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The Saint‐Venant equations
The Saint-Venant equations for distributed routing are not

amenable to analytical solution except in a few special simple

cases. They are partial differential equations that, in

general, must be solved using Numerical Methods.
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Numerical Methods

Methods for solving partial differentialf g p ff

equations may be classified as;

1- Direct Numerical Method

2- Characteristics Methods
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(1) Direct Numerical Method(1) Direct Numerical Method
In direct methods, finite-difference equations are
formulated from the original partial differentialg p
equations for continuity and momentum. Solutions
for the flow rate and water surface elevation are
then obtained for incremental times and distancesthen obtained for incremental times and distances
along the stream or river.

(2) Characteristics Methods
In characteristic methods, the partial differential, p
equations are first transformed to a characteristic
form, and the characteristic equations are solved

l ti ll
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analytically.



Numerical Methods:Numerical Methods:
l h d f l l d ff lIn numerical methods for solving partial differential

equations, the calculations are performed on a grid
placed over the x-t plane.

The x-t grid is a network of points defined by taking
distance increments of length ∆x, and time increments of
d ti ∆tduration ∆t.

The distance points are denoted by index i & time points
by index jby index j .

A time line is a line parallel to the x axis as shown in
Figure.F gur .
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The grid on the x-t plane used for numerical solution of 
the Saint-Venant equations by finite differences.
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Finite Differences
Finite-difference approximations can be derived for a
function u(x) as shown in Fig.
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Finite Differences:Finite Differences:
A T l  i  i  f ( ) t (   ∆ ) • A Taylor series expansion of u(x) at (x + ∆x) 
produces;

(1)

WhereWhere
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Finite DifferencesFinite Differences
The Taylor series expansion at x — ∆x is

(2)

A central-difference approximation uses the difference

defined by subtracting eq (2) from (1)
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(3)



Finite Differences:

(4)
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which has an error of approximation of order ∆x.



Finite Differences:
• The backward difference approximation uses the 
difference defined by subtracting eq.(2) from u(x)difference defined by subtracting eq.( ) from u(x)

E  f i i  i  f h  d  ∆
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Error of approximation is of the order ∆x



Finite Difference SchemesFinite Difference Schemes

There are Two schemes

1- Explicit SchemeExpl c t Scheme

2- Implicit Scheme
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Explicit Scheme
The unknown values are solved

Implicit Scheme
The unknown values on a givenThe unknown values are solved

sequentially along a time line from
one distance point to the next.
Simpler but can be unstable.

The unknown values on a given
time line are all determined
simultaneously.
More complicated, but with the

(smaller ∆x and ∆t are required)

Convenient as results are given at

use of computers this is not a
serious problem once the method
is programmed.
The method is stable for largeg

grid points.
Can treat slightly varying channel
geometry from section to section.

The method is stable for large
computation steps.
Can treat significantly variations in
channel sections.

Less efficient
so not suitable for routing the
flood flows over a long period of
ti

Much faster,
Little loss of accuracy.

time.
It uses forward diff. app. for time
scale and central diff. app. for
space scales.

Both for space and time, forward
diff. app. are used.

space scales.
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Explicit Scheme:Explicit Scheme:
• A forward-difference scheme is used for the time
derivative and a central difference scheme is used
for the space scale.

( For time derivatives( For time derivatives, 
forward diff.)

( For space scale derivatives, 
central diff.))
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Implicit Scheme
Both the temporal and spatial derivative in terms of 
the dependent variable on the unknown time line. p
(j+1), forward diff.
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Numerical Solution of The Kinematic Wave
Routing EqnsRouting Eqns.

Continuity Equation    (1)

Momentum Equation    (2)
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Numerical Solution Of The Kinematic Wave Routing Eqns.

Continues . . . . . .
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Numerical Solution Of The Kinematic Wave Routing Eqns.

Continues . . . . . .

(3)( )
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Numerical Solution Of The Kinematic Wave Routing Eqns.

Continues . . . . . .

(4)(4)

Equation # 4 has two variables A & Q

WhereWhere
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Numerical Solution Of The Kinematic Wave Routing Eqns.

Continues . . . . . .

(5)

(6)( )
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Numerical Solution Of The Kinematic Wave Routing Eqns.

Continues . . . . . .
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Linear Scheme;

FIGURE 
i i diff bFinite difference box 
for solution of the 
linear kinematic 
wave equationwave equation 
showing the finite 
difference
equations.equations.
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Linear SchemeLinear Scheme
Th b k d diff th d i d t t• The backward‐difference method is used to set up 
the finite‐difference equations.

(7)

(8)

(9)
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Linear SchemeLinear Scheme
A l t l flAverage lateral flow;

( )(10)

Sbstituting eqn (7)‐(10) in eqn (6) ;

(11)

24



Linear SchemeLinear Scheme
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Non Linear Kinematic 
wave equation :

It is unconditionally stable.(1) y( )

Where 
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Non Linear Kinematic wave equationq
continued . . . .

• For Implicit solution, space & time derivation 

should be forward difference.

• The finite difference form of the equation (1) ;

(2)
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Non Linear Kinematic wave equationq
continued . . . .

I  (2) In eqn (2) ;

3A

3B
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Non Linear Kinematic wave equationq
continued . . . .

(4)
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ThanksThanks
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