Hydraulics Engineering LeC \#2 : Surface Profiles and Backwater Curves in Channels of Uniform sections

Prof. Dr. Abdul Sattar Shakir Department of Civil Engineering

Steady Flow in Open Channels

- Specific Energy and Critical Depth

T- Surface Profiles and Backwater Curves in
'L _Channels of Uniform sections _ _ _ _ _ _ _ _

- Hydraulics jump and its practical applications.
- Flow over Humps and through Constrictions
- Broad Crested Weirs and Venturi Flumes

Types of Bed Slopes

- Mild Slope (M)

$$
\begin{aligned}
& y_{0}>y_{c} \\
& S_{0}<S_{c}
\end{aligned}
$$

- Critical Slope (C)
$y_{0}=y_{c}$
$\mathrm{S}_{\mathrm{o}}=\mathrm{S}_{\mathrm{c}}$

- Steep Slope (S)

$$
\mathrm{S}_{\mathrm{o} 2}>\mathrm{S}_{\mathrm{c}}
$$ $S_{o}>S_{c}$

Occurrence of Critical Depth

- Change in Bed Slope
\square Sub-critical to Super-Critical
- Control Section

\square Super-Critical to Sub-Critical
- Hydraulics Jump

Occurrence of Critical Depth

- Change in Bed Slope
\square Free outfall
- Mild Slope

\square Free Outfall
- Steep Slope

Non Uniform Flow or Varied Flow.

- For uniform flow through open channel, $d y / d l$ is equal to zero. However for non uniform flow the gravity force and frictional resistance are not in balance. Thus $d y / d l$ is not equal to zero which results in non-uniform flow.
- There are two types of non uniform flows. In one the changing condition extends over a long

Energy Equation for Gradually Varied Flow.

$$
Z_{1}+y_{1}+\frac{V_{1}^{2}}{2 g}=Z_{2}+y_{2}+\frac{V_{2}^{2}}{2 g}+h_{l}
$$

Energy Equation for Gradually Varied Flow.

$$
\begin{aligned}
& y_{1}+\frac{V_{1}^{2}}{2 g}=y_{2}+\frac{V_{2}^{2}}{2 g}-\left(Z_{1}-Z_{2}\right)+h_{L} \\
& S=\frac{h_{L}}{\Delta L}, \quad S_{o}=\frac{\left(Z_{1}-Z_{2}\right)}{\Delta X} \approx \frac{\left(Z_{1}-Z_{2}\right)}{\Delta L} \text { for } \theta<6^{\circ}
\end{aligned}
$$

Now

$$
\begin{align*}
& E_{1}=E_{2}-S_{o} \Delta L+S \Delta L \\
& \Delta L=\frac{E_{1}-E_{2}}{S-S_{o}} \tag{1}
\end{align*}
$$

Where $\Delta L=$ length of water surface profile
An approximate analysis of gradually varied, non uniform flow can be achieved by considering a length of stream consisting of a number of successive reaches, in each of which uniform occurs. Greater accuracy results from smaller depth variation in each reach.

Energy Equation for Gradually Varied Flow.

The Manning's formula is applied to average conditions in each reach to provide an estimate of the value of S for that reach as follows;

$$
\begin{array}{ll}
V_{m}=\frac{1}{n} R_{m}^{2 / 3} S^{1 / 2} & V_{m}=\frac{V_{1}+V_{2}}{2} \\
S=\frac{V_{m}^{2} n^{2}}{R_{m}^{4 / 3}} & R_{m}=\frac{R_{1}+R_{2}}{2}
\end{array}
$$

In practical depth range of the interest is divided into small increments, usually equal, which define the reaches whose lengths can be found by equation (1)

Water Surface Profiles in Gradually Varied Flow.

Water Surface Profiles in Gradually Varied Flow.

Differenti ating the total head H w.r.t distance in horizontal direction x.

$$
\frac{d H}{d x}=\frac{d Z}{d x}+\frac{d y}{d x}+\frac{d}{d x}\left(\frac{q^{2}}{2 g y^{2}}\right)
$$

Considering cross - section as rectangular

$$
\begin{aligned}
& \frac{d H}{d x}=\frac{d Z}{d x}+\frac{d y}{d x}\left(1-\frac{q^{2}}{g y^{3}}\right) \\
& -S=-S_{o}+\frac{d y}{d x}\left(1-F_{N}^{2}\right) \quad \Theta F_{N}=\sqrt{\frac{q^{2}}{g y^{3}}}
\end{aligned}
$$

- ve sign shows that total head along direction of
flow is decreasing.

For uniform flow $\frac{d y}{d x}=0$
$\therefore \frac{S o-S}{1-F_{N}{ }^{2}}=0$

Equation (2) is dynamic Equation for gradually varied flow for constant value of q and n

If $d y / d x$ is +ve the depth of flow increases in the direction of flow and vice versa

Water Surface Profiles in Gradually Varied Flow.

For a wide rectangular channel

$$
\begin{aligned}
& R \approx y \\
& V=\frac{1}{n} y^{2 / 3} S^{1 / 2} \quad \text { or } \\
& q=\frac{1}{n} y^{5 / 3} S^{1 / 2} \quad \text { or } \\
& S=\frac{n^{2} q^{2}}{y^{10 / 3}}
\end{aligned}
$$

- Consequently, for constant q and n, when $y>y_{0}, S<S_{0}$, and the numerator is +ve . Conversely, when $y<y_{o}, S>S_{o}$, and the numerator is $-v e$.
- To investigate the denominator we observe that, if $F=1$, $d y / d x=$ infinity; if $\quad F>1$, the denominator is -ve; and if $F<1$, the denominator is $+v e$.

Classification of Surface Profiles

- Mild Slope (M)
$y_{0}>y_{c}$ $\mathrm{S}_{\mathrm{o}}<\mathrm{S}_{\mathrm{c}}$
- Critical Slope (C)
$\mathrm{y}_{\mathrm{o}}=\mathrm{y}_{\mathrm{c}}$
$S_{0}=S_{c}$
- Steep Slope (S)

$$
\begin{aligned}
& y_{0}<y_{c} \\
& S_{0}>S_{c}
\end{aligned}
$$

- Horizontal (H)

$$
S_{0}=0
$$

- Adverse (A)

$$
S_{0}=-v e
$$

- Type 1: if the stream surface lies above both the normal and critical depth of flow. $\left(\mathrm{M}_{1}, \mathrm{~S}_{1}\right)$
- Type 2: if the stream surface lies between normal and critical depth of flow. $\left(\mathrm{M}_{2}, \mathrm{~S}_{2}\right)$
- Type 3: if the stream surface lies below both the normal and critical depth of flow. $\left(\mathrm{M}_{3}, \mathrm{~S}_{3}\right)$

Water Surface Profiles

 Mild Slope (M)

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{S_{o}-S}{1-F_{N}}=\square \\
& \frac{d y}{d x}=\frac{S_{o}-S}{1-F_{N}}=\square \\
& \frac{d y}{d x}=\frac{S_{o}-S}{1-F_{N}}=\square
\end{aligned} \Rightarrow
$$

$S_{0}<S_{c}$
Note:
For Sign of Numerator computer

$$
y_{0} \& y
$$

For sign of denominator compare

$$
y_{c} \& y
$$

If $y>y_{o}$ then $S<S_{o}$ and Vice Versa

Mild slope $\quad S_{0}<S_{c}$

Water Surface Profiles Steep Slope (S)

$$
\begin{array}{ll}
1: y>y_{c}>y_{o} & \frac{d y}{d x}=\frac{S_{o}-S}{1-F_{N}}=\frac{+V e}{+V e}=+V e \Rightarrow S_{1} \\
2: y_{c}>y>y_{o} & \frac{d y}{d x}=\frac{S_{o}-S}{1-F_{N}}=\frac{+V e}{-V e}=-V e \Rightarrow S_{2} \\
3: y_{c}>y_{o}>y & \frac{d y}{d x}=\frac{S_{o}-S}{1-F_{N}}=\frac{-V e}{-V e}=+V e \Rightarrow S_{3}
\end{array}
$$

Note:
For Sign of Numerator computer

$$
y_{0} \& y
$$

For sign of denominator compare

$$
y_{c} \& y
$$

If $y>y_{0}$ then $S<S_{0}$ and Vice Versa

Water Surface Profiles
 Critical (C)

$$
\begin{array}{ll}
1: y>y_{o}=y_{c} & \frac{d y}{d x}=\frac{S_{o}-S}{1-F_{N}}=\frac{+V e}{+V e}=+V e \Rightarrow C_{1} \\
2: y_{o}=y_{c}>y & \frac{d y}{d x}=\frac{S_{o}-S}{1-F_{N}}=\frac{-V e}{-V e}=+V e \Rightarrow C_{3}
\end{array}
$$

C_{2} is not possible
Note:
For Sign of Numerator computer

$$
y_{0} \& y
$$

For sign of denominator compare

$$
y_{c} \& y
$$

If $y>y_{0}$ then $S<S_{0}$ and Vice Versa

Water Surface Profiles Horizontal (H)

$$
\begin{array}{ll}
1: y_{o(0)}>y>y_{c} & \frac{d y}{d x}=\frac{S-S_{o}}{1-F_{N}}=\frac{-V e}{+V e}=-V e \Rightarrow H_{2} \\
2: y_{o(\infty)}>y_{c}>y & \frac{d y}{d x}=\frac{S-S_{o}}{1-F_{N}}=\frac{-V e}{-V e}=+V e \Rightarrow H_{3}
\end{array}
$$

H_{1} is not possible bcz water has to lower down
Note:
For Sign of Numerator computer

$$
y_{0} \& y
$$

For sign of denominator compare

$$
y_{c} \& \quad y
$$

If $y>y_{o}$ then $S<S_{o}$ and Vice Versa

Water Surface Profiles

Adverse (A)

$$
\begin{array}{ll}
1: y_{o(\infty)}>y>y_{c} & \frac{d y}{d x}=\frac{S-S_{o}}{1-F_{N}}=\frac{-V e}{+V e}=-V e \Rightarrow A_{2} \\
2: y_{o(\infty)}>y_{c}>y & \frac{d y}{d x}=\frac{S-S_{o}}{1-F_{N}}=\frac{-V e}{-V e}=+V e \Rightarrow A_{3}
\end{array}
$$

A_{1} is not possible bcz water has to lower down

Note:
For Sign of Numerator computer

$$
y_{0} \& y
$$

For sign of denominator compare

$$
y_{c} \& y
$$

If $y>y_{o}$ then $S<S_{o}$ and Vice Versa

Problem 11.59

- A rectangular flume of planer timber ($\mathrm{n}=0.012$) is 1.5 m wide and carries $1.7 \mathrm{~m}^{3} / \mathrm{sec}$ of water. The bed slope is 0.0006 , and at a certain section the depth is 0.9 m . Find the distance (in one reach) to the section where depth is 0.75 m . Is the distance upstream or downstream?

B

Problem 11.59 Solution

Since

$$
\Delta L=\frac{E_{1}-E_{2}}{S-S_{o}}
$$

$R_{m}=0.3925 m$
$V_{m}=1.385 \mathrm{~m}$
$\& \quad S=\frac{V_{m}^{2} n^{2}}{R_{m}^{4 / 3}}$
$A_{1}=1.5 x 0.9=1.35 m^{2}$
$A_{2}=1.5 \times 0.75=1.125 m^{2}$
$P_{1}=1.5+2 x 0.9=3.3 m$
$P_{2}=1.5+2 x 0.75=3 m$
$R_{1}=A_{1} / P_{1}=0.41$
$R_{2}=A_{2} / P_{2}=0.375$
$V_{1}=Q / A_{1}=1.26 \mathrm{~m} / \mathrm{sec}$
$V_{2}=Q / A_{2}=1.51 \mathrm{~m} / \mathrm{sec}$

Now $\quad \Delta L=\frac{E_{1}-E_{2}}{S-S_{o}}$
$\Delta L=\frac{\left(y_{1}+\frac{V_{1}^{2}}{2 g}\right)-\left(y_{2}+\frac{V_{2}^{2}}{2 g}\right)}{S-S_{o}}$
$=317.73 \mathrm{~m}$ Downstream

Problem 11.66

- The slope of a stream of a rectangular cross section is $\mathrm{S}_{0}=0.0002$, the width is 50 m , and the value of Chezy C is $43.2 \mathrm{~m}^{1 / 2} / \mathrm{sec}$. Find the depth for uniform flow of $8.25 \mathrm{~m}^{3} / \mathrm{sec} / \mathrm{m}$ of the stream. If a dam raises the water level so that at a certain distance upstream the increase is 1.5 m , how far from this latter section will the increase be only 30 cm ? Use reaches with 30 cm

- Given That

$$
\begin{aligned}
& S_{o}=0.0002 \\
& B=50 m \\
& C=43.2 m^{1 / 2} / \mathrm{sec} \\
& q=8.25 \mathrm{~m}^{3} / \mathrm{sec} / \mathrm{m} \\
& q=y_{o} C \sqrt{\frac{A_{o}}{P_{o}} S_{o}}
\end{aligned}
$$

$$
8.25=y_{o} 43.2 \sqrt{\frac{50 y_{o}}{50+2 y_{o}} 0.0002}
$$

$$
y_{o}=6.1 \mathrm{~m}
$$

Problem 11.66

y	A	P	R	V	E	E1-E2	Vm	Rm	S	S-S	ΔL	$\Sigma \Delta L$
m	m^{2}	m	m	m/s	m	m	m/s	m	m/m	m/m	m	m
7.6	380	65.2	5.82	1.09	7.66	0.295	1.11	5.74	0.000115	-0.000085	-3454.33	-3454.33
7.3												
7.0												
6.7												
6.4												

Assignment

- Problems:
$11.60,11.63,11.64,11.65,11.72,11.73$,
$11.74,11.75$
- Date of Submission:

