Hydraulics Engineering Lec \# 6:

Discharge through orifices and over weirs under varying heads.

Prof. Dr. Abdul Sattar Shakir Department of Civil Engineering

Unsteady Flow

- Discharge through orifices and over weirs ' under varying heads.
- Unsteady Flow through pipe lines, Water hammer. Instantaneous and slow closure of valves
- Surge wave in open channels.

Unsteady Flow

For unsteady flow
$Q_{1} \neq Q_{2}$
let dh be the change in head in
small time period dt
$\left(Q_{1}-Q_{2}\right) d t=A d h$
or
$d t=\frac{A d h}{Q_{1}-Q_{2}} \Rightarrow E q .(1)$

$E q$.(1) is called as continuity equation for unsteady flow
Integrating above Eq.(1)
$\int_{0}^{t} d t=\int_{h_{1}}^{h_{2}} \frac{A d h}{Q_{1}-Q_{2}}$
$\therefore t=\int_{h_{1}}^{h_{2}} \frac{A d h}{Q_{1}-Q_{2}}$

For Steady Flow
$Q_{1}=Q_{2}$
i.e. $\Rightarrow h=$ constt
\therefore For Orifice
$Q_{a c t}=c d \cdot a \cdot \sqrt{2 g h}$

Discharge Between reservoirs under Varying Heads

- Figure shows two reservoirs, of constant area, interconnected by a pipeline, water transfer occurring under gravity. Reservoir A receives an inflow / while a discharge Q_{2} is withdrawn from $B ; I$ and Q_{2} may be time variant.

- In general case the head h, and hence the transfer discharge Q_{1}, will vary with time and object is to obtain a differential equation describing the rate of variation of head with time, $d h / d t$.

Discharge Between reservoirs under Varying Heads

Continuity Equation for A: $I-Q_{1}=A_{1} \frac{d h_{1}}{d t}$
Continuity Equation for B: $Q_{1}-Q_{2}=A_{2} \frac{d h_{2}}{d t}$
Note that Q_{1} is the discharge in the pipeline and hence is the inflow rate into B Hence
$d h=\left(\frac{I-Q_{1}}{A_{1}}-\frac{Q_{1}-Q_{2}}{A_{2}}\right) d t$

Discharge in pipleline

$$
\begin{aligned}
& h_{L}=\left(K_{m}+\frac{f L}{D}\right) \frac{Q^{2}}{2 g A_{p}{ }^{2}} \\
& \therefore Q=K \sqrt{h} \text { where } \mathrm{K}=\mathrm{A}_{\mathrm{p}} \sqrt{\frac{2 g}{\left(K_{m}+\frac{f L}{D}\right)}}
\end{aligned}
$$

Unsteady Flow over Weir/Spillway

- Figure shows spillway, of varying area with h. Reservoir receives an inflow / while a discharge Q is withdrawn from it.

- The Computation of time variant in reservoir elevation and spillway discharge during a flood inflow to the reservoir is essential in design of the spillway to ensure safety of the impounding structure.

Unsteady Flow over Weir/Spillway

Now Continuity Equation becomes;
$I-Q=\frac{d S}{d t}$;where $\frac{\mathrm{dS}}{\mathrm{dt}}$ is the rate of change of storage, or volume.
$\frac{\mathrm{dS}}{\mathrm{dt}}=A \frac{\mathrm{dh}}{\mathrm{dt}}$; Where A is intantenous plan area of reservoir and
$\frac{\mathrm{dh}}{\mathrm{dt}}$ is intantenous rate of change of depth.
Since Q for Spillway/Weir is

$$
Q=\frac{2}{3} C_{d} \sqrt{2 g} B H^{3 / 2}=K H^{3 / 2}
$$

Therefore equation becomes

$$
I-K H^{3 / 2}=\frac{\mathrm{dS}}{\mathrm{dt}}=A \frac{d h}{d t} \Rightarrow E q \cdot(1)
$$

- I is the known time variant inflow rate. Except in the special case where A does not vary with depth and I is constant, eq. 1 is not directly integrable and in general must be evaluated numerically.

Problem

- A cylindrical tank with its axis vertical is filled with water and discharges through an orifice 2.5 cm diameter at the bottom with a $\mathrm{Cd}=0.623$. If the diameter of the tank is 0.6 m ; find the time required for water level to drop from 1.8 m to 0.6 m above the orifice when supply is cut off.

Given that
diameter of orifice $=\mathrm{d}=0.25 \mathrm{~cm}$
Continuity Eq. for unsteady flow is

$$
\therefore t=\int_{h_{1}}^{h_{2}} \frac{A d h}{Q_{1}-Q_{2}}
$$

$$
\text { Here }: \mathrm{Q}_{1}=0 \& \mathrm{Q}_{2}=\mathrm{Cd} \cdot \mathrm{a} \cdot \sqrt{2 \mathrm{gh}}
$$

$t=\frac{2 A}{C_{d} \cdot a \sqrt{2 g}}\left(\sqrt{h_{1}}-\sqrt{h_{2}}\right)$
$\therefore=\frac{2\left(\frac{\pi}{4} 0.6^{2}\right)}{0.623\left(\frac{\pi}{4} 0.025^{2}\right) \sqrt{2 x 9.81}}(\sqrt{1.8}-\sqrt{0.6})=236.718 \mathrm{sec}$

Assignment Problems

- Q1: A vertical cylinder tank 1.8 m diameter has at the bottom a 5 cm diameter sharp edge orifice for which $\mathrm{C}_{\mathrm{d}}=0.6$
\square (a) If the water enters the tank at a constant rate of 0.009 cumec. Find the depth of water above the orifice when the flow becomes steady.
\square (b) Find the time for the water level to fall from 2.4 m to 0.6 m above orifice if there is no inflow.
\square (c) If the water now runs into the tank at a constant rate of 0.02 cumec, the orifice remaining open, find the rate of rise of water level in $\mathrm{cm} / \mathrm{min}$ when this level has reached 1.5 m above orifice.
- Q2: A Reservoir of water surface area $900,000 \mathrm{~m}^{2}$ is provided with a spillway 30 m long which may be treated as rectangular notch with $\mathrm{Cd}=0.72$
\square Find the time in hours for head over the spillway to fall from 0.6 m to 0.15 m . Neglect inflow.
- Q3: A reservoir is circular in plan and when full the diameter of water surface is 60 m . When the water level falls 1.2 m the diameter of the surface is 48 m . Discharge takes place through a 0.6 m diameter outlet 3 m below the high water level which can be treated as orifice with a coefficient of discharge 0.8.
\square Determine the time required to lower the water level by 1.2 m if the reservoir is full at the start.

Assignment Problems

- Q4: A cylindrical tank 1.0 m diameter empty through a 0.5 m diameter pipe 3.5 m long for which the friction factor, $f=0.04$.
\square Find the time taken for head over the outlet to fall from 2.5 m to 1.2 m . There is no inflow.
- Q5: A tank 3 m long and 1.5 m wide is divided into two parts by a partition so that the area of one part is 3 times the area of other. The partition contains a square orifice 7.5 cm sides through which the flow may flow from one side to other.
\square If the water level in smaller dimension is 3 m above that of larger. Find the time taken to reduce the difference of water level to 0.6 m . Take $\mathrm{Cd}=0.62$
- Q6: A pipe discharges into a measuring tank 2 m long and 1 m wide. One wall of the tank has a V notch through which the water escapes freely and a gauge is provided to measure the head of water above the bottom of the notch. When the pipe discharges steadily at the rate of $0.02 \mathrm{~m}^{3} / \mathrm{sec}$, the gauge shows 22.5 cm head.
\square If the supply of water is suddenly cutoff, how long will it take for the head to fall to 7.5 cm . Take $\mathrm{Cd}=0.62$

