Hydraulics Engineering Lec \#3 : Fow over tumps and througn Constrictions

Prof. Dr. Abdul Sattar Shakir Department of Civil Engineering

Steady Flow in Open Channels

- Specific Energy and Critical Depth
- Surface Profiles and Backwater Curves in Channels of Uniform sections

I'Flow over Humps and through Constrictions

- Hydraulics jump and its practical applications.
- Broad Crested Weirs and Venturi Flumes

Flow Over Hump

- Hump:
is a streamline construction provided at the bed of the channel. It is locally raised bed.

Let's examine the case of hump in a rectangular channel. We will neglect the head loss.

Flow Over Hump

- For frictionless two-dimensional flow, sections 1 and 2 in Fig are related by continuity and momentum:

$$
\begin{aligned}
& v_{1} y_{1}=v_{2} y_{2} \\
& \frac{v_{1}^{2}}{2 g}+y_{1}=\frac{v_{2}^{2}}{2 g}+y_{2}+Z
\end{aligned}
$$

- Eliminating V_{2} between these two gives a cubic polynomial equation for the water depth y_{2} over the hump

$$
\begin{aligned}
& y_{2}^{3}-E_{2} y_{2}^{2}+\frac{v_{1}^{2} y_{1}^{2}}{2 g}=0 \\
& \text { where } \quad E_{2}=\frac{v_{1}^{2}}{2 g}+y_{1}-Z
\end{aligned}
$$

This equation has one negative and two positive solutions if Z is not too large. Its behavior is illustrated by E~y Diagram and depends upon whether condition 1 is Subcritical (on the upper) or Supercritical (lower leg) of the energy curve.

Flow Over Hump

- The specific energy E_{2} is exactly Z less than the approach energy $E 1$, and point 2 will lie on the same leg of the curve as E_{1}.
- A sub-critical approach, $\mathrm{F}_{\mathrm{r} 1}<1$, will cause the water level to decrease at the bump. Supercritical approach flow, $\mathrm{F}_{\mathrm{r} 1}>1$, causes a water-level
 increase over the bump.
- If the hump height reaches $Z_{\text {max }}=Z_{c=} E_{1}-E_{c}$, as illustrated in fig, the flow at the crest will be exactly critical ($\mathrm{Fr}=1$).
- If $Z=Z m a x$, there are no physically correct solutions to Eqn. That is, a hump too large will "choke" the channel and cause frictional effects, typically a hydraulic jump.

These hump arguments are reversed if the channel has a depression $(Z<0)$: Subcritical approach flow will cause a water-level rise and supercritical flow a fall in depth. Point 2 will be $|Z|$ to the right of point 1 , and critical flow cannot occur.

Flow Over Hump

$z=Z_{c} \quad y_{1}=y_{o}, y_{2}=y_{c}, y_{3}=y_{0}$

$Z>Z_{c} \quad y_{1}>y_{o}, y_{2}=y_{c,} y_{3}=y_{o}$

Flow Over Hump

- As it is explained with the help of $\mathrm{E} \sim \mathrm{y}$ Diagram, a hump of any height "Z" would cause the lowering of the water surface over the hump in case of subcritical flow in channel. It is also clear that a gradual increase in the height of hump " Z " would cause a gradual reduction in y_{2} value. That height of hump which is just causing the flow depth over hump equal to y_{c} is know as critical height of hump Z_{c}.
- Further increase in $Z\left(>Z_{c}\right)$ would cause the flow depth y_{2} remaining equal y_{c} , thus causing the water surface over the hump to rise. This would further cause an increase in the depth of water upstream of the hump which mean that water surface upstream of the hump would rise beyond the previous value i.e $y_{1}>y_{0}$. This phenomenon of rise in water surface upstream with $\mathrm{Z}>\mathrm{Z}_{\mathrm{c}}$ is called damming action and the resulting increase in depth upstream of the hump i.e $y_{1}-y_{0}$ is known as Afflux.

Flow Through Contraction

- When the width of the channel is reduced while the bed remains flat, the discharge per unit width increases. If losses are negligible, the specific energy remains constant and so for subcritical flow depth will decrease while for supercritical flow depth will increase in as the channel narrows.

Continuity Equation
$B_{1} y_{1} v_{1}=B_{2} y_{2} v_{2}$
Bernoulli's Equation
$y_{1}+\frac{v_{1}^{2}}{2 g}=y_{2}+\frac{v_{2}^{2}}{2 g}$

Using both equations, we get
$\mathbf{Q}=\mathbf{B}_{2} \mathbf{y}_{2} \mathbf{v}_{2}=\mathbf{B}_{2} \mathbf{y}_{2} \sqrt{\left[\frac{2 g\left(y_{1}-y_{2}\right)}{1-\left(\frac{B_{2} y_{2}}{B_{1} y_{1}}\right)^{2}}\right]}$

Flow Through Contraction

- If the degree of contraction and the flow conditions are such that upstream flow is subcritical and free surface passes through the critical depth y_{c} in the throat.

$Q=B_{c} y_{c} \nu_{c}=B_{c} y_{c} \sqrt{2 g\left(E-y_{c}\right)}$
$\sin c e \quad y_{c}=\frac{2}{3} E$
Therefore $\quad Q=B_{c} \frac{2}{3} E \sqrt{\left(2 g \frac{1}{3} E\right)}$
$Q=1.705 B E^{3 / 2} \quad$ in SI Units

Example \# 11.3

- In the accompanying figure, uniform flow of water occurs at $0.75 \mathrm{~m}^{3} / \mathrm{sec}$ in a 1.2 m wide rectangular flume at a depth of 0.6 m .
- (a). Is the flow sub-critical or supercritical.
- (b). If a hump height of $Z=0.1 \mathrm{~m}$ is placed in the bottom of flume, calculate the water depth over the hump. Neglect the head loss in flow over the hump.
- (c). If the hump height is raised to $\mathrm{Z}=0.2 \mathrm{~m}$, what then are the water depths upstream and downstream of hump. Neglect head loss over hump.

$Q=0.75 \mathrm{~m}^{3} / \mathrm{sec}$
$B=1.2 \mathrm{~m}$
$y=0.6 \mathrm{~m}$
$\mathrm{q}=\mathrm{Q} / \mathrm{B}=0.625 \mathrm{~m}^{3} / \mathrm{sec} / \mathrm{m}$

Example \# 11.3 Solution

- (a)

$$
\begin{aligned}
y_{c} & =\sqrt[3]{\frac{q^{2}}{g}}=\sqrt[3]{\frac{0.625^{2}}{9.81}} \\
& =0.341 \mathrm{~m}<y
\end{aligned}
$$

\therefore Flow is subcritical

Problem 11.54

- A rectangular channel 1.2 m wide carries $1.1 \mathrm{~m}^{3} / \mathrm{sec}$ of water in uniform flow at a depth of 0.85 m . If a bridge pier 0.3 m wide is placed in the middle of this channel, find the local change in water surface elevation. What is the minimum width of the constricted channel which will not cause a rise in water surface upstream.
- Given that
$\mathrm{Q}=1.1 \mathrm{~m}^{3} / \mathrm{sec}$
$B_{1}=1.2 \mathrm{~m}$
$\mathrm{q}_{1}=0.92 \mathrm{~m}^{3} / \mathrm{sec} / \mathrm{m}$
$\mathrm{y}_{0}=0.85 \mathrm{~m}$
$\mathrm{B}_{2}=\mathrm{B}_{1}-0.3=0.9 \mathrm{~m}$

Problem 11.54

$\sin c e \quad E=y_{o}+\frac{q_{1}{ }^{2}}{2 g y_{o}}=0.91 \mathrm{~m}$
$y_{c}=\frac{2}{3} E=0.606 \mathrm{~m}$
$V_{c}=\sqrt{g y_{c}}=2.473 \mathrm{~m} / \mathrm{sec}$

$$
\begin{aligned}
& y_{o}+\frac{q_{1}{ }^{2}}{2 g y_{o}}=y_{2}+\frac{q_{2}{ }^{2}}{2 g y_{2}} \\
& y_{2}+\frac{q_{2}{ }^{2}}{2 g y_{2}}=0.91
\end{aligned}
$$

$$
y_{2}=0.38 m \quad \&
$$

$0.785 m$
Therefore
$Q=B_{c} y_{c} v_{c}=1.1$
$B_{c}=0.744 m$

Assignment

- Problem:
- 11.50 to 11.58
- Date of Submission:

Questions

