

B C

w

A D

8 in. 8 in.
20 in.

in.3
4

in.3
4

in.2 1
4

in.2 1
4

PP

B C D

a
2.4 m 2.4 m 2.4 m

12.5 mm

12.5 mm

150 mm

200 mm

A

a

Fig. P5.95 Fig. P5.96

Fig. P5.97

Fig. P5.99 Fig. P5.100
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Problems 3415.101 Each of the three rolled-steel beams shown (numbered 1, 2, and 3)
is to carry a 64-kip load uniformly distributed over the beam. Each of these
beams has a 12-ft span and is to be supported by the two 24-ft rolled-steel gird-
ers AC and BD. Knowing that the allowable normal stress for the steel used is
24 ksi, select (a) the most economical S shape for the three beams, (b) the most
economical W shape for the two girders.

����
����

����
����
����
����

�
�
�

����
����
����

����
����
����

�
�

A

C

D

B

4 ft

12 ft

8 ft

8 ft

4 ft

3

1

2

5.102 Solve Prob. 5.101, assuming that the 64-kip distributed loads are
replaced by 64-kip concentrated loads applied at the midpoints of the three
beams.

5.103 A 240-kN load is to be supported at the center of the 5-m span
shown. Knowing that the allowable normal stress for the steel used is 165 MPa,
determine (a) the smallest allowable length l of beam CD if the 
beam AB is not to be overstressed, (b) the W shape which should be used for
beam CD. Neglect the weight of both beams.

W310 � 74

BA

C D

l/2 l/2

L � 5 m

W310 � 74

240 kN

Fig. P5.103

Fig. P5.101
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342 Analysis and Design of Beams for Bending 5.104 A uniformly distributed load of 84 kN/m is to be supported over
the 5-m span shown. Knowing that the allowable normal stress for the steel
used is 165 MPa, determine (a) the smallest allowable length l of beam CD if
the beam AB is not to be overstressed, (b) the W shape which
should be used for beam CD. Neglect the weight of both beams.

W310 � 74

BA
C D

L � 5 m

l 

W310 � 74

84 kN/m 84 kN/m

*5.105 A bridge of length is to be built on a secondary road
whose access to trucks is limited to two-axle vehicles of medium weight. It
will consist of a concrete slab and of simply supported steel beams with an ul-
timate strength The combined weight of the slab and beams can
be approximated by a uniformly distributed load on each beam.
For the purpose of the design, it is assumed that a truck with axles located at
a distance from each other will be driven across the bridge and that
the resulting concentrated loads and exerted on each beam could be as
large as 24 kips and 6 kips, respectively. Determine the most economical wide-
flange shape for the beams, using LRFD with the load factors

and the resistance factor [Hint. It can be shown
that the maximum value of occurs under the larger load when that load
is located to the left of the center of the beam at a distance equal to

*5.106 Assuming that the front and rear axle loads remain in the same
ratio as for the truck of Prob. 5.105, determine how much heavier a truck could
safely cross the bridge designed in that problem.

*5.107 A roof structure consisting of plywood and roofing material is
supported by several timber beams of length The dead load carried
by each beam, including the estimated weight of the beam, can be represented
by a uniformly distributed load The live loads consist of the
snow load, represented by a uniformly distributed load and a
6-kN concentrated load P applied at the midpoint C of each beam. Knowing
that the ultimate strength for the timber used is and that the
width of the beams is determine the minimum allowable depth h
of the beams, using LRFD with the load factors and the
resistance factor 

*5.108 Solve Prob. 5.107, assuming that the 6-kN concentrated load P
applied to each beam is replaced by 3-kN concentrated loads and applied
at a distance of 4 m from each end of the beams.

P2P1

f � 0.9.
gD � 1.2, gL � 1.6

b � 75 mm,
sU � 50 MPa

wL � 600 N/m,
wD � 350 N/m.

L � 16 m.

aP2 �2 1P1 � P22. 4
0ML 0

f � 0.9gD � 1.25, gL � 1.75

P2P1

a � 14 ft

w � 0.75 kip/ft
sU � 60 ksi.

L � 48 ft

a

A B

x

����
����

L

P2P1

P

wD � wL

C

b

hA B

L1
2 L1

2

Fig. P5.104

Fig. P5.105

Fig. P5.107
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5.5. Using Singularity Functions 343*5.5. USING SINGULARITY FUNCTIONS TO DETERMINE
SHEAR AND BENDING MOMENT IN A BEAM

Reviewing the work done in the preceding sections, we note that the
shear and bending moment could only rarely be described by single an-
alytical functions. In the case of the cantilever beam of Example 5.02
(Fig. 5.10), which supported a uniformly distributed load w, the shear
and bending moment could be represented by single analytical func-
tions, namely, and this was due to the fact that
no discontinuity existed in the loading of the beam. On the other hand,
in the case of the simply supported beam of Example 5.01, which was
loaded only at its midpoint C, the load P applied at C represented a sin-
gularity in the beam loading. This singularity resulted in discontinuities
in the shear and bending moment and required the use of different an-
alytical functions to represent V and M in the portions of beam located,
respectively, to the left and to the right of point C. In Sample Prob. 5.2,
the beam had to be divided into three portions, in each of which dif-
ferent functions were used to represent the shear and the bending mo-
ment. This situation led us to rely on the graphical representation of 
the functions V and M provided by the shear and bending-
moment diagrams and, later in Sec. 5.3, on a graphical method of in-
tegration to determine V and M from the distributed load w.

The purpose of this section is to show how the use of singularity
functions makes it possible to represent the shear V and the bending
moment M by single mathematical expressions.

Consider the simply supported beam AB, of length 2a, which car-
ries a uniformly distributed load extending from its midpoint C to
its right-hand support B (Fig. 5.16). We first draw the free-body dia-
gram of the entire beam (Fig. 5.17a); replacing the distributed load by
an equivalent concentrated load and, summing moments about B, we
write

Next we cut the beam at a point D between A and C. From the free-
body diagram of AD (Fig. 5.17b) we conclude that, over the interval

the shear and bending moment are expressed, respectively,
by the functions

Cutting, now, the beam at a point E between C and B, we draw the free-
body diagram of portion AE (Fig. 5.17c). Replacing the distributed load
by an equivalent concentrated load, we write

and conclude that, over the interval the shear and bend-
ing moment are expressed, respectively, by the functions

V21x2 � 1
4 w0 a � w01x � a2  and  M21x2 � 1

4 w0 ax � 1
2 w01x � a22

a 6 x 6 2a,

 �1
4 w0 ax � w01x � a2 3 12 1x � a2 4 � M2 � 0�l �ME � 0:

 14 w0 a � w01x � a2 � V2 � 0 �c �Fy � 0:

V11x2 � 1
4 w0 a  and  M11x2 � 1

4 w0 
ax

0 6 x 6 a,

1w0 a2 112 a2 � RA12a2 � 0  RA � 1
4 w0 a�l �MB � 0:

w0

M � �1
2 wx2;V � �wx

B
C

w0

A

a a

B

RB

M1

V1

RA

C

D

x

A

w0

w0 a

A

2a

a1
2

(a)

M2

V2

C

E

w0 (x � a)

A

x

a

(x � a)

x � a

1
2

(c)

(b)

RA� w0 a
1
4

RA� w0 a
1
4

Fig. 5.17

Fig. 5.16
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344 Analysis and Design of Beams for Bending As we pointed out earlier in this section, the fact that the shear and
bending moment are represented by different functions of x, depending
upon whether x is smaller or larger than a, is due to the discontinuity
in the loading of the beam. However, the functions and can
be represented by the single expression

(5.11)

if we specify that the second term should be included in our computa-
tions when and ignored when In other words, the brack-
ets should be replaced by ordinary parentheses when 
and by zero when With the same convention, the bending mo-
ment can be represented at any point of the beam by the single ex-
pression

(5.12)

From the convention we have adopted, it follows that brackets 
can be differentiated or integrated as ordinary parentheses. Instead of
calculating the bending moment from free-body diagrams, we could
have used the method indicated in Sec. 5.3 and integrated the expres-
sion obtained for 

After integration, and observing that we obtain as before

Furthermore, using the same convention again, we note that the dis-
tributed load at any point of the beam can be expressed as

(5.13)

Indeed, the brackets should be replaced by zero for and by paren-
theses for we thus check that for and, defining
the zero power of any number as unity, that 
and for From Sec. 5.3 we recall that the shear could
have been obtained by integrating the function Observing that

for we write

Solving for and dropping the exponent 1, we obtain again

 V1x2 � 1
4 w0 a � w0Hx � aI

V1x2
 V1x2 � 1

4 w0 a � w0Hx � aI1
 V1x2 � V102 � ��

x

0

 w1x2 dx � ��
x

0

 w0 Hx � aI0 dx

x � 0,V � 1
4 w0 a

�w1x2.x � a.w1x2 � w0

Hx � aI0 � 1x � a20 � 1
x 6 aw˛1x2 � 0x � a;
x 6 a

w1x2 � w0 Hx � aI0

M1x2 � 1
4 w0˛

 ax � 1
2 w0 Hx � aI2
M˛102 � 0,

M1x2 � M102 � �
x

0

V1x2 dx � �
x

0

 14 w0˛

 a dx � �
x

0

 w0 Hx � aI dx

V1x2:

H I
M1x2 � 1

4 w0˛

ax � 1
2 w0˛

Hx � aI2

x 6 a.
x � a1 2H I x 6 a.x � a

V 1x2 � 1
4 w0 

a � w0Hx � aI

V21x2V11x2
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The expressions are called singularity
functions. By definition, we have, for 

(5.14)

We also note that whenever the quantity between brackets is positive
or zero, the brackets should be replaced by ordinary parentheses, and
whenever that quantity is negative, the bracket itself is equal to zero.

Hx � aIn � e 1x � a2n
0

  when x � a
when x 6 a

n � 0,
Hx � aI0, Hx � aI, Hx � aI2 5.5. Using Singularity Functions 345

The three singularity functions corresponding respectively to
and have been plotted in Fig. 5.18. We note that

the function is discontinuous at and is in the shape of
a “step.” For that reason it is referred to as the step function. Accord-
ing to (5.14), and with the zero power of any number defined as unity,
we have†

(5.15)

It follows from the definition of singularity functions that

(5.16)

and

(5.17)

Most of the beam loadings encountered in engineering practice can
be broken down into the basic loadings shown in Fig. 5.19. Whenever
applicable, the corresponding functions and have been
expressed in terms of singularity functions and plotted against a color
background. A heavier color background was used to indicate for each
loading the expression that is most easily derived or remembered and
from which the other functions can be obtained by integration.

M1x2w1x2, V1x2,

d

dx
 Hx � aIn � nHx � aIn�1  for n � 1

�  Hx � aIn dx �
1

n � 1
 Hx � aIn�1  for n � 0

Hx � aI0 � e1
0
  when x � a

when x 6 a

x � aHx � aI0n � 2n � 1,n � 0,

0
(a) n � 0

� x � a �0

a x 0
(b) n � 1

� x � a �1

a x 0
(c) n � 2

� x � a �2

a x

Fig. 5.18

†Since is discontinuous at , it can be argued that this function should be
left undefined for or that it should be assigned both of the values 0 and 1 for .
However, defining  as equal to 1 when , as stated in (5.15), has the advantage
of being unambiguous and, thus, readily applicable to computer programming (cf. page 348).

x �  a1x �  a20
x �  ax �  a

x �  a1x �  a20
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After a given beam loading has been broken down into the basic
loadings of Fig. 5.19, the functions and representing the shear
and bending moment at any point of the beam can be obtained by adding
the corresponding functions associated with each of the basic loadings
and reactions. Since all the distributed loadings shown in Fig. 5.19 are

M1x2V1x2

a
a

x xO O

V

M0

P

Loading Shear Bending Moment

(a)

a

xO

(b)

a

xO

w

(c) w (x) � w0 � x � a �0 

V (x) � �P � x � a �0 

(d) w (x) � k � x � a �1

(e) w (x) � k � x � a �n

Slope � k

w0

a

xO

w

a

xO

w

a xO

V

�P

M (x) � �M0 � x � a �0 

a xO

M

�M0

V (x) � �w0 � x � a �1

a xO

V

M (x) � �P � x � a �1

a xO

M

V (x) � �     � x � a �2

a xO

V

k
2

a xO

M

M (x) � � w0 � x � a �2

a xO

M

1
2

M (x) � � � x � a �3k
2 · 3

M (x) � � � x � a �n � 2k
(n � 1) (n � 2)

V (x) � �           � x � a �n � 1k
n � 1

a xO

V

a xO

M

Fig. 5.19 Basic loadings and corresponding shears and bending moments expressed
in terms of singularity functions.

346

bee59355_ch05_341-350  4/5/01  3:01 PM  Page 346



5.5. Using Singularity Functions 347open-ended to the right, a distributed loading that does not extend to
the right end of the beam or that is discontinuous should be replaced
as shown in Fig. 5.20 by an equivalent combination of open-ended load-
ings. (See also Example 5.05 and Sample Prob. 5.9.)

As you will see in Sec. 9.6, the use of singularity functions also
greatly simplifies the determination of beam deflections. It was in con-
nection with that problem that the approach used in this section was
first suggested in 1862 by the German mathematician A. Clebsch (1833–
1872). However, the British mathematician and engineer W. H. Macaulay
(1853–1936) is usually given credit for introducing the singularity func-
tions in the form used here, and the brackets are generally referred to
as Macaulay’s brackets.†

H I

†W. H. Macaulay, “Note on the Deflection of Beams,” Messenger of Mathematics, vol. 48,
pp. 129-130, 1919.

EXAMPLE 5.05

For the beam and loading shown (Fig. 5.21a) and using sin-
gularity functions, express the shear and bending moment as
functions of the distance x from the support at A.

We first determine the reaction at A by drawing the free-
body diagram of the beam (Fig. 5.21b) and writing

Next, we replace the given distributed loading by two
equivalent open-ended loadings (Fig. 5.21c) and express the
distributed load as the sum of the corresponding step
functions:

The function is obtained by integrating re-
versing the and signs, and adding to the result the con-
stants and representing the respective con-
tributions to the shear of the reaction at A and of the
concentrated load. (No other constant of integration is re-
quired.) Since the concentrated couple does not directly affect
the shear, it should be ignored in this computation. We write

V1x2 � �w0Hx � 0.6I1 � w0Hx � 1.8I1 � Ay � PHx � 0.6I0

�PHx � 0.6I0Ay

��
w1x2,V1x2

w1x2 � �w0Hx � 0.6I0 � w0Hx � 1.8I0

w1x2

Ay � 2.60 kN
� 11.8 kN 2 12.4 m 2 � 1.44 kN � m � 0
�Ay13.6 m 2 � 11.2 kN 2 13 m 2�g �MB � 0:

Ax � 0�S�Fx � 0:

BE
DC

P � 1.2 kN

A

w0 � 1.5 kN/m

w0 � 1.5 kN/m

� w0 � �1.5 kN/m

w

M0 � 1.44 kN · m

0.6 m 0.8 m 1.0 m
1.2 m(a)

B

B

DC

P � 1.2 kN

A

Ax

Ay

Ay � 2.6 kN

1.8 kN

M0 � 1.44 kN · m

3.6 m

0.6 m

3 m

2.4 m

(b)

B
x

B

C

D

P � 1.2 kN

A

M0 � 1.44 kN · m

2.6 m

1.8 m(c)

E

E

Fig. 5.21

xO

w w0

b

L

a

xO

w w0

� w0b

L

a

w(x) � w0 � x � a �0 � w0 � x � b �0 

Fig. 5.20
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348 Analysis and Design of Beams for Bending In a similar way, the function is obtained by integrating
and adding to the result the constant rep-

resenting the contribution of the concentrated couple to the
bending moment. We have

Substituting the numerical values of the reaction and loads
into the expressions obtained for and and being care-
ful not to compute any product or expand any square involv-
ing a bracket, we obtain the following expressions for the shear
and bending moment at any point of the beam:

 �2.6x � 1.2Hx � 0.6I1 � 1.44Hx � 2.6I0
 M1x2 � �0.75 Hx � 0.6I2 � 0.75Hx � 1.8I2

 �2.6 � 1.2Hx � 0.6I0
 V1x2 � �1.5Hx � 0.6I1 � 1.5Hx � 1.8I1

M1x2V1x2
 � Ay 

x � PHx � 0.6I1 � M0Hx � 2.6I0
 M1x2 � �1

2 w0Hx � 0.6I2 � 1
2 w0Hx � 1.8I2

�M0Hx � 2.6I0V1x2 M1x2

EXAMPLE 5.06

For the beam and loading of Example 5.05, determine the nu-
merical values of the shear and bending moment at the mid-
point D.

Making in the expressions found for V(x) and
M(x) in Example 5.05, we obtain

Recalling that whenever a quantity between brackets is posi-
tive or zero, the brackets should be replaced by ordinary paren-
theses, and whenever the quantity is negative, the bracket it-
self is equal to zero, we write

 � 2.6 11.82 � 1.2 H1.2I1 � 1.44 H�0.8I0 M11.82 � �0.75 H1.2I2 � 0.75 H0I2

 V11.82 � �1.5 H1.2I1 � 1.5 H0I1 � 2.6 � 1.2 H1.2I0

x � 1.8 m

and

M11.82 � �2.16 kN � m

 � �1.08 � 0 � 4.68 � 1.44 � 0

� 2.611.82 � 1.211.221 � 1.44102 M11.82 � �0.7511.222 � 0.751022

V11.82 � �0.4 kN

 � �1.8 � 0 � 2.6 � 1.2
 � �1.511.22 � 1.5102 � 2.6 � 1.2112

 V11.82 � �1.511.221 � 1.51021 � 2.6 � 1.211.220

Application to Computer Programming. Singularity functions are
particularly well suited to the use of computers. First we note that the
step function which will be represented by the symbol STP,
can be defined by an IF/THEN/ELSE statement as being equal to 1 for

and to 0 otherwise. Any other singularity function with
can then be expressed as the product of the ordinary algebraic

function and the step function 
When k different singularity functions are involved, such as

where then the corresponding step functions
STP(I), where can be defined by a loop containing a
single IF/THEN/ ELSE statement.

I � 1, 2, p , K,
i � 1, 2, p , k,Hx � aiIn,

Hx � aI0.1x � a2nn � 1,
Hx � aIn,X � A

Hx � aI0,

w0 � 1.5 kN/m

� w0 � �1.5 kN/m

w

Ay � 2.6 kN

0.6 m

B
x

B

C

D

P � 1.2 kN

A

M0 � 1.44 kN · m

2.6 m

1.8 m(c)

E

Fig. 5.21c (repeated)
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SAMPLE PROBLEM 5.9
For the beam and loading shown, determine (a) the equations defining the shear
and bending moment at any point, (b) the shear and bending moment at points
C, D, and E.

B

w0

A
D

L/4 L/4 L/4 L/4

C E

w0
2w0

L/2 L/2

C C
A

B

2w0

2w0

2w0

L

A
B

Slope � �

4w0

L
Slope � �

L/2

x

x

x

L/2

C

C E

D

B

w0L

RBRA � w0L

2w0

L

A

V

A

M

C ED BA

w

B

k1 � �

4w0

L
k2 � �1

4

3
16

w0L�

�

3
16

11
192

w0L21
12

w0L2

w0L1
4

w0L1
4

349

SOLUTION

Reactions. The total load is because of symmetry, each reaction
is equal to half that value, namely,

Distributed Load. The given distributed loading is replaced by two
equivalent open-ended loadings as shown. Using a singularity function to ex-
press the second loading, we write

(1)

a. Equations for Shear and Bending Moment. We obtain by in-
tegrating (1), changing the signs, and adding a constant equal to 

We obtain by integrating (2); since there is no concentrated couple, no
constant of integration is needed:

b. Shear and Bending Moment at C, D, and E

At Point C: Making in Eqs. (2) and (3) and recalling that when-
ever a quantity between brackets is positive or zero, the brackets may be re-
placed by parentheses, we have

At Point D: Making in Eqs. (2) and (3) and recalling that a
bracket containing a negative quantity is equal to zero, we write

At Point E: Making in Eqs. (2) and (3), we have

ME �
11

192
 w0 

L2 �ME � �
w0

3L
 134L23 �

2w0

3L
 H14LI3 � 1

4 w0 
L 134L2

VE � �
3

16
 w0 

L �VE � �
w0

L
 134L22 �

2w0

L
 H14LI2 � 1

4 w0 
L

x � 3
4L

MD �
11

192
 w0 

L2 � MD � �
w0

3L
 114L23 �

2w0

3L
 H�1

4LI3 � 1
4w0 

L114L2
VD �

3

16
 w0 

L � VD � �
w0

L
 114L22 �

2w0

L
 H�1

4LI 2 � 1
4 w0 

L

x � 1
4  L

MC �
1

12
 w0 

L2 � MC � �
w0

3L
 112L23 �

2w0

3L
 H0I3 � 1

4 w0 
L112L2

�VC � 0 VC � �
w0

L
 112L22 �

2w0

L
 H0I2 � 1

4 w0 
L

x � 1
2L

132 �M1x2 � �
w0

3L
 x3 �

2w0

3L
 Hx � 1

2LI3 � 1
4 w0 

Lx

M1x2
122 �V1x2 � �

w0

L
 x2 �

2w0

L
 Hx � 1

2LI2 � 1
4 w0 

L

RA:
V1x2

w1x2 � k1x � k2Hx � 1
2LI �

2w0

L
 x �

4w0

L
 Hx � 1

2LI

1
4 w0 L.

1
2 w0 L;
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SAMPLE PROBLEM 5.10
The rigid bar DEF is welded at point D to the steel beam AB. For the loading
shown, determine (a) the equations defining the shear and bending moment at
any point of the beam, (b) the location and magnitude of the largest bending
moment.

SOLUTION

Reactions. We consider the beam and bar as a free body and observe
that the total load is 960 lb. Because of symmetry, each reaction is equal to
480 lb.

Modified Loading Diagram. We replace the 160-lb load applied at F
by an equivalent force-couple system at D. We thus obtain a loading diagram
consisting of a concentrated couple, three concentrated loads (including the
two reactions), and a uniformly distributed load

(1)

a. Equations for Shear and Bending Moment. We obtain V(x) by in-
tegrating (1), changing the sign, and adding constants representing the respec-
tive contributions of and P to the shear. Since P affects V(x) only for val-
ues of x larger than 11 ft, we use a step function to express its contribution.

We obtain M(x) by integrating (2) and using a step function to represent the
contribution of the concentrated couple :

b. Largest Bending Moment. Since M is maximum or minimum when
we set in (2) and solve that equation for x to find the location

of the largest bending moment. Considering first values of x less than 11 ft and
noting that for such values the bracket is equal to zero, we write

Considering now values of x larger than 11 ft, for which the bracket is equal
to 1, we have

Since this value is not larger than 11 ft, it must be rejected. Thus, the value of
x corresponding to the largest bending moment is

Substituting this value for x into Eq. (3), we obtain

and, recalling that brackets containing a negative quantity are equal to zero,

The bending-moment diagram has been plotted. Note the discontinuity at point
D due to the concentrated couple applied at that point. The values of M just to
the left and just to the right of D were obtained by making in Eq. (3)
and replacing the step function by 0 and 1, respectively.Hx � 11I0

x � 11

Mmax � 2304 lb � ft �Mmax � �2519.6022 � 48019.602

Mmax � �2519.6022 � 48019.602 � 160 H�1.40I1 � 480 H�1.40I0

xm � 9.60 ft �

�50 x � 480 � 160 � 0  x � 6.40 ft

�50 x � 480 � 0  x � 9.60 ft

V � 0V � 0,

132 �M1x2 � �25 x2 � 480 x � 160 Hx � 11I1 � 480 Hx � 11I 0
MD

122 �V1x2 � �50x � 480 � 160 Hx � 11I0

RA

w1x2 � 50 lb/ft

B

50 lb/ft

160 lb

A

F

C D

E

8 ft 5 ft
3 ft

160 lb

MD � 480 lb · ft 

P � 160 lb

E

D

F E

D

F

B

w0 � 50 lb/ft

MD � 480 lb · ft

RA � 480 lb RBP � 160 lb

w

D

11 ft 5 ft

xA

xm � 9.60 ft

x

�2304 lb · ft
�2255 lb · ft

�1775 lb · ft

M

D B
A
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5.109 through 5.111 (a) Using singularity functions, write the equa-
tions defining the shear and bending moment for the beam and loading shown.
(b) Use the equation obtained for M to determine the bending moment at point
E and check your answer by drawing the free-body diagram of the portion of
beam to the right of E.

PROBLEMS

A B

P

E C

aa a

A B E C

w0

aa2a

A B
D

EC

w0

a aaa

5.112 through 5.114 (a) Using singularity functions, write the equa-
tions defining the shear and bending moment for the beam and loading shown.
(b) Use the equation obtained for M to determine the bending moment at point
C and check your answer by drawing the free-body diagram of the entire beam.

A B C

w0

a a

A B C

w0

a a

A B C

w0

a a

5.115 and 5.116 (a) Using singularity functions, write the equations
defining the shear and bending moment for beam ABC under the loading shown.
(b) Use the equation obtained for M to determine the bending moment just to
the right of point B.

P

A
B C

a a

P

P

A C

B

aa

Fig. P5.111Fig. P5.110

Fig. P5.112 Fig. P5.114Fig. P5.113

Fig. P5.115 Fig. P5.116
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5.117 through 5.120 (a) Using singularity functions, write the equa-
tions defining the shear and bending moment for the beam and loading shown.
(b) Determine the maximum value of the bending moment in the beam.

352 Analysis and Design of Beams for Bending

B

1.8 kN
1.25 kN/m 1.25 kN/m

1.2 m

0.6 m 0.6 m

1.2 m

A C

B C D

60 kN48 kN

0.6 m 0.9 m
1.5 m1.5 m

60 kN

A E

5.121 and 5.122 (a) Using singularity functions, write the equations
defining the shear and bending moment for the beam and loading shown. 
(b) Determine the maximum normal stress due to bending.

F
B C D

24 kN 24 kN
24 kN

0.75 in.

W250 � 28.4

4 @ 0.75 m � 3m

24 kN

E
A

5.123 and 5.124 (a) Using singularity functions, find the magnitude
and location of the maximum bending moment for the beam and loading shown.
(b) Determine the maximum normal stress due to bending.

C
B18 kN · m

40 kN/m

27 kN · m

2.4 m1.2 m

S310 � 52A

Fig. P5.124

Fig. P5.122

Fig. P5.120

Fig. P5.118

B C

25 kN/m

0.6 m 0.6 m
1.8 m

40 kN 40 kN

A D

B C D

20 kips
20 kips20 kips

2 ft 2 ft 2 ft
6 ft

A E

E
B C

10 kips 25 kips

15 in. 20 in. 10 in.

S6 � 12.5

25 in.

10 kips

D
A

D

C

B

80 kN/m
10 kN

4 m
1 m 1 m

W530 � 150A

Fig. P5.123

Fig. P5.121

Fig. P5.119

Fig. P5.117
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5.125 and 5.126 A beam is being designed to be supported and loaded
as shown. (a) Using singularity functions, determine the magnitude and loca-
tion of the maximum bending moment in the beam. (b) Knowing that the al-
lowable stress for the steel to be used is 24 ksi, find the most economical wide-
flange shape that should be selected.

Problems 353

C
B

3 kips/ft

12 ft
3 ft

22.5 kips

A

Fig. P5.125

5.127 and 5.128 A timber beam is being designed to be supported and
loaded as shown. (a) Using singularity functions, determine the magnitude and
location of the maximum bending moment in the beam. (b) Knowing that the
available stock consists of beams with a 12-MPa allowable stress and a rec-
tangular cross section of 30-mm width and depth h varying from 80 to 160 mm
in 10-mm increments, determine the most economical cross section that can be
used.

480 N/m

A
B

CC

1.5 m 2.5 m

h

30 mm

Fig. P5.127

5.129 through 5.132 Using a computer and step functions, calculate
the shear and bending moment for the beam and loading shown. Use the spec-
ified increments starting at point A and ending at the right-hand support.¢L,

C

12 kN/m

9 kN

A
B

0.9 m
3 m

 L � 0.3 m�

Fig. P5.129

1.8 kips/ft

3.6 kips/ft

A
B

C

6 ft 6 ft

�L � 0.5 ft

Fig. P5.131

Fig. P5.126

D
B C

6 ft
3 ft

6 ft

12 kips

2.4 kips/ft

12 kips

A

Fig. P5.128

500 N/m

A
B

CCC h

30 mm

1.6 m 2.4 m

Fig. P5.130

D
B C

120 kN
36 kN/m

A

2 m 1 m
3 m

L � 0.25 m�

Fig. P5.132

B DC

4.5 kips/ft 6 kips

A

2 ft1 ft
3 ft

�L � 0.5 ft
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5.133 and 5.134 For the beam and loading shown, and using a com-
puter and step functions, (a) tabulate the shear, bending moment, and maxi-
mum normal stress in sections of the beam from to using the in-
crements indicated, (b) using smaller increments if necessary, determine with
a 2 percent accuracy the maximum normal stress in the beam. Place the origin of
the x axis at end A of the beam.

¢L
x � L,x � 0

354 Analysis and Design of Beams for Bending

C
A

B
D 300 mm

2 m 3 m
1 m

50 mm20 kN/m

5 kN

L � 0.5 m�

L � 6 m
B

5 kN/m

3 kN/m

3 kN

A
C

D

2 m
1.5 m 1.5 m

W200 � 22.5

L � 0.25 m�

L � 5 m

Fig. P5.133
Fig. P5.134

5.135 and 5.136 For the beam and loading shown, and using a com-
puter and step functions, (a) tabulate the shear, bending moment, and maxi-
mum normal stress in sections of the beam from to using the in-
crements indicated, (b) using smaller increments if necessary, determine
with a 2 percent accuracy the maximum normal stress in the beam. Place the
origin of the x axis at end A of the beam.

¢L
x � L,x � 0

C
A

B
D 12 in.

1.5 ft 2 ft
1.5 ft

2 in.1.2 kips/ft

2 kips/ft

300 lb

L � 5 ft
L � 0.25 ft�

C
A

B
D

2.5 ft 2.5 ft
10 ft

3.2 kips/ft
4.8 kips/ft

W12 � 30
L � 15 ft

L � 1.25 ft�

Fig. P5.136
Fig. P5.135

*5.6. NONPRISMATIC BEAMS

Our analysis has been limited so far to prismatic beams, i.e., to beams
of uniform cross section. As we saw in Sec. 5.4, prismatic beams are
designed so that the normal stresses in their critical sections are at most
equal to the allowable value of the normal stress for the material being
used. It follows that, in all other sections, the normal stresses will be
smaller, possibly much smaller, than their allowable value. A prismatic
beam, therefore, is almost always overdesigned, and considerable sav-
ings of material can be realized by using nonprismatic beams, i.e., beams
of variable cross section. The cantilever cast beam used in the testing
machine for soils shown in Fig. 5.22 is such a beam.

Since the maximum normal stresses usually control the design
of a beam, the design of a nonprismatic beam will be optimum if the
section modulus of every cross section satisfies Eq. (5.3) of
Sec. 5.1. Solving that equation for S, we write

(5.18)

A beam designed in this manner is referred to as a beam of constant
strength.

S �
0M 0
sall

S � I�c

sm
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For a forged or cast structural or machine component, it is possi-
ble to vary the cross section of the component along its length and to
eliminate most of the unnecessary material (see Example 5.07). For a
timber beam or a rolled-steel beam, however, it is not possible to vary
the cross section of the beam. But considerable savings of material can
be achieved by gluing wooden planks of appropriate lengths to a tim-
ber beam (see Sample Prob. 5.11) and using cover plates in portions of
a rolled-steel beam where the bending moment is large (see Sample
Prob. 5.12).

Fig. 5.22

EXAMPLE 5.07

A cast-aluminum plate of uniform thickness b is to support a
uniformly distributed load w as shown in Fig. 5.23. (a) De-
termine the shape of the plate that will yield the most eco-
nomical design. (b) Knowing that the allowable normal stress
for the aluminum used is 72 MPa and that 

and determine the maximum
depth of the plate.

Bending Moment. Measuring the distance x from A
and observing that we use Eqs. (5.6) and (5.8)
of Sec. 5.3 and write

(a) Shape of Plate. We recall from Sec. 5.4 that the
modulus S of a rectangular cross section of width b and depth
h is Carrying this value into Eq. (5.18) and solving
for we have

(5.19)h2 �
6 0M 0
bsall

h2,
S � 1

6 bh2.

M1x2 � �
x

0

V1x2  dx � ��
x

0

wxdx � �1
2 wx2

V1x2 � ��
x

0

wdx � �wx

VA � MA � 0,

h0

w � 135 kN/m,L � 800 mm,
b � 40 mm,

and, after substituting 

(5.20)

Since the relation between h and x is linear, the lower edge of
the plate is a straight line. Thus, the plate providing the most
economical design is of triangular shape.

(b) Maximum Depth h0. Making in Eq. (5.20)
and substituting the given data, we obtain

h0 � c 31135 kN/m2
10.040 m2 172 MPa2 d

1�2

 1800 mm2 � 300 mm

x � L

h2 �
3wx2

bsall
  or  h � a 3w

bsall
b1�2

x

0M 0 � 1
2 wx2,

Fig. 5.23

w

A

B

h h0

L

x

5.6. Nonprismatic Beams 355
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SAMPLE PROBLEM 5.11
A 12-ft-long beam made of a timber with an allowable normal stress of 2.40
ksi and an allowable shearing stress of 0.40 ksi is to carry two 4.8-kip loads
located at its third points. As shown in Chap. 6, a beam of uniform rectangu-
lar cross section, 4 in. wide and 4.5 in. deep, would satisfy the allowable shear-
ing stress requirement. Since such a beam would not satisfy the allowable nor-
mal stress requirement, it will be reinforced by gluing planks of the same timber,
4 in. wide and 1.25 in. thick, to the top and bottom of the beam in a symmet-
ric manner. Determine (a) the required number of pairs of planks, (b) the length
of the planks in each pair that will yield the most economical design.

SOLUTION

Bending Moment. We draw the free-body diagram of the beam and find
the following expressions for the bending moment:

From A to B
From B to C

a. Number of Pairs of Planks. We first determine the required total
depth of the reinforced beam between B and C. We recall from Sec. 5.4 that

for a beam with a rectangular cross section of width b and depth h.
Substituting this value into Eq. (5.17) and solving for we have

(1)

Substituting the value obtained for M from B to C and the given values of b
and we write

Since the original beam has a depth of 4.50 in., the planks must provide an ad-
ditional depth of 7.50 in. Recalling that each pair of planks is 2.50 in. thick:

b. Length of Planks. The bending moment was found to be
in the portion AB of the beam. Substituting this expression

and the given values of b and into Eq. (1) and solving for x, we have

(2)

Equation (2) defines the maximum distance x from end A at which a given depth
h of the cross section is acceptable. Making we find the distance

from A at which the original prismatic beam is safe: From that
point on, the original beam should be reinforced by the first pair of planks. Mak-
ing yields the distance from
which the second pair of planks should be used, and making yields
the distance from which the third pair of planks should be used.
The length of the planks of the pair i, where is obtained by sub-
tracting from the 144-in. length of the beam. We find

The corners of the various planks lie on the parabola defined by Eq. (2).

l1 � 130.5 in., l2 � 111.3 in., l3 � 83.8 in. �

2xi

i � 1, 2, 3,li

x3 � 30.08 in.
h � 9.50 in.

x2 � 16.33 in.h � 4.50 in. � 2.50 in. � 7.00 in.

x1 � 6.75 in.x1

h � 4.50 in.,

x �
14 in.2 12.40 ksi2

6 14.80 kips2  h2  x �
h2

3 in.

sall,
M � 14.80 kips2  x

Required number of pairs of planks � 3 �

h2 �
61230.4 kip � in.2
14 in.2 12.40 ksi2 � 144 in.2  h � 12.00 in.

sall,

h2 �
6 0M 0
bsall

h2,
S � 1

6 bh2

M � 14.80 kips2  x � 14.80 kips2 1x � 48 in.2 � 230.4 kip � in.
148 in. � x � 96 in.2:
10 � x � 48 in.2: M � 14.80 kips2  x

C

A D

B
4 ft

4.8 kips 4.8 kips

4 ft 4 ft

A

A

A

V
M

DCB

B
48 in.

x

4.8 kips

4.8 kips 4.8 kips

4.8 kips

4.8 kips

4.8 kips
4.8 kips

x

M

y

O

x1 x2
x3

x
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SAMPLE PROBLEM 5.12
Two steel plates, each 16 mm thick, are welded as shown to a 
beam to reinforce it. Knowing that for both the beam and the
plates, determine the required value of (a) the length of the plates, (b) the width
of the plates.

sall � 160 MPa
W690 � 125

SOLUTION

Bending Moment. We first find the reactions. From the free body of a
portion of beam of length we obtain M between A and C:

(1)

a. Required Length of Plates. We first determine the maximum allow-
able length xm of the portion AD of the unreinforced beam. From Appendix C
we find that the section modulus of a beam is

or Substituting for S and into
Eq. (5.17) and solving for M, we write

Substituting for M in Eq. (1), we have

The required length l of the plates is obtained by subtracting from the
length of the beam:

b. Required Width of Plates. The maximum bending moment occurs
in the midsection C of the beam. Making m in Eq. (1), we obtain the
bending moment in that section:

In order to use Eq. (5.1) of Sec. 5.1, we now determine the moment of in-
ertia of the cross section of the reinforced beam with respect to a centroidal
axis and the distance c from that axis to the outer surfaces of the plates. From
Appendix C we find that the moment of inertia of a beam is

and its depth is On the other hand, de-
noting by t the thickness of one plate, by b its width, and by the distance of
its centroid from the neutral axis, we express the moment of inertia of the
two plates with respect to the neutral axis:

Substituting and we obtain 
The moment of inertia I of the beam and plates is

(2)

and the distance from the neutral axis to the surface is 
Solving Eq. (5.1) for I and substituting the values of M, and c, we writesall,

c � 1
2 d � t � 355 mm.

I � Ib � Ip � 1190 � 106 mm4 � 13.854 � 106 mm32  b

� 106 mm32  b.
Ip � 13.854d � 678 mm,t � 16 mm

Ip � 21 1
12 bt3 � A y 

22 � 116 t
32  b � 2 bt112 d � 1

2 t2
2

Ip

y
d � 678 mm.Ib � 1190 � 106 mm4

W690 � 125

M � 1250 kN2 14 m2 � 1000 kN � m

x � 4

l � 3.51 m �l � 8 m � 212.246 m2 � 3.508 m

2 xm

561.6 kN � m � 1250 kN2  xm  xm � 2.246 m

M � Ssall � 13.51 � 10�3 m32 1160 � 103 kN/m22 � 561.6 kN � m

sallS � 3.51 � 10�3 m3.S � 3510 � 106 mm3,
W690 � 125

M � 1250 kN2  x

x � 4 m,

2.219 � 10�3 m4 � 2219 � 106 mm4I �
0M 0 c

sall
�
11000 kN � m2 1355 mm2

160 MPa
�

Replacing I by this value in Eq. (2) and solving for b, we have

b � 267 mm �
2219 � 106 mm4 � 1190 � 106 mm4 � 13.854 � 106 mm32b

B
C

V

M

x

A

A

500 kN

250 kN250 kN

250 kN

l

E
b

BA

CD

W690 × 125

16
mm

4 m4 m

1
2l1

2

500 kN

y

b

c

t

d1
2

d1
2

N.A.
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5.137 and 5.138 The cantilever beam AB, consisting of a cast-iron plate
of uniform thickness b and length L, is to support the distributed load 
shown. (a) Knowing that the beam is to be of constant strength, express h in
terms of x, L, and (b) Determine the smallest allowable value of if

and sall �  250 MPa.w0 � 300 kN/m,L � 750 mm, b � 30 mm,
h0h0.

w1x2

PROBLEMS

w � w0 sin 2L
x

A

B

h h0

L

x

�

Fig. P5.138

5.139 and 5.140 The beam AB, consisting of a cast-iron plate of uni-
form thickness b and length L, is to support the load shown. (a) Knowing that
the beam is to be of constant strength, express h in terms of x, L, and (b)
Determine the maximum allowable load if 

and sall � 36 ksi.b � 1.25 in.,
L � 36 in., h0 � 12 in., 

h0.

B
h h0

L/2 L/2

x

w

A

Fig. P5.140

5.141 and 5.142 The beam AB, consisting of a cast-aluminum plate of
uniform thickness b and length L, is to support the load shown. (a) Knowing
that the beam is to be of constant strength, express h in terms of x, L, and 
for portion AC of the beam. (b) Determine the maximum allowable load if

and sall � 72 MPa. b � 25 mm,L � 800 mm, h0 � 200 mm,

h0

B
h h0

L/2 L/2

x

A C

M0

Fig. P5.142

w � w0 L
x

A

B

h h0

L

x

Fig. P5.137

A

B

h h0

L

x

P

Fig. P5.139

B
h h0

L/2 L/2

x

A
C

P

Fig. P5.141
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Problems 3595.143 and 5.144 A preliminary design based on the use of a simply
supported prismatic timber beam indicated that a beam with a rectangular cross
section 50 mm wide and 200 mm deep would be required to safely support the
load shown in part a of the figure. It was then decided to replace that beam
with a built-up beam obtained by gluing together, as shown in part b of the fig-
ure, four pieces of the same timber as the original beam and of 
cross section. Determine the length l of the two outer pieces of timber that will
yield the same factor of safety as the original design.

50 � 50-mm

A B

A B

C

1.2 m 1.2 m
P

l

(a)

(b)

Fig. P5.143

5.145 and 5.146 A preliminary design based on the use of a cantilever
prismatic beam indicated that a beam with a rectangular cross section 2 in.
wide and 10 in. deep would be required to safely support the load shown in
part a of the figure. It was then decided to replace that beam with a built-up
beam obtained by gluing together, as shown in part b of the figure, five pieces
of the same timber as the original beam and of cross section. Deter-
mine the respective lengths and of the two inner and two outer pieces of
timber that will yield the same factor of safety as the original design.

l2l1

2 � 2-in.

l2
l1

A
C

D B

A B

P

6.25 ft

(a)

(b)

Fig. P5.145

A B

C D

w

0.8 m 0.8 m 0.8 m

(a)

A B

l

(b)

l2
l1

A
C

D B

A

6.25 ft

(a)

(b)

B

w

Fig. P5.146

Fig. P5.144
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5.147 A cantilevered machine element of cast aluminum and in the shape
of a solid of revolution of variable diameter d is being designed to support a
horizontal concentrated load P as shown. (a) Knowing that the machine ele-
ment is to be of constant strength, express d in terms of y, L, and (b) De-
termine the maximum allowable value of P if and
sall � 72 MPa.

L � 300 mm, d0 � 60 mm,
d0.

360 Analysis and Design of Beams for Bending

�������
���

A

d

d0

B

L

y

w

Fig. P5.148

5.148 A cantilevered machine element of cast aluminum and in the shape
of a solid of revolution of variable diameter d is being designed to support a
horizontal distributed load w as shown. (a) Knowing that the machine element
is to be of constant strength, express d in terms of y, L, and (b) Determine
the smallest allowable value of if and

5.149 A cantilever beam AB consisting of a steel plate of uniform depth
h and variable width b is to support a concentrated load P at point A. (a) Know-
ing that the beam is to be of constant strength, express b in terms of x, L, and

(b) Determine the smallest allowable value of h if 
and sall � 24 ksi.P � 3.2 kips,

L � 12 in., b0 � 15 in.,b0.

sall � 72 MPa.
L � 300 mm, w � 20 kN/m,d0

d0.

�
����
���

���
���
���

x

L h

A

B

b0

w

b

5.150 A cantilever beam AB consisting of a steel plate of uniform depth
h and variable width b is to support a distributed load w along its center line
AB. (a) Knowing that the beam is to be of constant strength, express b in terms
of x, L, and (b) Determine the maximum allowable value of w if

and sall � 24 ksi.h � 0.75 in.,L � 15 in., b0 � 18 in.,
b0.

Fig. P5.150

�������
���

P
A

d

d0

B

L

y

Fig. P5.147

�
����
���

���
���
���

x

L h

A

B

b0

b

P

Fig. P5.149
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5.151 Two cover plates, each 7.5 mm thick, are welded to a 
beam as shown. Knowing that and determine the max-
imum normal stress on a transverse section (a) through the center of the beam,
(b) just to the left of D.

5.152 Assuming that the length and width of the cover plates used with
the beam of Sample Prob. 5.12 are, respectively, and 
and recalling that the thickness of each plate is 16 mm, determine the maxi-
mum normal stress on a transverse section (a) through the center of the beam,
(b) just to the left of D.

5.153 Two cover plates, each thick, are welded to a 
beam as shown. Knowing that and determine the max-
imum normal stress on a transverse section (a) through the center of the beam,
(b) just to the left of D.

b � 10.5 in.,l � 10 ft
W27 � 841

2 in.

b � 285 mm,l � 4 m

b � 200 mm,l � 5 m
W460 � 74 Problems 361

in.1
2

B

b
ED C

A

l
W27 × 84

9 ft 9 ft

160 kips

1
2 l1

2

Fig. P5.153 and P5.156

5.154 Two cover plates, each thick, are welded to a 
beam as shown. Knowing that and determine the maximum
normal stress on a transverse section (a) through the center of the beam, (b)
just to the left of D.

5.155 Two cover plates, each 7.5 mm thick, are welded to a 
beam as shown. Knowing that for both the beam and the plates,
determine the required value of (a) the length of the plates, (b) the width of
the plates.

5.156 Two cover plates, each thick, are welded to a 
beam as shown. Knowing that for both the beam and the plates,
determine the required value of (a) the length of the plates, (b) the width of
the plates.

5.157 Two cover plates, each thick, are welded to a 
beam as shown. Knowing that for both the beam and the plates,
determine the required value of (a) the length of the plates, (b) the width of
the plates.

5.158 Knowing that determine the largest concentrated
load P that can be applied at end E of the beam shown. Neglect the weights
of the beam and of the plates.

sall � 165 MPa,

sall � 22 ksi
W30 � 995

8 in.

sall � 24 ksi
W27 � 841

2 in.

sall � 150 MPa
W460 � 74

b � 12 in.,l � 9 ft
W30 � 995

8 in.

B

b 7.5 mm

ED
A

l W460 × 74

8 m

40 kN/m

Fig. P5.151 and P5.155

B

b

ED

A

l
W30 × 99

16 ft

30 kips/ft

in.5
8

Fig. P5.154 and P5.157

E

C  

A
B D

P

W310 � 60

12 � 225 mm

2.1 m 1.2 m

2.1 m
4.5 m

Fig. P5.158
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5.159 For the tapered beam shown, and knowing that de-
termine (a) the transverse section in which the maximum normal stress occurs,
(b) the corresponding value of the normal stress.

5.160 For the tapered beam shown, and knowing that 
determine (a) the transverse section in which the maximum normal stress oc-
curs, (b) the corresponding value of the normal stress.

w � 160 kN/m,

P � 150 kN,362 Analysis and Design of Beams for Bending

C

x

0.6 m

120 mm
A B

hh

0.6 m

300 mm

w 20 mm

Fig. P5.160 and P5.162

5.161 For the tapered beam shown, determine (a) the transverse section
in which the maximum normal stress occurs, (b) the largest concentrated load
P that can be applied, knowing that 

5.162 For the tapered beam shown, determine (a) the transverse section
in which the maximum normal stress occurs, (b) the largest distributed load w
that can be applied, knowing that 

5.163 For the tapered beam shown, determine (a) the transverse section
in which the maximum normal stress occurs, (b) the largest concentrated load
P that can be applied, knowing that sall � 24 ksi.

sall � 140 MPa.

sall � 140 MPa.

CA B

w

x

30 in.

4 in. hh

30 in.

in.3
4

8 in.

Fig. P5.164

5.164 For the tapered beam shown, determine (a) the transverse section
in which the maximum normal stress occurs, (b) the largest distributed load w
that can be applied, knowing that sall � 24 ksi.

C

x

0.6 m

120 mm
A B

hh

0.6 m

300 mm

P 20 mm

Fig. P5.159 and P5.161

x

30 in.

4 in.
A BC

hh

30 in.

P

8 in.

in.3
4

Fig. P5.163
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363

REVIEW AND SUMMARY
FOR CHAPTER 5

This chapter was devoted to the analysis and design of beams under
transverse loadings. Such loadings can consist of concentrated loads
or distributed loads and the beams themselves are classified accord-
ing to the way they are supported (Fig. 5.3). Only statically deter-
minate beams were considered in this chapter, the analysis of stati-
cally indeterminate beams being postponed until Chap. 9.

L

(a) Simply supported beam

Statically
Determinate
Beams

Statically
Indeterminate
Beams

L2L1

(d) Continuous beam

L

(b) Overhanging beam

L

Beam fixed at one end
and simply supported

at the other end

(e) 

L

(c) Cantilever beam

L

( f ) Fixed beam

Fig. 5.3

While transverse loadings cause both bending and shear in a
beam, the normal stresses caused by bending are the dominant cri-
terion in the design of a beam for strength [Sec. 5.1]. Therefore, this
chapter dealt only with the determination of the normal stresses in
a beam, the effect of shearing stresses being examined in the next
one.

We recalled from Sec. 4.4 the flexure formula for the determi-
nation of the maximum value of the normal stress in a given sec-
tion of the beam,

(5.1)

where I is the moment of inertia of the cross section with respect to
a centroidal axis perpendicular to the plane of the bending couple M
and c is the maximum distance from the neutral surface (Fig. 4.13).

sm �
0M 0 c

I

sm

Considerations for the design of
prismatic beams

Normal stresses due to bending

y

c

m�

x�
Neutral surface

Fig. 4.13
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364 Analysis and Design of Beams for Bending
We also recalled from Sec. 4.4 that, introducing the elastic section
modulus of the beam, the maximum value of the normal
stress in the section can be expressed as

(5.3)

It follows from Eq. (5.1) that the maximum normal stress oc-
curs in the section where is largest, at the point farthest from
the neural axis. The determination of the maximum value of 
and of the critical section of the beam in which it occurs is greatly
simplified if we draw a shear diagram and a bending-moment dia-
gram. These diagrams represent, respectively, the variation of the
shear and of the bending moment along the beam and were obtained
by determining the values of V and M at selected points of the beam
[Sec. 5.2]. These values were found by passing a section through
the point where they were to be determined and drawing the free-
body diagram of either of the portions of beam obtained in this fash-
ion. To avoid any confusion regarding the sense of the shearing force
V and of the bending couple M (which act in opposite sense on the
two portions of the beam), we followed the sign convention adopted
earlier in the text and illustrated in Fig. 5.7a [Examples 5.01 and
5.02, Sample Probs. 5.1 and 5.2].

The construction of the shear and bending-moment diagrams is
facilitated if the following relations are taken into account [Sec. 5.3].
Denoting by w the distributed load per unit length (assumed posi-
tive if directed downward), we wrote

(5.5, 5.7)

or, in integrated form,

(5.6�)
(5.8�)

Equation makes it possible to draw the shear diagram of a
beam from the curve representing the distributed load on that beam
and the value of V at one end of the beam. Similarly, Eq. makes
it possible to draw the bending-moment diagram from the shear di-
agram and the value of M at one end of the beam. However, con-
centrated loads introduce discontinuities in the shear diagram and
concentrated couples in the bending-moment diagram, none of which
is accounted for in these equations [Sample Probs. 5.3 and 5.6]. Fi-
nally, we noted from Eq. (5.7) that the points of the beam where the
bending moment is maximum or minimum are also the points where
the shear is zero [Sample Prob. 5.4].

15.8¿ 2
15.6¿ 2

 MD � MC � area under shear curve between C and D
 VD � VC � �1area under load curve between C and D2

dV

dx
� �w  

dM

dx
� V

0M 00M 0

sm �
0M 0
S

smS � I�c

Shear and bending-moment 
diagrams

V

M

M'

V'

(a)  Internal forces
(positive shear and positive bending moment)

Fig. 5.7a

Relations among load, shear, 
and bending moment
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0
(a) n � 0

� x � a �0

a x

Fig. 5.18a

A proper procedure for the design of a prismatic beam was de-
scribed in Sec. 5.4 and is summarized here:

Having determined for the material used and assuming that
the design of the beam is controlled by the maximum normal stress
in the beam, compute the minimum allowable value of the section
modulus:

(5.9)

For a timber beam of rectangular cross section, where
b is the width of the beam and h its depth. The dimensions of the
section, therefore, must be selected so that 

For a rolled-steel beam, consult the appropriate table in Appendix C.
Of the available beam sections, consider only those with a section mod-
ulus and select from this group the section with the smallest
weight per unit length. This is the most economical of the sections for
which 

In Sec. 5.5, we discussed an alternative method for the determina-
tion of the maximum values of the shear and bending moment based on
the use of the singularity functions By definition, and for 
we had

(5.14)

We noted that whenever the quantity between brackets is positive or
zero, the brackets should be replaced by ordinary parentheses, and
whenever that quantity is negative, the bracket itself is equal to zero.
We also noted that singularity functions can be integrated and dif-
ferentiated as ordinary binomials. Finally, we observed that the sin-
gularity function corresponding to is discontinuous at 
(Fig. 5.18a). This function is called the step function. We wrote

(5.15)Hx � aI0 � e1

0

 when x � a

 when x 6 a

x � an � 0

Hx � aIn � e 1x � a2n
0

 when x � a

 when x 6 a

n � 0,Hx � aIn.

S � Smin.

S � Smin

1
6  bh2 � Smin.

S � 1
6 bh2,

Smin �
0M 0max

sall

sall Design of prismatic beams

Singularity functions

Step function
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366 Analysis and Design of Beams for Bending
The use of singularity functions makes it possible to represent

the shear or the bending moment in a beam by a single expression,
valid at any point of the beam. For example, the contribution to the
shear of the concentrated load P applied at the midpoint C of a sim-
ply supported beam (Fig. 5.8) can be represented by 
since this expression is equal to zero to the left of C, and to to
the right of C. Adding the contribution of the reaction at A,
we express the shear at any point of the beam as

The bending moment is obtained by integrating this expression:

The singularity functions representing, respectively, the load,
shear, and bending moment corresponding to various basic loadings
were given in Fig. 5.19 on page 346. We noted that a distributed
loading which does not extend to the right end of the beam, or which
is discontinuous, should be replaced by an equivalent combination
of open-ended loadings. For instance, a uniformly distributed load
extending from to (Fig. 5.20) should be expressed as

w1x2 � w0Hx � aI0 � w0Hx � bI0
x � bx � a

M1x2 � 1
2 Px � PHx � 1

2 LI1

V1x2 � 1
2 P � PHx � 1

2LI0
RA � 1

2P
�P

�PHx � 1
2 LI0,

The contribution of this load to the shear and to the bending moment
can be obtained through two successive integrations. Care should be
taken, however, to also include in the expression for V(x) the con-
tribution of concentrated loads and reactions, and to include in the
expression for the contribution of concentrated couples [Ex-
amples 5.05 and 5.06, Sample Probs. 5.9 and 5.10]. We also observed
that singularity functions are particularly well suited to the use of
computers.

We were concerned so far only with prismatic beams, i.e., beams
of uniform cross section. Considering in Sec. 5.6 the design of non-
prismatic beams, i.e., beams of variable cross section, we saw that
by selecting the shape and size of the cross section so that its elas-
tic section modulus varied along the beam in the same way
as the bending moment M, we were able to design beams for which

at each section was equal to Such beams, called beams of
constant strength, clearly provide a more effective use of the mate-
rial than prismatic beams. Their section modulus at any section along
the beam was defined by the relation

(5.18)S �
M
sall

sall.sm

S � I�c

M1x2

Using singularity functions to 
express shear and bending moment

Equivalent open-ended loadings

Beams of constant strength

Nonprismatic  beams

B
C

A

P

L1
2 L1

2

Fig. 5.8

xO

w w0

b

L

a

Fig. 5.20

xO

w w0

� w0b

L

a
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REVIEW PROBLEMS

5.165 Draw the shear and bending-moment diagrams for the beam load-
ing shown, and determine the maximum absolute value (a) of the shear, (b) of
the bending moment.

5.166 For the beam and loading shown, determine the maximum nor-
mal stress due to bending on a transverse section at D.

B

150 kN
90 kN/m

W460 � 113

150 kN

A
C ED

2.4 m

0.8 m
Fig. P5.166

5.167 Determine (a) the distance a for which the maximum absolute
value of the bending moment in the beam is as small as possible, (b) the cor-
responding maximum normal stress due to bending. (Hint: Draw the bending-
moment diagram and then equate the absolute values of the largest positive and
negative bending moments obtained.)

5.168 Draw the shear and bending-moment diagrams for the beam and
loading shown, and determine the maximum absolute value (a) of the shear,
(b) of the bending moment.

5.169 For the beam and loading shown, determine (a) the maximum
value of the bending moment, (b) the maximum normal stress due to bending.

10 ft
3 ft2 ft

3 kips/ft

S10 � 25.4
C D

BA

5.170 (a) Using singularity functions, write the equations defining the
shear and bending moment for the beam and loading shown. (b) Determine the
maximum value of the bending moment in the beam.

Fig. P5.169

B

2.5 kips/ft 15 kips

A
C D

6 ft6 ft
3 ft

Fig. P5.165

20 in. 20 in.

A
C D

a

B

0.75 in.

0.5 in.120 lb 120 lb

Fig. P5.167

3.2 m
0.8 m

24 kN30 kN/m

C
BA

Fig. P5.168

1.2 m 1.2 m0.9 m

12 kN 24 kN 12 kN

C D E
BA

1.2 m
Fig. P5.170
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368 Analysis and Design of Beams for Bending 5.171 For the beam and loading shown, design the cross section of the
beam, knowing that the grade of timber used has an allowable normal stress
of 1.75 ksi.

d

18 kN/m

A B

0.9 m
1.8 m

0.9 m

d1
3

Fig. P5.172

5.172 For the beam and loading shown, design the cross section of the
beam, knowing that the grade of timber used has an allowable normal stress
of 12 MPa.

5.173 Knowing that the allowable normal stress for the steel used is 160
MPa, select the most economical metric wide-flange beam to support the load-
ing shown.

2 ft
6 ft

2 ft2 ft 2 ft

20 kips20 kips 11 kips/ft

FA
B E

DC

Fig. P5.174

5.174 Knowing that the allowable normal stress for the steel used is 24
ksi, select the most economical wide-flange beam to support the loading shown.

5.175 A machine element of cast aluminum and in the shape of a solid
of revolution of variable diameter d is being designed to support a distributed
load w as shown. (a) Knowing that the machine element is to be of constant
strength, express d in terms of y, L, and (b) Determine the smallest allow-
able value of if and sall � 72 MPa.L � 250 mm, w � 30 kN/m,d0

d0.

F

B D

P

E

A

W14 × 53

8 ft

5 ft 5 ft

8 ft

6 ft
� 10 in.1

2

Fig. P5.176

5.176 Two cover plates, each 0.5 in. thick and 10 in. wide, are welded
to a beam as shown. Knowing that the allowable normal stress for
the steel used is 22 ksi, determine the largest vertical force P that can be safely
applied at point D.

W14 � 53

A B
C d

3.5 ft 3.5 ft

5.0 in.
1.5 kips/ft

Fig. P5.171

4.5 m 2.7 m

40 kN
2.2 kN/m

CA
B

Fig. P5.173

w

A B

C
x

L/2 L/2

d d0

Fig. P5.175
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COMPUTER PROBLEMS

The following problems are designed to be solved with a computer.

5.C1 Several concentrated loads can be applied to a
beam as shown. Write a computer program that can be used to calculate the
shear, bending moment, and normal stress at any point of the beam for a given
loading of the beam and a given value of its section modulus. Use this pro-
gram to solve Probs. 5.23, 5.27, and 5.29. (Hint: Maximum values will occur
at a support or under a load.)

5.C2 A timber beam is to be designed to support a distributed load and
up to two concentrated loads as shown. One of the dimensions of its uniform
rectangular cross section has been specified and the other is to be determined
so that the maximum normal stress in the beam will not exceed a given al-
lowable value Write a computer program that can be used to calculate at
given intervals the shear, the bending moment, and the smallest acceptable
value of the unknown dimension. Apply this program to solve the following
problems, using the intervals indicated: (a) Prob. 5.75 (b)
Prob. 5.79 (c) Prob. 5.80 1¢L � 0.3 m2,1¢L � 0.2 m2,

1¢L � 0.1 m2,¢L

¢L
sall.

Pi 1i � 1, 2, p , n2

5.C3 Two cover plates, each of thickness t, are to be welded to a wide-
flange beam of length L, which is to support a uniformly distributed load w.
Denoting by the allowable normal stress in the beam and in the plates, by
d the depth of the beam, and by and respectively, the moment of inertia
and the section modulus of the cross section of the unreinforced beam about a
horizontal centroidal axis, write a computer program that can be used to cal-
culate the required value of (a) the length a of the plates, (b) the width b of
the plates. Use this program to solve Probs. 5.155 and 5.157.

Sb,Ib

sall

BA

x1

x2

xn
xi

a bL

P1 P2 Pi Pn

B

t

h
A

x1

x3

x2

x4

a bL

P1

P2
w

Fig. P5.C2

Fig. P5.C1

B

bt

ED

A

a

L

w

Fig. P5.C3
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370 Analysis and Design of Beams for Bending

BC

x

A

18 ft

6 ft

9 ft

25 kips25 kips

Fig. P5.C4

5.C4 Two 25-kip loads are maintained 6 ft apart as they are moved
slowly across the 18-ft beam AB. Write a computer program and use it to cal-
culate the bending moment under each load and at the midpoint C of the beam
for values of x from 0 to 24 ft at intervals 

5.C5 Write a computer program that can be used to plot the shear and
bending-moment diagrams for the beam and loading shown. Apply this pro-
gram with a plotting interval to the beam and loading of (a) Prob.
5.83, (b) Prob. 5.125.

¢L � 0.2 ft

¢x � 1.5 ft.

B

w

A

b

a

L

MA MB

5.C6 Write a computer program that can be used to plot the shear and
bending-moment diagrams for the beam and loading shown. Apply this pro-
gram with a plotting interval to the beam and loading of Prob.
5.124.

¢L � 0.025 m

Fig. P5.C6

B

w

A

a

b

L

P

Fig. P5.C5
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